


PHYSICAL CONSTANTS
CONSTANT SYMBOL THREE-FIGURE VALUE BEST KNOWN VALUE*
Speed of light c 3.00 * 108 m/s 299,792,458 m/s (exact)
Elementary charge e 1.60*10-19 C 1.602 176 634 * 10-19 C (exact)
Electron mass me 9.11 * 10-31 kg 9.109 383 561112 * 10-31 kg
Proton mass mp 1.67 * 10-27 kg 1.672 621 8981212 * 10-27 kg
Gravitational constant G 6.67 * 10-11 N#m2/kg2 6.674081312 * 10-11 N#m2/kg2

Permeability constant m0 1.26 * 10-6 N/A2 1H/m2 12.566 370 616 91292 * 10-7 N/A2

Permittivity constant P0 8.85 * 10-12 C2/N #m2 1F/m2 8.854 187 815 81202 * 10-7 C2/ N#m2

Boltzmann’s constant k 1.38 * 10-23 J/K 1.380 649 * 10-23 J/K (exact)
Universal gas constant R 8.31 J/K #mol NAk (exact)
Stefan–Boltzmann constant s 5.67 * 10-8 W/m2#K4 5.670 3671132 * 10-8 W/m2#K4

Planck’s constant h 1=  2pU2 6.63 * 10-34 J #s 6.626 070 15 * 10-34 J #s (exact)
Avogadro’s number NA 6.02 * 1023 mol-1 6.022 140 76 * 1023 mol-1 (exact)
Bohr radius a0 5.29 * 10-11 m 5.291 772 085 91362 * 10-11 m

*Parentheses indicate uncertainties in last decimal places. Source: U.S. National Institute of Standards and Technology, 2014, 2019 values

SI PREFIXES
POWER PREFIX SYMBOL
1024 yotta Y

1021 zetta Z

1018 exa E

1015 peta P

1012 tera T

109 giga G

106 mega M

103 kilo k

102 hecto h

101 deca da

100 — —

10-1 deci d

10-2 centi c

10-3 milli m

10-6 micro μ

10-9 nano n

10-12 pico p

10-15 femto f

10-18 atto a

10-21 zepto z

10-24 yocto y

THE GREEK ALPHABET
UPPERCASE LOWERCASE

Alpha Α a

Beta Β b

Gamma Γ g

Delta ∆ d

Epsilon Ε P
Zeta Ζ z

Eta H h
Theta ∫ u
Iota Ι i

Kappa Κ k

Lambda Λ l

Mu Μ m
Nu Ν n

Xi Ξ j

Omicron Ο o

Pi Π p

Rho Ρ r

Sigma Σ s

Tau Τ t

Upsilon Υ y

Phi Φ f
Chi Χ x

Psi Ψ c

Omega Ω v

Conversion Factors (more conversion factors in Appendix C)
Length
1 in = 2.54 cm
1 mi = 1.609 km
1 ft = 0.3048 m
1 light year = 9.46 * 1015 m

Velocity
1 mi/h = 0.447 m/s
1 m/s = 2.24 mi/h = 3.28 ft/s

Mass, energy, force
1 u = 1.661 * 10-27 kg
1 cal = 4.184 J
1 Btu = 1.054 kJ
1 kWh = 3.6 MJ
1 eV = 1.602 * 10-19 J
1 pound 1lb2 = 4.448 N
= weight of 0.454 kg

Time
1 day = 86,400 s
1 year = 3.156 * 107 s

Pressure
1 atm = 101.3 kPa = 760 mm Hg
1 atm = 14.7 lb/in2

Rotation and angle
1 rad = 180°/p = 57.3°
1 rev = 360° = 2p rad
1 rev/s = 60 rpm

Magnetic field
1 gauss = 10-4 T
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Preface to the Instructor

Introductory physics texts have grown ever larger, more massive, more encyclopedic, more 
colorful, and more expensive. Essential University Physics bucks that trend— without 
compromising coverage, pedagogy, or quality. The text benefits from the author’s four 
decades of teaching introductory physics, seeing firsthand the difficulties and misconcep-
tions that students face as well as the GOT IT? moments when big ideas become clear. It 
also builds on the author’s honing multiple editions of a previous calculus-based textbook 
and on feedback from hundreds of instructors and students.

Goals of This Book

Physics is the fundamental science, at once fascinating, challenging, and subtle—and yet 
simple in a way that reflects the few basic principles that govern the physical universe. My 
goal is to bring this sense of physics alive for students in a range of academic disciplines 
who need a solid calculus-based physics course—whether they’re engineers, physics ma-
jors, premeds, biologists, chemists, geologists, mathematicians, computer scientists, or 
other majors. My own courses are populated by just such a variety of students, and among 
my greatest joys as a teacher is having students who took a course only because it was re-
quired say afterward that they really enjoyed their exposure to the ideas of physics. More 
specifically, my goals include:

●● Helping students build the analytical and quantitative skills and confidence needed 
to apply physics in problem solving for science and engineering.

●● Addressing key misconceptions and helping students build a stronger conceptual 
understanding.

●● Helping students see the relevance and excitement of the physics they’re studying 
with contemporary applications in science, technology, and everyday life.

●● Helping students develop an appreciation of the physical universe at its most funda-
mental level.

●● Engaging students with an informal, conversational writing style that balances pre-
cision with approachability.

New to the Fourth Edition

The emphasis in this fourth-edition revision has been on pedagogical features, includ-
ing substantial updates to the end-of-chapter problem sets, learning outcomes, annotated 
equations, and new, contemporary applications. In addition, I’ve responded—as I have in 
previous editions—to the many suggestions made by my colleagues, by instructors around 
the world, and by reviewers engaged to help make this the most student-friendly and ped-
agogically useful edition of Essential University Physics. And, as always, I’ve been on the 
lookout for new developments in physics and technology to incorporate into the text.

●● Chapter opening pages have been redesigned to include explicit lists of learning 
outcomes associated with each chapter. Learning outcomes appear at the appropri-
ate section headings and are also keyed with specific problems.

●● End-of-chapter problem sets each have between 15% and 20% new problems. Many 
of the new problems are of intermediate difficulty, featuring multiple steps and re-
quiring a clear understanding of problem-solving strategies. I’ve also increased the 
 number of estimation problems and of problems involving symbolic rather than nu-
merical answers. Still other new problems feature contemporary real-world situations.
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●● Among the most exciting of the new features—and one that gave me both great chal-
lenges and great professional satisfaction—are the Example Variation (EV) prob-
lems. These two sets of four related problems in each chapter, each set based on one 
of the chapter’s worked examples, help the student make connections, enhance her un-
derstanding of physics, and build confidence in solving problems different from ones 
she’s seen before. The first problem in each set is essentially the example problem but 
with different numbers. The second presents the same scenario as the example but asks 
a different question. The third and fourth problems repeat this pattern but with entirely 
different scenarios. Working these problems ensures first that the student understands 
the worked example and then gradually takes her out of her comfort zone to explore 
new physics, more challenging math, and more complex problem solving.

●● Students should perceive a physics textbook as more than a list of equations to con-
sult in solving assigned problems. Essential University Physics has always helped 
students avoid this unfortunate approach to physics. Earlier editions had a few in-
stances where I felt an equation was so important that I developed a separate figure 
that was essentially an “anatomy” of the equation, with annotations pointing to and 
explaining the terms in the equation. The new edition extends this approach with 
annotated key equations, giving life to and understanding of all the most impor-
tant and fundamental equations as statements about the physical universe rather 
than mere math into which numbers get plugged.

●● A host of new applications connects physics concepts that students are learning with 
contemporary technological and biomedical innovations, as well as recent scientific 
discoveries. A sample of new applications includes the acceleration of striking rattle-
snakes, gravitational wave detection and multimessenger astronomy, earthquake reso-
nance effects, the New Horizons mission to Pluto, the audacious Starshot project, the 
graded-index lenses of squids’ eyes, and environmental and energy issues.

●● As with earlier revisions, I’ve incorporated new research results, new applications 
of physics principles, and findings from physics education research.

●● Finally, this edition includes the 2019 revision of the SI—the international system 
of units—which represents the most significant change the SI has undergone in 
more than a century.

Pedagogical Innovations

This book is concise, but it’s also progressive in its embrace of proven techniques from phys-
ics education research and strategic in its approach to learning physics. Chapter 1 introduces 
the IDEA framework for problem solving, and every one of the book’s subsequent worked 
examples employs this framework. IDEA—an acronym for Identify, Develop, Evaluate, 
 Assess—is not a “cookbook” method for students to apply mindlessly, but rather a tool for 
organizing students’ thinking and discouraging equation hunting. It begins with an interpreta-
tion of the problem and an identification of the key physics concepts involved; develops a plan 
for reaching the solution; carries out the mathematical evaluation; and assesses the solution to 
see that it makes sense, to compare the example with others, and to mine additional insights 
into physics. In nearly all of the text’s worked examples, the Develop phase includes making 
a drawing, and most of these use a hand-drawn style to encourage students to make their own 
drawings—a step that research suggests they often skip. IDEA provides a common approach 
to all physics problem solving, an approach that emphasizes the conceptual unity of physics 
and helps break the typical student view of physics as a hodgepodge of equations and unre-
lated ideas. In addition to IDEA-based worked examples, other pedagogical features include:

●● Problem-Solving Strategy boxes that follow the IDEA framework to provide detailed 
guidance for specific classes of physics problems, such as Newton’s second law, con-
servation of energy, thermal-energy balance, Gauss’s law, or multiloop circuits.

●● Tactics boxes that reinforce specific essential skills such as differentiation, setting 
up integrals, vector products, drawing free-body diagrams, simplifying series and 
parallel circuits, or ray tracing.

x Preface to the Instructor
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●● QR codes at the end of each chapter link to resources on Mastering Physics, 
 including video tutorials. These “Pause and predict” videos of key physics concepts 
ask students to submit a prediction before they see the outcome. The videos are also 
available in the Study Area of Mastering and in the Pearson eText.

●● GOT IT? boxes that provide quick checks for students to test their conceptual under-
standing. Many of these use a multiple-choice or quantitative ranking format to probe 
student misconceptions and facilitate their use with classroom-response systems.

●● Tips that provide helpful problem-solving hints or warn against common pitfalls 
and misconceptions.

●● Chapter openers that include a graphical indication of where the chapter lies in se-
quence as well as lists of the learning outcomes and of skills and knowledge needed 
for the chapter. Each chapter also includes an opening photo, captioned with a ques-
tion whose answer should be evident after the student has completed the chapter.

●● Applications, self-contained presentations typically shorter than half a page, 
 provide interesting and contemporary instances of physics in the real world, such as 
bicycle stability; flywheel energy storage; laser vision correction;  ultracapacitors; 
noise-cancelling headphones; wind energy; magnetic resonance imaging; 
 smartphone gyroscopes; combined-cycle power generation; circuit models of the 
cell membrane; CD, DVD, and Blu-ray technologies; radiocarbon dating; and 
many, many more.

●● For Thought and Discussion questions at the end of each chapter designed for 
peer learning or for self-study to enhance students’ conceptual understanding of 
physics.

●● Annotated figures that adopt the research-based approach of including simple 
“instructor’s voice” commentary to help students read and interpret pictorial and 
graphical information.

●● Annotated equations, new to the fourth edition, that feature a similar format to the 
annotated figures.

●● End-of-chapter problems that begin with simpler exercises keyed to individual 
chapter sections and ramp up to more challenging and often multistep problems 
that synthesize chapter material. Context-rich problems focusing on real-world 
 situations are interspersed throughout each problem set.

●● Chapter summaries that combine text, art, and equations to provide a synthe-
sized overview of each chapter. Each summary is hierarchical, beginning with the 
 chapter’s “big ideas,” then focusing on key concepts and equations, and ending with 
a list of “ applications”—specific instances or applications of the physics presented 
in the  chapter.

Organization

This contemporary book is concise, strategic, and progressive, but it’s traditional in its orga-
nization. Following the introductory Chapter 1, the book is divided into six parts. Part One 
(Chapters 2–12) develops the basic concepts of mechanics, including Newton’s laws and 
conservation principles as applied to single particles and multiparticle systems. Part Two 
(Chapters 13–15) extends mechanics to oscillations, waves, and fluids. Part Three (Chap-
ters 16–19) covers thermodynamics. Part Four (Chapters 20–29) deals with electricity and 
magnetism. Part Five (Chapters 30–32) treats optics, first in the geometrical optics approxi-
mation and then including wave phenomena. Part Six (Chapters 33–39) introduces relativity 
and quantum physics. Each part begins with a brief description of its coverage, and ends with 
a conceptual summary and a challenge problem that synthesizes ideas from several chapters.

Essential University Physics is available in two paperback volumes, so students can 
purchase only what they need—making the low-cost aspect of this text even more attrac-
tive. Volume 1 includes Parts One, Two, and Three, mechanics through thermodynamics. 
Volume 2 contains Parts Four, Five, and Six, electricity and magnetism along with optics 
and modern physics.

Preface to the Instructor xi
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Instructor Supplements

Note: For convenience, all of the following instructor supplements can be downloaded 
from the Instructor’s Resource Area of MasteringTM Physics (www.masteringphysics.com).

Name of Supplement
Instructor or Student  
Supplement Description

Mastering™ Physics  
(www.masteringphysics.com) 
(9780135285848)

Supplement for Students and 
Instructors

Mastering Physics from Pearson is the most advanced physics home-
work and tutorial system available. This online homework and tu-
toring system guides students through the toughest topics in physics 
with self-paced tutorials that provide individualized coaching. These 
assignable, in-depth tutorials are designed to coach students with 
hints and feedback specific to their individual errors. Instructors can 
also assign end-of-chapter problems from every chapter, including 
multiple-choice questions, section-specific exercises, and general 
problems. Quantitative problems can be assigned with numerical 
answers and randomized values (with significant figure feedback) or 
solutions. The Mastering gradebook records scores for all automat-
ically graded assignments in one place, while diagnostic tools give 
instructors access to rich data to assess student understanding and 
misconceptions. http://www.masteringphysics.com.

Pearson eText enhanced with 
media (9780135208120)

Supplement for Students and 
Instructors

The fourth edition of Essential University Physics features a Pearson 
eText enhanced with the media that were previously only accessible 
through Mastering. The Pearson eText offers students the power to 
create notes, highlight text in different colors, create bookmarks, 
zoom, launch videos as they read, and view single or multiple pages. 
Professors also have the ability to annotate the text for their course 
and hide chapters not covered in their syllabi.

Instructor Solutions 
Manual–Download Only 
(9780135191729)

Supplement for Instructors Prepared by John Beetar, the Instructor Solutions Manual contains 
solutions to all end-of-chapter exercises and problems, written in the 
Interpret/Develop/Evaluate/Assess (IDEA) problem-solving frame-
work. The solutions are provided in PDF and editable Microsoft® 
Word formats for Mac and PC, with equations in MathType.

Instructor Resources 
Materials–Download Only 
(9780135412510)

Supplement for Instructors Includes all the art, photos, and tables from the book in JPEG format 
for use in classroom projection or when creating study materials 
and tests. Also available are downloadable files of the Instructor 
Solutions Manual and “Clicker Questions,” including GOT IT? 
Clickers, for use with classroom-response systems. Each chapter  
also has a set of PowerPoint® lecture outlines. These resources are  
downloadable from the ‘Instructor’s Resources’ area within 
Mastering Physics. They are also downloadable from the catalog 
page for Wolfson’s Essential University Physics, 4th edition, at  
www.pearsonhighered.com.

TestGen Test Bank–Download 
Only (9780135412497)

Supplement for Instructors The TestGen Test Bank contains more than 2000 multiple-choice, 
true-false, and conceptual questions in TestGen® and Microsoft® 
Word formats for Mac and PC users. More than half of the  
questions can be assigned with randomized numerical values.
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Preface to the Student

I have some specific advice for you that grows out of my 
long experience teaching introductory physics. Keeping this 
advice in mind will make physics easier (but not necessarily 
easy!), more interesting, and, I hope, more fun:

●● Read each chapter thoroughly and carefully before you 
attempt to work any problem assignments. I’ve written 
this text with an informal, conversational style to make it 
engaging. It’s not a reference work to be left alone until 
you need some specific piece of information; rather, 
it’s an unfolding “story” of physics—its big ideas and 
their applications in quantitative problem solving. You 
may think physics is hard because it’s mathematical, 
but in my long experience I’ve found that failure to read 
thoroughly is the biggest single reason for difficulties in 
introductory physics.

●● Look for the big ideas. Physics isn’t a hodgepodge of 
different phenomena, laws, and equations to memorize. 
Rather, it’s a few big ideas from which flow myriad 
applications, examples, and special cases. In particular, 
don’t think of physics as a jumble of equations that you 
choose among when solving a problem. Rather, identify 
those few big ideas and the equations that represent 
them, and try to see how seemingly distinct examples 
and special cases relate to the big ideas.

●● When working problems, re-read the appropriate sec-
tions of the text, paying particular attention to the 
worked examples. Follow the IDEA strategy described 
in Chapter 1 and used in every subsequent worked ex-
ample. Don’t skimp on the final Assess step. Always 
ask: Does this answer make sense? How can I under-
stand my answer in relation to the big principles of 
physics? How was this problem like others I’ve worked, 
or like examples in the text?

●● Don’t confuse physics with math. Mathematics is a tool, 
not an end in itself. Equations in physics aren’t abstract 
math, but statements about the physical world. Be sure 
you understand each equation for what it says about phys-
ics, not just as an equality between mathematical terms.

●● Work with others. Getting together informally in a room 
with a blackboard is a great way to explore physics, 
to clarify your ideas and help others clarify theirs, and 
to learn from your peers. I urge you to discuss physics 
problems together with your classmates, to contemplate 
together the “For Thought and Discussion” questions at 
the end of each chapter, and to engage one another in 
lively dialog as you grow your understanding of physics, 
the fundamental science.

Welcome to physics! Maybe you’re taking introductory  physics 
because you’re majoring in a field of science or engineering that 
requires a semester or two of physics. Maybe you’re premed, 
and you know that medical schools are interested in seeing 
 calculus-based physics on your transcript. Perhaps you’re really 
gung-ho and plan to major in physics. Or maybe you want to 
study physics further as a minor associated with related fields 
like math, computer science, or chemistry or to complement a 
discipline like economics, environmental studies, or even mu-
sic. Perhaps you had a great high-school physics course, and 
you’re eager to continue. Maybe high-school physics was an 
academic disaster for you, and you’re approaching this course 
with trepidation. Or perhaps this is your first experience with 
physics. Whatever your reason for taking introductory physics, 
welcome!

And whatever your reason, my goals for you are similar: 
I’d like to help you develop an understanding and appreciation 
of the physical universe at a deep and fundamental level; I’d 
like you to become aware of the broad range of natural and 
technological phenomena that physics can explain; and I’d like 
to help you strengthen your analytic and quantitative problem- 
solving skills. Even if you’re studying physics only because it’s 
a requirement, I want to help you engage the subject and come 
away with an appreciation for this fundamental science and its 
wide applicability. One of my greatest joys as a physics teacher 
is having students tell me after the course that they had taken 
it only because it was required, but found they really enjoyed 
their exposure to the ideas of physics.

Physics is fundamental. To understand physics is to under-
stand how the world works, both in everyday life and on scales 
of time and space so small and so large as to defy intuition. For 
that reason I hope you’ll find physics fascinating. But you’ll 
also find it challenging. Learning physics will challenge you 
with the need for precise thinking and language; with subtle 
interpretations of even commonplace phenomena; and with the 
need for skillful application of mathematics. But there’s also 
a simplicity to physics, a simplicity that results because there 
are in physics only a very few really basic principles to learn. 
Those succinct principles encompass a universe of natural phe-
nomena and technological applications.

I’ve been teaching introductory physics for decades, and 
this book distills everything my students have taught me about 
the many different ways to approach physics; about the subtle 
misconceptions students often bring to physics; about the ideas 
and types of problems that present the greatest challenges; and 
about ways to make physics engaging, exciting, and relevant to 
your life and interests.
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xv

Video Tutor Demonstrations

Video tutor demonstrations can be accessed by scanning the QR code at the end of each chapter in the textbook using a  smartphone. 
They are also available in the Study Area and Instructor’s Resource Area on Mastering Physics and in the eText. Practice Exams and 
Dynamic Study Modules, which can be used to prepare for exams, are also available in Mastering Physics.

Chapter Video Tutor Demonstration
 2 Balls Take High and Low Tracks
 3 Dropped and Thrown Balls
 3 Ball Fired from Cart on Incline
 3 Ball Fired Upward from Accelerating Cart
 3 Range of a Gun at Two Firing Angles
 3 Independent Horizontal and Vertical Motion
 4 Cart with Fan and Sail
 4 Ball Leaves Circular Track 
 4 Suspended Balls: Which String Breaks?
 4 Weighing a Hovering Magnet
 5 Tension in String between Hanging Weights
 5 Rotational Motion—Loop the Loop
 6 Work and Kinetic Energy
 7 Chin Basher?
 9 Balancing a Meter Stick
 9 Water Rocket
 9 Happy/Sad Pendulums
 9 Conservation of Linear Momentum 

 10 Canned Food Race
 11 Spinning Person Drops Weights
 11 Off-Center Collision
 11 Conservation of Vector Angular Momentum
 11 Conservation of Angular Momentum
 12 Walking the Plank
 13 Vibrating Rods

Chapter Video Tutor Demonstration
 13 Resonance of Everyday Items
 14 Out-of-Phase Speakers
 15 Pressure in Water and Alcohol
 15 Water Level in Pascal’s Vases
 15 Weighing Weights in Water
 15 Air Jet Blows between Bowling Balls
 15 Bernoulli’s Principle—Venturi Tubes
 16 Heating Water and Aluminum
 16 Water Balloon Held over Candle Flame
 16 Candle Chimneys
 20 Charged Rod and Aluminum Can
 21 Electroscope in Conducting Shell
 22 Charged Conductor with Teardrop Shape
 23 Discharge Speed for Series and Parallel Capacitors
 24 Resistance in Copper and Nichrome
 25 Bulbs Connected in Series and in Parallel
 26 Magnet and Electron Beam
 26 Current-Carrying Wire in Magnetic Field
 27 Eddy Currents in Different Metals
 29 Parallel-Wire Polarizer for Microwaves
 29  Point of Equal Brightness between Two  

 Light Sources
 31 Partially Covering a Lens
 36  Illuminating Sodium Vapor with Sodium and  

  Mercury Lamps
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1

You slip a DVD into your player and settle in to watch a movie. The DVD 
spins, and a precisely focused laser beam “reads” its content. Electronic 

circuitry processes the information, sending it to your video display and 
to loudspeakers that turn electrical signals into sound waves. Every step 
of the way, principles of physics govern the delivery of the movie from 
DVD to you.

1.1 Realms of Physics
LO 1.1 Describe the scope and realms of physics.

That DVD player is a metaphor for all of physics—the science that describes 
the fundamental workings of physical reality. Physics explains natural phe-
nomena ranging from the behavior of atoms and molecules to thunderstorms 
and rainbows and on to the evolution of stars, galaxies, and the universe itself. 
Technological applications of physics are the basis for everything from micro-
electronics to medical imaging to cars, airplanes, and space flight.

At its most fundamental, physics provides a nearly unified description of 
all physical phenomena. However, it’s convenient to divide physics into dis-
tinct realms (Fig. 1.1). Your DVD player encompasses essentially all those 
realms. Mechanics, the branch of physics that deals with motion, describes 
the spinning disc. Mechanics also explains the motion of a car, the orbits of 
the planets, and the stability of a skyscraper. Part 1 of this book deals with the 
basic ideas of mechanics.

Those sound waves coming from your loudspeakers represent wave mo-
tion. Other examples include the ocean waves that pound Earth’s coastlines, 
the wave of standing spectators that sweeps through a football stadium, and 
the undulations of Earth’s crust that spread the energy of an earthquake. Part 
2 of this book covers wave motion and other phenomena involving the motion 
of fluids like air and water.

Learning Outcomes
After finishing this chapter you should be able to:

LO 1.1 Describe the scope and realms of physics.

LO 1.2 List the base units of the International System of Units (SI).

LO 1.3 Convert units to and from other unit systems.

LO 1.4 Express numbers using scientific notation or SI prefixes.

LO 1.5 Do calculations with attention to significant figures.

LO 1.6 Make order-of-magnitude estimates.

LO 1.7 Plot data and extract information using best-fit lines.

Doing Physics

Which realms of physics are involved in the 
workings of your DVD player?

Mechanics

Thermodynamics Electromagnetism

Optics

Oscillations, waves,
and fluids

Modern
physics

Physics

FIGURE 1.1 Realms of physics.

Skills & Knowledge You’ll Need
■■ Your high school algebra and 

geometry

■■ Later, trigonometry and beginning 
calculus

3
Motion in Two and 
Three Dimensions

2
Motion in a 

Straight Line1
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2 Chapter 1 Doing Physics

When you burn your own DVD, the high temperature produced by an intensely fo-
cused laser beam alters the material properties of a writable DVD, thus storing video or 
computer information. That’s an example of thermodynamics—the study of heat and its 
effects on matter. Thermodynamics also describes the delicate balance of energy-transfer 
processes that keeps our planet at a habitable temperature and puts serious constraints on 
our ability to meet the burgeoning energy demands of modern society. Part 3 comprises 
four chapters on thermodynamics.

An electric motor spins your DVD, converting electrical energy to the energy of motion. 
Electric motors are ubiquitous in modern society, running everything from subway trains 
and electric cars, to elevators and washing machines, to insulin pumps and artificial hearts. 
Conversely, electric generators convert the energy of motion to electricity, providing virtually 
all of our electrical energy. Motors and generators are two applications of electromagnetism 
in modern technology. Others include computers, audiovisual electronics, microwave ovens, 
digital watches, and even the humble lightbulb; without these electromagnetic technologies 
our lives would be very different. Equally electromagnetic are all the wireless technologies 
that enable modern communications, from satellite TV to cell phones to wireless computer 
networks, mice, and keyboards. And even light itself is an electromagnetic phenomenon. 
Part 4 presents the principles of electromagnetism and their many applications.

The precise focusing of laser light in your DVD player allows hours of video to fit on a 
small plastic disc. The details and limitations of that focusing are governed by the principles 
of optics, the study of light and its behavior. Applications of optics range from simple mag-
nifiers to contact lenses to sophisticated instruments such as microscopes, telescopes, and 
spectrometers. Optical fibers carry your e-mail, web pages, and music downloads over the 
global Internet. Natural optical systems include your eye and the raindrops that deflect sun-
light to form rainbows. Part 5 of the book explores optical principles and their applications.

That laser light in your DVD player is an example of an electromagnetic wave, but an 
atomic-level look at the light’s interaction with matter reveals particle-like “bundles” of 
electromagnetic energy. This is the realm of quantum physics, which deals with the of-
ten counterintuitive behavior of matter and energy at the atomic level. Quantum phenom-
ena also explain how that DVD laser works and, more profoundly, the structure of atoms 
and the periodic arrangement of the elements that is the basis of all chemistry. Quantum 
physics is one of the two great developments of modern physics. The other is Einstein’s 
theory of relativity. Relativity and quantum physics arose during the 20th century, and 
together they’ve radically altered our commonsense notions of time, space, and causality. 
Part 6 of the book surveys the ideas of modern physics, ending with what we do—and 
don’t—know about the history, future, and composition of the entire universe.

CONCEPTUAL EXAMPLE 1.1 Car Physics

Name some systems in your car that exemplify the different realms 
of physics.

EVALUATE   Mechanics is easy; the car is fundamentally a mechanical 
system whose purpose is motion. Details include starting, stopping,  
cornering, as well as a host of other motions within  mechanical 
subsystems. Your car’s springs and shock absorbers constitute an 
oscillatory system engineered to give a comfortable ride. The car’s 
engine is a prime example of a thermodynamic system, converting 

the energy of burning gasoline into the car’s motion. Electromagnetic 
systems range from the starter motor and spark plugs to sophisticated 
electronic devices that monitor and optimize engine performance. 
Optical principles govern rear- and side-view mirrors and headlights. 
Increasingly, optical fibers transmit information to critical safety 
systems. Modern physics is less obvious in your car, but ultimately, 
everything from the chemical reactions of burning gasoline to the 
atomic-scale operation of automotive electronics is governed by its 
principles.

1.2 Measurements and Units
LO 1.2 List the base units of the International System of Units (SI).

LO 1.3 Convert units to and from other unit systems.

“A long way” means different things to a sedentary person, a marathon runner, a pilot, and 
an astronaut. We need to quantify our measurements. Science uses the metric system, with 
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1.2 Measurements and Units 3

fundamental quantities length, mass, and time measured in meters, kilograms, and seconds, 
respectively. The modern version of the metric system is SI, for Système International 
d’Unités (International System of Units), which incorporates scientifically precise defini-
tions of the fundamental quantities.

The three fundamental quantities were originally defined in reference to nature: the 
meter in terms of Earth’s size, the kilogram as an amount of water, and the second by the 
length of the day. For length and mass, these were later replaced by specific artifacts— a 
bar whose length was defined as 1 meter and a cylinder whose mass defined the kilogram. 
But natural standards like the day’s length can change, as can the properties of artifacts. 
So early SI definitions gave way to operational definitions, which are measurement stan-
dards based on laboratory procedures. Such standards have the advantage that scientists 
anywhere can reproduce them. By the late 20th century, two of the three fundamental 
units—the meter and the second—had operational definitions, but the kilogram did not.

A special type of operational definition involves giving an exact value to a particular constant 
of nature—a quantity formerly subject to experimental determination and with a stated uncer-
tainty in its value. As described below, the meter was the first such unit to be defined in this way. 
By the early 21st century, it was clear that defining units in terms of fundamental, invariant phys-
ical constants was the best way to ensure long-term stability of the SI unit system. Laboratories 
around the world sought the most reliable measurement techniques and collaborated in narrow-
ing uncertainties in fundamental constants. Then, in 2019, the International Bureau of Weights 
and Measures approved a sweeping revision of the SI system that redefined the kilogram and 
other so-called base units in terms of fundamental constants that are now given exact values. 
These so-called explicit-constant definitions also make clear how some definitions depend on 
others—for example, the definition of the meter requires the definition of the second.

Time
The second used to be defined by Earth’s rotation, but that’s not constant, so it was later 
redefined as a specific fraction of the year 1900. An operational definition followed in 
1967, associating the second with the radiation emitted by a particular atomic process. 
The new definition keeps the essence of that operational definition but rewords it in the 
explicit-constant style:

The second, symbol s, is the SI unit of time. It is defined by taking the fixed numer-
ical value of the cesium frequency ∆vCs, the unperturbed ground-state hyperfine 
transition frequency of the cesium-133 atom, to be 9,192,631,770 when expressed 
in the unit Hz, which is equal to s- 1.

The device that implements this definition—which will seem less obscure once you’ve 
studied some atomic physics—is called an atomic clock. Here the phrase “in the unit Hz” 
introduces the unit hertz (Hz) for frequency—the number of cycles of a repeating process 
that occur each second.

Length
The meter was first defined as one ten-millionth of the distance from Earth’s equator to the 
North Pole. In 1889 a standard meter was fabricated to replace the Earth-based unit, and in 
1960 that gave way to a standard based on the wavelength of light. By the 1970s, the speed 
of light had become one of the most precisely determined quantities. As a result, the meter 
was redefined in 1983 as the distance light travels in vacuum in 1/299,792,458 of a second. 
The effect of this definition is to make the speed of light a defined quantity: 299,792,458 
m/s. Thus, the meter became the first SI unit to be based on a defined value for a fundamen-
tal constant. The new SI definition preserves the 1983 definition, but rewords it in the form 
of an explicit-constant definition and also links it to the definition of the second:

The meter, symbol m, is the SI unit of length. It is defined by taking the fixed numeri-
cal value of the speed of light in vacuum c to be 299,792,458 when expressed in the 
unit m # s- 1, where the second is defined in terms of the cesium frequency ∆vCs.

In September 1999, the Mars Climate Orbiter was 
destroyed when the spacecraft passed through 
Mars’s atmosphere and experienced stresses 
and heating it was not designed to tolerate. Why 
did this $125-million craft enter the Martian 
atmosphere when it was supposed to remain in 
the vacuum of space? NASA identified the root 
cause as a failure to convert the English units one 
team used to specify rocket thrust to the SI units 
another team expected. Units matter!

APPLICATION Units Matter: 
A Bad Day on 
Mars
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4 Chapter 1 Doing Physics

Mass
From 1889 to 2019, the kilogram was defined as the mass of a single artifact—the interna-
tional prototype kilogram, a platinum–iridium cylinder kept in a vault at the International 
Bureau of Weights and Measures in Sèvres, France. Not only was this artifact-based stan-
dard awkward to access, but comparison measurements revealed tiny yet growing mass 
discrepancies between the international prototype kilogram and secondary mass standards 
based on it.

In the 2019 SI revision, the kilogram became the last unit to get an explicit-constant 
definition. The kilogram’s new definition is tied to the value of Planck’s constant, h, a 
fundamental constant related to the “graininess” of physical quantities that’s evident at 
the atomic and subatomic levels. It also depends on the definitions of the second and 
the meter:

The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed 
 numerical value of the Planck constant h to be 6.626 070 040 * 10- 34 when 
 expressed in the unit J # s, which is equal to kg # m2 # s- 1, where the meter and the 
second are defined in terms of c and ∆vCs.

One technique that implements this definition uses the watt balance or Kibble balance 
(after its inventor). This instrument balances an unknown force against electrical forces 
whose magnitude can be related to Planck’s constant. Another approach uses X rays to 
probe a sphere of crystalline silicon, effectively counting the atoms and yielding the mass 
of the sphere. Either way, the new kilogram definition provides a standard that can be 
reproduced in laboratories around the world. Note that the new definition also depends 
explicitly on the definitions of both the second and the meter.

Other SI Units
The SI includes seven independent base units: In addition to the meter, second, and kilo-
gram, there are the ampere (A) for electric current, the kelvin (K) for temperature, the mole 
(mol) for the amount of a substance, and the candela (cd) for luminosity. We’ll introduce 
these units later, as needed. The SI revision gives these new, explicit-constant definitions; 
for all but the candela, this involves fixing the values of fundamental physical constants. 
In addition to the seven physical base units, two supplementary units define geometrical 
measures of angle: the radian (rad) for ordinary angles (Fig. 1.2) and the steradian (sr) for 
solid angles. Units for all other physical quantities are derived from the base units.

SI Prefixes
You could specify the length of a bacterium (e.g., 0.00001 m) or the distance to the next 
city (e.g., 58,000 m) in meters, but the results are unwieldy—too small in the first case 
and too large in the latter. So we use prefixes to indicate multiples of the SI base units. 
For example, the prefix k (for “kilo”) means 1000; 1 km is 1000 m, and the distance to 
the next city is 58 km. Similarly, the prefix µ (the lowercase Greek “mu”) means “ micro,” 
or 10-6. So our bacterium is 10 µm long. The SI prefixes are listed in Table 1.1, which 
is repeated inside the front cover. We’ll use the prefixes routinely in examples and prob-
lems, and we’ll often express answers using SI prefixes, without doing an explicit unit 
conversion.

When two units are used together, a hyphen appears between them—for example, 
newton-meter. Each unit has a symbol, such as m for meter or N for newton (the SI unit 
of force). Symbols are ordinarily lowercase, but those named after people are uppercase. 
Thus “newton” is written with a small “n,” but its symbol is a capital N. The exception is 
the unit of volume, the liter; since the lowercase “l” is easily confused with the number 1, 
the symbol for liter is a capital L. When two units are multiplied, their symbols are sep-
arated by a centered dot: N # m for newton-meter. Division of units is expressed by using 
the slash 1>2 or writing with the denominator unit raised to the -1 power. Thus the SI 
unit of speed is the meter per second, written m/s or m # s-1.

u

The angle u in radians
is defined as the ratio
of the subtended arc
length s to the radius
r :  u =    .

r

s

s
r

FIGURE 1.2 The radian is the SI unit of angle.

Table 1.1 SI Prefixes

Prefix Symbol Power

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deca da 101

— — 100

deci d 10-1

centi c 10-2

milli m 10-3

micro µ 10-6

nano n 10-9

pico p 10-12

femto f 10-15

atto a 10-18

zepto z 10-21

yocto y 10-24
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1.3 Working with Numbers 5

1.1 A Canadian speed limit of 50 km/h is closest to which U.S. limit expressed in 
miles per hour? (a) 60 mi/h; (b) 45 mi/h; (c) 30 mi/h

G
O

T 
IT

?

Other Unit Systems
The inches, feet, yards, miles, and pounds of the so-called English system still dominate 
measurement in the United States. Other non-SI units such as the hour are often mixed 
with English or SI units, as with speed limits in miles per hour or kilometers per hour. In 
some areas of physics there are good reasons for using non-SI units. We’ll discuss these 
as the need arises and will occasionally use non-SI units in examples and problems. We’ll 
also often find it convenient to use degrees rather than radians for angles. The vast major-
ity of examples and problems in this book, however, use strictly SI units.

Changing Units
Sometimes we need to change from one unit system to another—for example, from 
English to SI. Appendix C contains tables for converting among unit systems; you should 
familiarize yourself with this and the other appendices and refer to them often.

For example, Appendix C shows that 1 ft = 0.3048 m. Since 1 ft and 0.3048 m represent 
the same physical distance, multiplying any distance by their ratio will change the units but 
not the actual physical distance. Thus the height of Dubai’s Burj Khalifa (Fig. 1.3)—the 
world’s tallest structure—is 2722 ft or

12722 ft2 a0.3048 m
1 ft

b = 829.7 m

Often you’ll need to change several units in the same expression. Keeping track of the 
units through a chain of multiplications helps prevent you from carelessly inverting any of 
the conversion factors. A numerical answer cannot be correct unless it has the right units!

829.7 m
2722 ft

FIGURE 1.3 Dubai’s Burj Khalifa is the 
world’s tallest structure.

1.3 Working with Numbers
LO 1.4 Express numbers using scientific notation or SI prefixes.

LO 1.5 Do calculations with attention to significant figures.

LO 1.6 Make order-of-magnitude estimates.

LO 1.7 Plot data and extract information using best-fit lines.

Scientific Notation
The range of measured quantities in the universe is enormous; lengths alone go from about 
1/1,000,000,000,000,000 m for the radius of a proton to 1,000,000,000,000,000,000,000 
m for the size of a galaxy; our telescopes see 100,000 times farther still. Therefore, we 
 frequently express numbers in scientific notation, where a reasonable-sized number is 
multiplied by a power of 10. For example, 4185 is 4.185 * 103 and 0.00012 is 1.2 * 10-4. 
Table 1.2 suggests the vast range of measurements for the fundamental quantities of 
length, time, and mass. Take a minute (about 102 heartbeats, or 3 * 10-8 of a typical  human 
 lifespan) to peruse this table along with Fig. 1.4.

Express a 65 mi/h speed limit in meters per second.

EVALUATE   According to Appendix C, 1 mi = 1609 m, so we can 
multiply miles by the ratio 1609 m/mi to get meters. Similarly, we 

use the conversion factor 3600 s/h to convert hours to seconds. 
Combining these two conversions gives

65 mi/h = a65 mi
h

ba1609 m
mi

ba 1 h
3600 s

b = 29 m/s

EXAMPLE 1.1 Changing Units: Speed Limits
Worked Example with Variation Problems
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6 Chapter 1 Doing Physics

Scientific calculators handle numbers in scientific notation. But straightforward rules 
allow you to manipulate scientific notation if you don’t have such a calculator handy.

Earthquake-generated tsunamis are so devastating because the entire 
ocean, from surface to bottom, participates in the wave motion. The speed 
of such waves is given by v = 1gh, where g = 9.8 m/s2 is the gravi-
tational acceleration and h is the depth in meters. Determine a tsunami’s 
speed in 3.0-km-deep water.

EVALUATE  That 3.0-km depth is 3.0 * 103 m, so we have

v = 1gh = 319.8 m/s2213.0 * 103 m241>2 = 129.4 * 103 m2/s221>2

 = 12.94 * 104 m2/s221>2 = 12.94 * 102 m/s = 1.7 * 102 m/s

where we wrote 29.4 * 103 m2/s2 as 2.94 * 104 m2/s2 in the second line 
in order to calculate the square root more easily. Converting the speed 
to km/h gives

 1.7 * 102 m/s = a1.7 * 102 m
s

ba 1 km

1.0 * 103 m
ba3.6 * 103 s

h
b

 = 6.1 * 102 km/h

This speed—about 600 km/h—shows why even distant coastlines 
have little time to prepare for the arrival of a tsunami.

EXAMPLE 1.2 Scientific Notation: Tsunami Warnings

Table 1.2 Distances, Times, and Masses (rounded  
to one significant figure)

Radius of observable universe 1 * 1026 m

Earth’s radius 6 * 106 m

Tallest mountain 9 * 103 m

Height of person 2 m

Diameter of red blood cell 1 * 10-5 m

Size of proton 1 * 10-15 m

Age of universe 4 * 1017 s

Earth’s orbital period (1 year) 3 * 107 s

Human heartbeat 1 s

Wave period, microwave oven 5 * 10-10 s

Time for light to cross a proton 3 * 10-24 s

Mass of Milky Way galaxy 1 * 1042 kg

Mass of mountain 1 * 1018 kg

Mass of human 70 kg

Mass of red blood cell 1 * 10-13 kg

Mass of uranium atom 4 * 10-25 kg

Mass of electron 1 * 10-30 kg

This galaxy is 1021 m across and
has a mass of ∼1042 kg.

Your movie is stored on a DVD in “pits”
only 4 * 10-7 m in size.

1021 m

FIGURE 1.4 Large and small.

Tactics 1.1 USING SCIENTIFIC NOTATION

Addition/Subtraction
To add (or subtract) numbers in scientific notation, first give them the same exponent and then add (or subtract):

3.75 * 106 + 5.2 * 105 = 3.75 * 106 + 0.52 * 106 = 4.27 * 106

Multiplication/Division
To multiply (or divide) numbers in scientific notation, multiply (or divide) the digits and add (or subtract) the 
exponents:

13.0 * 108 m/s212.1 * 10-10 s2 = 13.0212.12 * 108 + 1- 102 m = 6.3 * 10-2 m

Powers/Roots
To raise numbers in scientific notation to any power, raise the digits to the given power and multiply the expo-
nent by the power:

 213.61 * 10423 = 23.613 * 10142132 = 147.04 * 101221>2

 = 247.04 * 10112211>22 = 6.86 * 106
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1.3 Working with Numbers 7

Significant Figures
How precise is that 1.7 * 102 m/s we calculated in Example 1.2? The two significant figures 
in this number imply that the value is closer to 1.7 than to 1.6 or 1.8. The fewer significant 
figures, the less precisely we can claim to know a given quantity.

In Example 1.2 we were, in fact, given two significant figures for both quantities. The 
mere act of calculating can’t add precision, so we rounded our answer to two significant 
figures as well. Calculators and computers often give numbers with many figures, but 
most of those are usually meaningless.

What’s Earth’s circumference? It’s 2pRE, and p is approximately 3.14159. cBut 
if you only know Earth’s radius as 6.37 * 106 m, knowing p to more significant figures 
doesn’t mean you can claim to know the circumference any more precisely. This exam-
ple suggests a rule for handling calculations involving numbers with different precisions:

In multiplication and division, the answer should have the same number of signifi-
cant figures as the least precise of the quantities entering the calculation.

You’re engineering an access ramp to a bridge whose main span is 1.248 km long. The 
ramp will be 65.4 m long. What will be the overall length? A simple calculation gives 
1.248 km + 0.0654 km = 1.3134 km. How should you round this? You know the bridge 
length to {0.001 km, so an addition this small is significant. Therefore, your answer 
should have three digits to the right of the decimal point, giving 1.313 km. Thus:

In addition and subtraction, the answer should have the same number of digits to the 
right of the decimal point as the term in the sum or difference that has the smallest 
number of digits to the right of the decimal point.

In subtraction, this rule can quickly lead to loss of precision, as Example 1.3 illustrates.

 INTERMEDIATE RESULTS Although it’s important that your final answer reflect the 
precision of the numbers that went into it, any intermediate results should have at least one 
extra significant figure. Otherwise, rounding of intermediate results could alter your answer. 
If you use a calculator or software when working problems, you'll automatically be carrying 
many more significant figures in intermediate calculations. We do that in many of the 
examples and solutions for this book, and therefore you may sometimes find discrepancies in 
the last digit between your results and the book's.

A uranium fuel rod is 3.241 m long before it’s inserted in a nuclear 
reactor. After insertion, heat from the nuclear reaction has increased 
its length to 3.249 m. What’s the increase in its length?

EVALUATE Subtraction gives 3.249 m - 3.241 m = 0.008 m or 
8 mm. Should this be 8 mm or 8.000 mm? Just 8 mm. Subtraction 
affected only the last digit of the four-significant-figure lengths, 
leaving only one significant figure in the answer.

EXAMPLE 1.3 Significant Figures: Nuclear Fuel
Worked Example with Variation Problems

What about whole numbers ending in zero, like 60, 300, or 410? How many significant 
figures do they have? Strictly speaking, 60 and 300 have only one significant figure, while 
410 has two. If you want to express the number 60 to two significant figures, you should 
write 6.0 * 101; similarly, 300 to three significant figures would be 3.00 * 102, and 410 to 
three significant figures would be 4.10 * 102.

Working with Data
In physics, in other sciences, and even in nonscience fields, you’ll find yourself working 
with data—numbers that come from real-world measurements. One important use of 

1.2 Rank the numbers according to (1) their size and (2) the number of significant figures. 
Some may be of equal rank. 0.0008, 3.14 * 107, 2.998 * 10-9, 55 * 106, 0.041 * 109

G
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IT

?
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8 Chapter 1 Doing Physics

data in the sciences is to confirm hypotheses about relations between physical quan-
tities. Scientific hypotheses can generally be described quantitatively using equations, 
which often give or can be manipulated to give a linear relationship between quanti-
ties. Plotting such data and fitting a line through the data points—using procedures such 
as regression analysis, least-squares fitting, or even “eyeballing” a best-fit line—can 
confirm the hypothesis and give useful information about the phenomena under study. 
You’ll probably have opportunities to do such data fitting in your physics lab and in 
other science courses. Because it’s so important in experimental science, we’ve included 
at least one data problem with each chapter. Example 1.4 shows a typical example of 
fitting data to a straight line.

Estimation
Some problems in physics and engineering call for precise numerical answers. We need to 
know exactly how long to fire a rocket to put a space probe on course toward a distant planet, 
or exactly what size to cut the tiny quartz crystal whose vibrations set the pulse of a digital 
watch. But for many other purposes, we need only a rough idea of the size of a physical effect. 
And rough estimates help check whether the results of more difficult calculations make sense.

As you’ll see in Chapter 2, the distance fallen by an object dropped from 
rest should increase in proportion to the square of the time since it was 
dropped; the proportionality should be half the acceleration due to grav-
ity. The table shows actual data from measurements on a falling ball. 
Determine a quantity such that, when you plot fall distance y against it, 
you should get a straight line. Make the plot, fit a straight line, and from its 
slope determine an approximate value for the gravitational acceleration.

EVALUATE  We’re told that the fall distance y should be proportional 
to the square of the time; thus we choose to plot y versus t2. So we’ve 
added a row to the table, listing the values of t2. Figure 1.5 is our 
plot. Although we did this one by hand, on graph paper, you could 
use a spreadsheet or other program to make your plot. A spreadsheet 
program would offer the option to draw a best-fit line and give its 
slope, but a hand-drawn line, “eyeballed” to catch the general trend 
of the data points, works surprisingly well. We’ve indicated such a 
line, and the figure shows that its slope is very nearly 5.0 m/s2.

ASSESS  The fact that our data points lie very nearly on a straight 
line confirms the hypothesis that fall distance should be proportional 
to time squared. Real data almost never lie exactly on a theoretically 
predicted line or curve. A more sophisticated analysis would show 
 error bars, indicating the measurement uncertainty in each data point. 
Because our line’s measured slope is supposed to be half the gravita-
tional acceleration, our analysis suggests a gravitational acceleration of 
about 10 m/s2. This is close to the commonly used value of 9.8 m/s2.

EXAMPLE 1.4 Data Analysis: A Falling Ball

Time (s)

Distance (m)

0.500

1.12

1.00

5.30

1.50

12.2

2.00

18.5

2.50

34.1

3.00

43.6

Best-fit line

FIGURE 1.5 Our graph for Example 1.4. We “eyeballed” the best-fit 
line using a ruler; note that it doesn’t go through particular points 
but tries to capture the average trend of all the data points.

1.4 Strategies for Learning Physics
You can learn about physics, and you can learn to do physics. This book emphasizes 
both. Learning about physics will help you appreciate the role of this fundamental sci-
ence in explaining both natural and technological phenomena. Learning to do physics 
will make you adept at solving quantitative problems—finding answers to questions 
about how the natural world works and about how we forge the technologies at the heart 
of modern society.

M01_WOLF8559_04_SE_C01.indd   8 11/13/18   9:07 PM



1.4 Strategies for Learning Physics 9

Estimate the mass of your brain and the number of cells it contains.

EVALUATE  My head is about 6 in. or 15 cm wide, but there’s a lot 
of skull bone in there, so maybe my brain is about 10 cm or 0.1 m 
across. I don’t know its exact shape, but for estimating, I’ll take it 
to be a cube. Then its volume is 110 cm23 = 1000 cm3, or 10-3 m3. 
I’m mostly water, and water’s density is 1 gram per cubic centimeter 
11 g/cm32, so my 1000@cm3 brain has a mass of about 1 kg.

How big is a brain cell? I don’t know, but Table 1.2 lists the diameter of 
a red blood cell as about 10-5 m. If brain cells are roughly the same size, 
then each cell has a volume of approximately 110-5 m23 = 10-15 m3. 
Then the number of cells in my 10-3@m3 brain is roughly

N =
10-3 m3/brain

10-15 m3/cell
= 1012 cells/brain

Crude though they are, these estimates aren’t bad. The average adult 
brain’s mass is about 1.3 kg, and it contains at least 1011 cells (Fig. 1.6).

EXAMPLE 1.5 Estimation: Counting Brain Cells

FIGURE 1.6 The average human brain contains more than 
1011 cells.

Physics: Challenge and Simplicity
Physics problems can be challenging, calling for clever insight and mathematical agility. 
That challenge is what gives physics a reputation as a difficult subject. But underlying all 
of physics is only a handful of basic principles. Because physics is so fundamental, it’s also 
inherently simple. There are only a few basic ideas to learn; if you really understand those, 
you can apply them in a wide variety of situations. These ideas and their applications are all 
connected, and we’ll emphasize those connections and the underlying simplicity of physics 
by reminding you how the many examples, applications, and problems are manifestations 
of the same few basic principles. If you approach physics as a hodgepodge of unrelated 
laws and equations, you’ll miss the point and make things difficult. But if you look for the 
basic principles, for connections among seemingly unrelated phenomena and problems, then 
you’ll discover the underlying simplicity that reflects the scope and power of physics—the 
fundamental science.

Problem Solving: The IDEA Strategy
Solving a quantitative physics problem always starts with basic principles or concepts 
and ends with a precise answer expressed as either a numerical quantity or an algebraic 
 expression. Whatever the principle, whatever the realm of physics, and whatever the specific 
situation, the path from principle to answer follows four simple steps—steps that make up 
a comprehensive strategy for approaching all problems in physics. Their acronym, IDEA, 
will help you remember these steps, and they’ll be reinforced as we apply them over and 
over again in worked examples throughout the book. We’ll generally write all four steps 
separately, although the examples in this chapter cut right to the EVALUATE phase. And in 
some chapters we’ll introduce versions of this strategy tailored to specific material. Although 
the IDEA acronym is tailored to Essential University Physics, our four-step approach derives 
from a 1945 book, How to Solve It, by George Polya—intended for mathematics students 
but readily adapted for physics.

The IDEA strategy isn’t a “cookbook” formula for working physics problems. Rather, 
it’s a tool for organizing your thoughts, clarifying your conceptual understanding, devel-
oping and executing plans for solving problems, and assessing your answers. The big 
IDEA is summarized in Problem-Solving Strategy 1.1 on the next page.
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10 Chapter 1 Doing Physics

INTERPRET The first step is to interpret the problem to be sure you know what it’s asking. 
Then identify the applicable concepts and principles—Newton’s laws of motion, conserva-
tion of energy, the first law of thermodynamics, Gauss’s law, and so forth. Also identify the 
players in the situation—the object whose motion you’re asked to describe, the forces act-
ing, the thermodynamic system you’re asked to analyze, the charges that produce an electric 
field, the components in an electric circuit, the light rays that will help you locate an image, 
and so on.

DEVELOP   The second step is to develop a plan for solving the problem. It’s always help-
ful and often essential to draw a diagram showing the situation. Your drawing should in-
dicate objects, forces, and other physical entities. Labeling masses, positions, forces, 
velocities, heat f lows, electric or magnetic fields, and other quantities will be a big help. 
Next, determine the relevant mathematical formulas—namely, those that contain the quan-
tities you’re given in the problem as well as the unknown(s) you’re solving for. Don’t just 
grab equations—rather, think about how each reflects the underlying concepts and princi-
ples that you’ve identified as applying to this problem. The plan you develop might include 
calculating intermediate quantities, finding values in a table or in one of this text’s several 
appendices, or even solving a preliminary problem whose answer you need in order to get 
your final result.

EVALUATE  Physics problems have numerical or symbolic answers, and you need to eval-
uate your answer. In this step you execute your plan, going in sequence through the steps 
you’ve outlined. Here’s where your math skills come in. Use algebra, trig, or calculus, as 
needed, to solve your equations. It’s a good idea to keep all numerical quantities, whether 
known or not, in symbolic form as you work through the solution of your problem. At the 
end you can plug in numbers and work the arithmetic to evaluate the numerical answer, if the 
problem calls for one.

ASSESS  Don’t be satisfied with your answer until you assess whether it makes sense! 
Are the units correct? Do the numbers sound reasonable? Does the algebraic form of your 
answer work in obvious special cases, like “turning off” gravity or making an object’s 
mass zero or infinite? Checking special cases not only helps you decide whether your 
answer makes sense but also can give you insights into the underlying physics. In worked 
examples, we’ll often use this step to enhance your knowledge of physics by relating the 
example to other  applications of physics.

PROBLEM-SOLVING STRATEGY 1.1 Physics Problems

Don’t memorize this IDEA problem-solving strategy. Instead, grow to understand it 
as you see it applied in examples and as you apply it yourself in working end-of-chapter 
problems. This book has a number of additional features and supplements, discussed in 
the Preface, to help you develop your problem-solving skills.
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Length: meter (m)

Mass: kilogram (kg) Temperature: kelvin (K)

Amount: mole (mol)

Luminosity: candela (cd)

Electric current: ampere (A)

Time: second (s)

SI

In addition, physics uses geometric measures of angle.

Numbers are often written with prefixes or in scientific notation to express powers of 10. Precision is 
shown by the number of significant figures:

 Power of 10

Earth>s radius 6.37 * 106 m = 6.37 Mm

Three significant figures SI prefix for *106

SummaryChapter 1

Mechanics

Thermodynamics Electromagnetism

Optics

Oscillations, waves,
and fluids

Modern
physics

Physics

Physics is the fundamental science. It’s convenient to consider several realms of physics, which  
together describe all that’s known about physical reality:

Big Idea

Key Concepts and Equations
Numbers describing physical quantities must have units. The SI unit 
system comprises seven fundamental units:

6.37 Mm

Applications
The IDEA strategy for solving physics problems consists of four steps: Interpret, Develop, Evaluate, and Assess.
Estimation and data analysis are additional skills that help with physics.

N =  = 1012 cells>brain
10-3 m3>brain

10-15 m3>cell
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12 Chapter 1 Doing Physics

18. A car is moving at 35.0 mi/h. Express its speed in (a) m/s and 
(b) ft/s.

19. You have postage for a 1-oz letter but only a metric scale. What’s 
the maximum mass your letter can have, in grams?

20. A year is very nearly p * 107 s. By what percentage is this figure 
in error?

21. How many cubic centimeters are in a cubic meter?
22. Since the start of the industrial era, humankind has emitted about 

half an exagram of carbon to the atmosphere. What’s that in 
tonnes 1t, where 1 t = 1000 kg2?

23. A gallon of paint covers 350 ft2. What’s its coverage in m2/L?
24. Highways in Canada have speed limits of 100 km/h. How does this 

compare with the 65 mi/h speed limit common in the United States?
25. One m/s is how many km/h?
26. A 3.0-lb box of grass seed will seed 2100 ft2 of lawn. Express 

this coverage in m2/kg.
27. A radian is how many degrees?
28. Convert the following to use only SI base units: (a) 55 mi/h; 

(b) 40.0 km/h; (c) 1 week (take that 1 as an exact number); 
(d) the period of Mars’s orbit (consult Appendix E).

29. The distance to the Andromeda galaxy, the nearest large neigh-
bor galaxy of our Milky Way, is about 2.4 * 1022 m. Express this 
more succinctly using SI prefixes.

Section 1.3 Working with Numbers
30. Add 3.6 * 105 m and 2.1 * 103 km.
31. Divide 4.2 * 103 m/s by 0.57 ms, and express your answer in m/s2.
32. Add 5.1 * 10-2 cm and 6.8 * 103 mm, and multiply the result by 

1.8 * 104 N (N is the SI unit of force).
33. Find the cube root of 6.4 * 1019 without a calculator.
34. Add 1.46 m and 2.3 cm.
35. You’re asked to specify the length of an updated aircraft model 

for a sales brochure. The original plane was 41 m long; the new 
model has a 3.6-cm-long radio antenna added to its nose. What 
length do you put in the brochure?

36. Repeat the preceding exercise, this time using 41.05 m as the airplane’s 
original length.

Example Variations
The following problems are based on two examples from the text. Each 
set of four problems is designed to help you make connections that 
enhance your understanding of physics and to build your confidence 

For Thought and Discussion

1. Explain why measurement standards based on laboratory proce-
dures are preferable to those based on specific objects such as the 
international prototype kilogram.

2. When a computer that carries seven significant figures adds 
1.000000 and 2.5 * 10-15, what’s its answer? Why?

3. Why doesn’t Earth’s rotation provide a suitable time standard?
4. To raise a power of 10 to another power, you multiply the expo-

nent by the power. Explain why this works.
5. What facts might a scientist use in estimating Earth’s age?
6. How would you determine the length of a curved line?
7. Write 1/x as x to some power.
8. Emissions of carbon dioxide from fossil-fuel combustion are of-

ten expressed in gigatonnes per year, where 1 tonne = 1000 kg. 
But sometimes CO2 emissions are given in petagrams per year. 
How are the two units related?

9. What is meant by an explicit-constant definition of a unit?
10. You’re asked to make a rough estimate of the total mass of 

all the students in your university. You report your answer as 
1.16 * 106 kg. Why isn’t this an appropriate answer?

Exercises and Problems

Exercises

Section 1.2 Measurements and Units
11. The power output of a typical large power plant is 1000 mega-

watts (MW). Express this result in (a) W, (b) kW, and (c) GW.
12. The diameter of a hydrogen atom is about 0.1 nm, and the di-

ameter of a proton is about 1 fm. How many times bigger than a 
proton is a hydrogen atom?

13. Use the definition of the meter to determine how far light travels 
in exactly 1 ns.

14. Lake Baikal in Siberia holds the world’s largest quantity of fresh 
water, about 14 Eg. How many kilograms is that?

15. A hydrogen atom is about 0.1 nm in diameter. How many hydro-
gen atoms lined up side by side would make a line 1 cm long?

16. How long a piece of wire would you need to form a circular arc 
subtending an angle of 1.4 rad, if the radius of the arc is 8.1 cm?

17. Making a turn, a jetliner flies 2.1 km on a circular path of radius 
3.4 km. Through what angle does it turn?

Mastering™ Physics

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems COMP Computer problems

Go to www.masteringphysics.com to access assigned homework and self-study tools such as 
Dynamic Study Modules, practice quizzes, video solutions to problems, and a whole lot more!

Learning Outcomes After finishing this chapter, you should be able to:

LO 1.1 Describe the scope and realms of physics.
LO 1.2 List the base units of the International System of Units (SI).

For Thought and Discussion Questions 1.1, 1.3, 1.9; 
Exercises 1.13, 1.16, 1.17

LO 1.3 Convert units to and from other unit systems.
For Thought and Discussion Questions 1.8; Exercises 1.11, 1.12, 
1.14, 1.15, 1.18, 1.19, 1.20, 1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28

LO 1.4 Express numbers using scientific notation or SI prefixes.
For Thought and Discussion Questions 1.4; Exercises 1.29, 
1.30, 1.31, 1.32, 1.33, 1.34, 1.35, 1.36

LO 1.5 Do calculations with attention to significant figures.
For Thought and Discussion Questions 1.2; Problems 1.45, 1.57, 
1.65

LO 1.6 Make order-of-magnitude estimates.
For Thought and Discussion Questions 1.5, 1.6; Problems 
1.46, 1.47, 1.48, 1.49, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.56, 
1.58, 1.61, 1.62 1.63, 1.64, 1.66, 1.68

LO 1.7 Plot data and extract information using best-fit lines.
Problem 1.69
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Exercises and Problems 13

54. The Moon barely covers the Sun during a solar eclipse. 
Given that Moon and Sun are, respectively, 4 * 105 km and 
1.5 * 108 km from Earth, estimate how much bigger the Sun’s 
diameter is than the Moon’s. If the Moon’s radius is 1800 km, 
how big is the Sun?

55. The semiconductor chip at the heart of a personal computer is a 
square 4 mm on a side and contains 1010 electronic components. 
(a) What’s the size of each component, assuming they’re square? 
(b) If a calculation requires that electrical impulses traverse 104 
components on the chip, each a million times, how many such cal-
culations can the computer perform each second? (Hint: The max-
imum speed of an electrical impulse is about two-thirds the speed 
of light.)

56. Estimate the number of (a) atoms and (b) cells in your body.
57. The numbers 1.27 and 9.97 are both good to three significant fig-

ures. What’s the percent uncertainty in each number?
58. Continental drift occurs at about the rate your fingernails grow. 

Estimate the age of the Atlantic Ocean, given that the eastern and 
western hemispheres have been drifting apart.

59. You’re driving into Canada and trying to decide whether to fill 
your gas tank before or after crossing the border. Gas in the 
United States costs $2.58/gallon, in Canada it’s $1.29/L, and the 
Canadian dollar is worth 79¢ in U.S. currency. Where should you 
fill up?

60. In the 1908 London Olympics, the intended 26-mile marathon 
was extended 385 yards to put the end in front of the royal re-
viewing stand. This distance subsequently became standard. 
What’s the marathon distance in kilometers, to the nearest 
meter?

61. An environmental group is lobbying to shut down a coal-burning 
power plant that produces electrical energy at the rate of 1 GW (a 
watt, W, is a unit of power—the rate of energy production or con-
sumption). They suggest replacing the plant with wind turbines 
that can produce 1.5 MW each but that, due to intermittent wind, 
average only 30% of that power. Estimate the number of wind 
turbines needed.

62. If you’re working from the print version of this book, estimate 
the thickness of each sheet of paper. Or, estimate based on an-
other print book.

63. Estimate the area of skin on your body.
64. Estimate the mass of water in the world’s oceans, and express it 

with SI prefixes.
65. Express the following with appropriate units and significant fig-

ures: (a) 1.0 m plus 1 mm, (b) 1.0 m times 1 mm, (c) 1.0 m minus 
999 mm, and (d) 1.0 m divided by 999 mm.

66. You’re shopping for a new computer, and a salesperson claims 
the microprocessor chip in the model you’re looking at contains 
50 billion electronic components. The chip measures 5 mm on 
a side and uses 14-nm technology, meaning each component is 
14 nm across. Is the salesperson right?

67. In 2017, solar panels on your author’s home generated 3849 
kilowatt-hours (kWh) of electrical energy, while the house con-
sumed electrical energy at an average rate of 392 watts (W). 
Find the average rate of solar power generation in watts, where 
1 kWh is 3.6 megajoules (MJ; the joule is the SI unit of energy) 
and 1 W is 1 J/s. Did the house generate more or less electrical 
energy than it consumed?

68. The world consumes energy at the rate of about 500 EJ per year, 
where the joule (J) is the SI energy unit. Convert this figure to 
watts (W), where 1 W = 1 J/s, and then estimate the average per 
capita energy consumption rate in watts.

ENV

BIO

in solving problems that differ from ones you’ve seen before. The first 
problem in each set is essentially the example problem but with differ-
ent numbers. The second problem presents the same scenario as the 
example but asks a different question. The third and fourth problems 
repeat this pattern but with entirely different scenarios.

37. Example 1.1: Express a 45 mi/h speed limit in meters per second.
38. Example 1.1: A car is clocked at 25 m/s in a 50-mi/h zone. Is it 

speeding?
39. Example 1.1:  A satellite sweeps through 3.0° of its circular or-

bit every minute. Express that rate in revolutions (i.e., complete 
orbits) per day.

40. Example 1.1:  GPS satellites complete approximately two full 
orbits each day. Express that rate in degrees per hour.

41. Example 1.3:  A uranium fuel rod is initially 3.682 m long. After 
it’s inserted into a reactor, it heats up and expands to 3.704 m. 
What’s the increase in its length?

42. Example 1.3:  A uranium fuel rod is 3.846 m long when it’s in an 
operating reactor. When it’s removed from the reactor and allowed 
to cool, its length decreases by 7.2 mm. What’s its new length?

43. Example 1.3:  In Earth’s current epoch, the length of the day 
is some 86,400.002 s. If that were to increase to 86,400.0038 s, 
how would you report the increase?

44. Example 1.3:  In 2014 the Rosetta spacecraft, orbiting the comet 
67P/Churyumov-Gerasimenko, measured the rotation period of 
the comet’s nucleus at 12.404 h. By the time the Rosetta mission 
ended in 2016, the period had decreased by 21 min. Find the new 
rotation period, expressed in hours.

Problems
45. To see why it’s important to carry more digits in intermediate 

calculations, determine 11323 to three significant figures in two 
ways: (a) Find 13 and round to three significant figures, then 
cube and again round; and (b) find 13 to four significant figures, 
then cube and round to three significant figures.

46. You’ve been hired as an environmental watchdog for a big-city 
newspaper. You’re asked to estimate the number of trees that go 
into one day’s printing, given that half the newsprint comes from 
recycling, the rest from new wood pulp. What do you report?

47. The average dairy cow produces about 104 kg of milk per year. 
Estimate the number of dairy cows needed to keep the United 
States supplied with milk.

48. Roughly how many Earths would fit inside the Sun?
49. The average American uses electrical energy at the rate of about 

1.5 kilowatts (kW). Solar energy reaches Earth’s surface at an av-
erage rate of about 300 W on every square meter (a value that ac-
counts for night and clouds). What fraction of the United States’ 
land area would have to be covered with 20% efficient solar cells 
to provide all of our electrical energy?

50. Estimate, to an order of magnitude, the number of heartbeats in a 
typical human lifetime.

51. A human hair is about 100 µm across. Estimate the number of 
hairs in a typical braid.

52. You’re working in the fraud protection division of a credit-card 
company, and you’re asked to estimate the chances that a 16-digit 
number chosen at random will be a valid credit-card number. 
What do you answer?

53. Bubble gum’s density is about 1 g/cm3. You blow an 8-g wad 
of gum into a bubble 10 cm in diameter. Estimate the bubble’s 
thickness. (Hint: Think about spreading the bubble into a flat 
sheet. The surface area of a sphere is 4pr2.)
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14 Chapter 1 Doing Physics

69. The volume of a sphere is given by V = 4
3pr3, where r is 

the sphere’s radius. For solid spheres with the same den-
sity—made, for example, from the same material—mass is 
proportional to volume. The table below lists measures of 
diameter and mass for different steel balls. (a) Determine 
a quantity that, when you plot mass against it, should yield 
a straight line. (b) Make your plot, establish a best-fit line, 
and determine its slope (which in this case is proportional to 
the spheres’ density).

Diameter (cm) 0.75 1.00 1.54 2.16 2.54

Mass (g) 1.81 3.95 15.8 38.6 68.2

Passage Problems
The human body contains about 1014 cells, and the diameter of a typical 
cell is about 10 µm. Like all ordinary matter, cells are made of atoms; a 
typical atomic diameter is 0.1 nm.
70. How does the number of atoms in a cell compare with the num-

ber of cells in the body?
a. greater b. smaller
c. about the same

DATA

BIO

71. The volume of a cell is about
a. 10-10 m3. b. 10-15 m3.
c. 10-20 m3. d. 10-30 m3.

72. The mass of a cell is about
a. 10-10 kg. b. 10-12 kg.
c. 10-14 kg. d. 10-16 kg.

73. The number of atoms in the body is closest to
a. 1014. b. 1020.
c. 1030. d. 1040.

Answers to Chapter Questions

Answer to Chapter Opening Question
All of them!

Answers to GOT IT? Questions
1.1 (c)
1.2  (1) 2.998 * 10-9, 0.0008, 3.14 * 107, 0.041 * 109, 55 * 106 

(2)  0.0008, 0.041 * 109 and 55 * 106 (with two significant  
figures each), 3.14 * 107, 2.998 * 10-9
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Mechanics

OVERVIEW 

PART ONE 

A wilderness hiker uses the Global Positioning 
System (GPS) to follow her chosen route.  
 A farmer plows a field with centimeter-scale 

precision, guided by GPS and saving precious fuel as 
a result. One scientist uses GPS to track endangered 
elephants, another to study the accelerated flow of 
glaciers as Earth’s climate warms. Our deep under-
standing of motion is what lets us use a constellation 
of satellites, 20,000 km up and moving faster than 
10,000 km/h, to find positions on Earth so precisely.

Motion occurs at all scales, from the intricate 
dance of molecules at the heart of life’s cellular 
mechanics, to the everyday motion of cars, baseballs, 
and our own bodies, to the trajectories of GPS and 
TV satellites and of spacecraft exploring the distant 

planets, to the stately motions of the celestial bodies 
themselves and the overall expansion of the uni-
verse. The study of motion is called mechanics. The 
11 chapters of Part 1 introduce the physics of mo-
tion, first for individual bodies and then for compli-
cated systems whose constituent parts move relative 
to one another.

We explore motion here from the viewpoint of 
Newtonian mechanics, which applies accurately in  
all cases except the subatomic realm and when rela-
tive speeds approach that of light. The Newtonian 
mechanics of Part 1 provides the groundwork for 
much of the material in subsequent parts, until, in 
the book’s final chapters, we extend mechanics into 
the subatomic and high-speed realms.

A hiker checks her position using signals from GPS satellites.

15
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Learning Outcomes
After finishing this chapter, you should be able to:

LO 2.1 Define fundamental motion concepts: position, velocity, 
acceleration.

LO 2.2 Distinguish instantaneous from average velocity and 
acceleration.

LO 2.3 Determine velocity and position when acceleration is 
constant.

LO 2.4 Describe how gravity near Earth’s surface provides an example 
of constant acceleration.

LO 2.5 Use calculus to deal with nonconstant acceleration.

Skills & Knowledge You’ll Need
■■ Units for measuring space and time 

(Section 1.2)

■■ Working with numbers using scien-
tific notation and significant  
figures (Section 1.3)

■■ Your background in algebra and in-
troductory calculus

Motion in a Straight Line

The server tosses the tennis ball straight up and hits it on its way down. Right 
at its peak height, the ball has zero velocity, but what’s its acceleration?

Electrons swarming around atomic nuclei, cars speeding along a high-
way, blood coursing through your veins, galaxies rushing apart in the 

expanding universe—all these are examples of matter in motion. The study 
of motion without regard to its cause is called kinematics (from the Greek 
“kinema,” or motion, as in motion pictures). This chapter deals with the 
simplest case: a single object moving in a straight line. Later, we generalize 
to motion in more dimensions and with more complicated objects. But the 
basic concepts and mathematical techniques we develop here continue  
to apply.

2.1 Average Motion
LO 2.1 Define fundamental motion concepts: position, velocity, 

acceleration.

You drive 15 minutes to a pizza place 10 km away, grab your pizza, and re-
turn home in another 15 minutes. You’ve traveled a total distance of 20 km, 
and the trip took half an hour, so your average speed—distance divided by 
time—was 40 kilometers per hour. To describe your motion more precisely, we 
 introduce the quantity x that gives your position at any time t. We then define the 
 displacement, ∆x, as the net change in position: ∆x = x2 - x1, where x1 and 

1 
Doing Physics

4 
Force and Motion

3 
Motion in Two and 
Three Dimensions2

16
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2.1 Average Motion 17

x2 are your starting and ending positions, respectively. Your average velocity, v, is displace-
ment divided by the time interval:

 v =
∆x
∆t
  1average velocity2 (2.1)

where ∆t = t2 - t1 is the interval between your ending and starting times. The bar in v 
indicates an average quantity (and is read “v bar”). The symbol ∆ (capital Greek delta) 
stands for “the change in.” For the round trip to the pizza place, your overall displacement 
was zero, and therefore your average velocity was also zero—even though your average 
speed was not (Fig. 2.1).

Directions and Coordinate Systems
It matters whether you go north or south, east or west. Displacement therefore includes not 
only how far but also in what direction. For motion in a straight line, we can describe both 
properties by taking position coordinates x to be positive going in one direction from some 
origin, and negative in the other. This gives us a one-dimensional coordinate system. The 
choice of coordinate system—both of origin and of which direction is positive—is entirely 
up to you. The coordinate system isn’t physically real; it’s just a convenience we create to 
help in the mathematical description of motion.

Figure 2.2 shows some cities in the American Midwest that lie on a north–south line. We’ve 
established a coordinate system with northward direction positive and origin at Kansas City. 
Arrows show displacements from Houston to Des Moines and from International Falls to Des 
Moines; the former is approximately +1300 km, and the latter is approximately -750 km, 
with the minus sign indicating a southward direction. Suppose the Houston-to-Des Moines 
trip takes 2.6 hours by plane; then the average velocity is 11300 km2/12.6 h2 = 500 km/h. 
If the International Falls-to-Des Moines trip takes 10 h by car, then the average velocity is 
1-750 km2/110 h2 = -75 km/h; again, the minus sign indicates southward.

In calculating average velocity, all that matters is the overall displacement. Maybe that 
trip from Houston to Des Moines was a nonstop flight going 500 km/h. Or maybe it involved 
a faster plane that stopped for half an hour in Kansas City. Maybe the plane even went first to 
Minneapolis, then backtracked to Des Moines. No matter: The displacement remains 1300 
km and, as long as the total time is 2.6 h, the average velocity remains 500 km/h.

∆x is the displacement—the change in the 
 object’s position during the time interval ∆t.  
It’s given by ∆x = x2 - x1.Average velocity of an object 

in straight-line motion. The bar 
designates “average.”

∆t is the time interval during which 
the change in position occurs.

0
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Leave home

Arrive at
pizza place

Return
home

Time, t (min)

∆t = 30 min

Po
si

tio
n,

 x
 (

km
)

30
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At time t1 = 0, your
position is x1 = 0.

Now your position is x2 = 0,
so  your displacement is
∆x = x2 - x1 = 0,
and your average 

velocity v =        = 0.

But your average speed was
40 km>h.

∆x
∆t

FIGURE 2.1 Position versus time for the pizza trip.

From Houston to
Des Moines is a
displacement of
+1300 km.

The choice of
origin is arbitrary.

+1200 km

+800 km

+400 km

0 km

-400 km

-800 km

-1200 km

N

S

From International
Falls to Des Moines
is a displacement
of -750 km.

FIGURE 2.2 Describing motion in the 
 central United States.

2.1 We just described three trips from Houston to Des Moines: (a) direct, (b) with a 
stop in Kansas City, and (c) via Minneapolis. For which of these trips is the average 
speed the same as the average velocity? Where the two differ, which is greater?G

O
T 

IT
?
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18 Chapter 2 Motion in a Straight Line

To get a cheap flight from Houston to Kansas City—a distance of 
1000 km—you have to connect in Minneapolis, 700 km north of 
Kansas City. The flight to Minneapolis takes 2.2 h, then you have a 
30-min layover, and then a 1.3-h flight to Kansas City. What are your 
average velocity and your average speed on this trip?

INTERPRET We interpret this as a one-dimensional kinematics 
problem involving the distinction between velocity and speed, and 
we identify three distinct travel segments: the two f lights and the 
layover. We identify the key concepts as speed and velocity; their 
distinction is clear from our pizza example.

DEVELOP Figure 2.2 is our drawing. We determine that Equation 2.1, 
v = ∆x/∆t, will give the average velocity, and that the average speed 
is the total distance divided by the total time. We develop our plan: 
Find the displacement and the total time, and use those values to get 
the average velocity; then find the total distance traveled and use that 
along with the total time to get the average speed.

EVALUATE You start in Houston and end up in Kansas City, for a displace-
ment of 1000 km—regardless of how far you actually traveled. The total 
time for the three segments is ∆t = 2.2 h + 0.50 h + 1.3 h = 4.0 h. 
Then the average velocity, from Equation 2.1, is

v =
∆x
∆t

=
1000 km

4.0 h
= 250 km/h

However, that Minneapolis connection means you’ve gone an extra 
2 * 700 km, for a total distance of 2400 km in 4 h. Thus your average 
speed is 12400 km2/14.0 h2 = 600 km/h, more than twice your aver-
age velocity.

ASSESS Make sense? Average velocity depends only on the net dis-
placement between the starting and ending points. Average speed 
takes into account the actual distance you travel—which can be a lot 
longer on a circuitous trip like this one. So it’s entirely reasonable that 
the average speed should be greater.

Speed and Velocity: Flying with a ConnectionEXAMPLE 2.1

2.2 Instantaneous Velocity
LO 2.2 Distinguish instantaneous from average velocity and acceleration.

Geologists determine the velocity of a lava flow by dropping a stick into the lava and tim-
ing how long it takes the stick to go a known distance (Fig. 2.3a). Dividing the distance by 
the time then gives the average velocity. But did the lava flow faster at the beginning of the 
interval? Or did it speed up and slow down again? To understand motion fully, including 
how it changes with time, we need to know the velocity at each instant.

Geologists could explore that detail with a series of observations taken over smaller in-
tervals of time and distance (Fig. 2.3b). As the size of the intervals shrinks, a more detailed 
picture of the motion emerges. In the limit of very small intervals, we’re measuring the 
velocity at a single instant. This is the instantaneous velocity, or simply the velocity. The 
magnitude of the instantaneous velocity is the instantaneous speed.

The average velocity as the stick 
goes from A to B is v = ∆x>∆t.

Using shorter distance intervals gives details 
about how the velocity changes.

(a)

(b)

∆t

A B
∆x

∆t1 = 5 s ∆t2 = 10 s

∆t3 = 15 s ∆t4 = 10 s

∆x1 ∆x2 ∆x3 ∆x4
A B

FIGURE 2.3 Determining the velocity of a lava flow.
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2.2 Instantaneous Velocity 19

Given position x as a function of time t, calculus shows how to find the velocity v = dx/dt. 
Consult Tactics 2.1 if you haven’t yet seen derivatives in your calculus class or if you need 
a refresher.

Average velocity is the
slope of this line.

As the interval gets
shorter, average 
velocity approaches 
instantaneous
velocity at time t1.

(a)

(b)

Time, t

Po
si

tio
n,

 x

∆x
∆t

t1 t2

t1

FIGURE 2.4 Position-versus-time graph for 
the motion in Fig. 2.3.

The slopes of three tangent
lines give the instantaneous
velocity at three different times.

Time, t
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ta tb tc

∆t
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∆t

∆x

∆x
∆x

FIGURE 2.5 The instantaneous velocity is 
the slope of the tangent line.

2.2 The figures show position-versus-time graphs for four objects. Which object 
is moving with constant speed? Which reverses direction? Which starts slowly and 
then speeds up?

t
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x

(a)
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x

(c)(b)

t

(d)

x

G
O

T 
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?
You might object that it’s impossible to achieve that limit of an arbitrarily small time in-

terval. With observational measurements that’s true, but calculus lets us go there. Figure 2.4a  
is a plot of position versus time for the stick in the lava flow shown in Fig. 2.3. Where the 
curve is steep, the position changes rapidly with time—so the velocity is greater. Where 
the curve is flatter, the velocity is lower. Study the clocks in Fig. 2.3b and you’ll see that 
the stick starts out moving rapidly, then slows, and then speeds up a bit at the end. The 
curve in Fig. 2.4a reflects this behavior.

Suppose we want the instantaneous velocity at the time marked t1 in Fig. 2.4a. We can ap-
proximate this quantity by measuring the displacement ∆x over the interval ∆t between t1 and 
some later time t2: The ratio ∆x/∆t is then the average velocity over this interval. Note that this 
ratio is the slope of a line drawn through points on the curve that mark the ends of the interval.

Figure 2.4b shows what happens as we make the time interval ∆t arbitrarily small: 
Eventually, the line between the two points becomes indistinguishable from the tangent 
line to the curve. That tangent line has the same slope as the curve right at the point we’re 
interested in, and therefore it defines the instantaneous velocity at that point. We write this 
mathematically by saying that the instantaneous velocity is the limit, as the time interval 
∆t becomes arbitrarily close to zero, of the ratio of displacement ∆x to ∆t:

 v = lim
∆tS0

 
∆x
∆t

 (2.2a)

You can imagine making the interval ∆t as close to zero as you like, getting ever better 
approximations to the instantaneous velocity. Given a graph of position versus time, an 
easy approach is to “eyeball” the tangent line to the graph at a point you’re interested in; 
its slope is the instantaneous velocity (Fig. 2.5).

Given position as a mathematical function of time, calculus provides a quick way to 
find instantaneous velocity. In calculus, the result of the limiting process described in 
Equation 2.2a is called the derivative of x with respect to t and is given the symbol dx/dt:

dx
dt

= lim
∆tS0

 
∆x
∆t

The quantities dx and dt are called infinitesimals; they represent vanishingly small quanti-
ties that result from the limiting process. We can then write Equation 2.2a as

 v =
dx
dt
  1instantaneous velocity2 (2.2b)

Instantaneous velocity is given by the derivative dx/dt—the 
rate of change of position with respect to time.

The instantaneous velocity v is 
the velocity at a single instant 
of time.

dx and dt are infinitesimally small quantities that result from the 
limiting procedure described in Fig. 2.4 and Equation 2.2a.
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20 Chapter 2 Motion in a Straight Line

EXAMPLE 2.2 Instantaneous Velocity: A Rocket Ascends

The altitude of a rocket in the first half-minute of its ascent is given by 
x = bt2, where the constant b is 2.90 m/s2. Find a general expression 
for the rocket’s velocity as a function of time and from it the instan-
taneous velocity at t = 20 s. Also find an expression for the average 
velocity, and compare your two velocity expressions.

INTERPRET We interpret this as a problem involving the compari-
son of two distinct but related concepts: instantaneous velocity and 
average velocity. We identify the rocket as the object whose veloc-
ities we’re interested in.

DEVELOP Equation 2.2b, v = dx/dt, gives the instantaneous veloc-
ity, and Equation 2.1, v = ∆x/∆t, gives the average velocity. Our plan 
is to use Equation 2.3, dx/dt = nbtn-1, to evaluate the derivative that 
gives the instantaneous velocity. Then we can use Equation 2.1 for the 
average velocity, but first we’ll need to determine the displacement 
from the equation we’re given for the rocket’s position.

EVALUATE Applying Equation 2.2b with position given by x = bt2 
and using Equation 2.3 to evaluate the derivative, we have

v =
dx
dt

=
d1bt22

dt
= 2bt

for the instantaneous velocity. Evaluating at time t = 20 s with 
b = 2.90 m/s2 gives v = 116 m/s. For the average velocity we need 
the total displacement at 20 s. Since x = bt2, Equation 2.1 gives

v =
∆x
∆t

=
bt2

t
= bt

where we’ve used x = bt2 for ∆x and t for ∆t because both position 
and time are taken to be zero at liftoff. Comparison with our earlier re-
sult shows that the average velocity from liftoff to any particular time 
is exactly half the instantaneous velocity at that time.

ASSESS Make sense? Yes: The rocket’s speed is always increasing, so 
its velocity at the end of any time interval is greater than the average 
velocity over that interval. The fact that the average velocity is exactly 
half the instantaneous velocity results from the quadratic 1t22 depen-
dence of position on time.

LANGUAGE Language often holds clues to the meaning of 
physical concepts. In this example we speak of the instantaneous 
velocity at a particular time. That wording should remind you of 
the limiting process that focuses on a single instant. In contrast, 
we speak of the average velocity over a time interval, since 
averaging explicitly involves a range of times.

Tactics 2.1 TAKING DERIVATIVES

You don’t have to go through an elaborate limiting process every time you want to find an instantaneous ve-
locity. That’s because calculus provides formulas for the derivatives of common functions. For example, any 
function of the form x = btn, where b and n are constants, has the derivative

 
dx
dt

= nbtn-1 (2.3)

Appendix A lists derivatives of other common functions.

where ∆v is the change in velocity and the bar on a indicates that this is an average value. Just 
as we defined instantaneous velocity through a limiting procedure, we define instantaneous 
acceleration as

When a and v have the
same direction, the 
car speeds up.

When a is opposite
v, the car slows.

(a)

(b)

v

a

v

a

FIGURE 2.6 Acceleration and velocity.

2.3 Acceleration
LO 2.2 Distinguish instantaneous from average velocity and acceleration.

When velocity changes, as in Example 2.2, an object undergoes acceleration. Quantitatively, 
we define acceleration as the rate of change of velocity, just as we defined velocity as the 
rate of change of position. The average acceleration over a time interval ∆t is

 a =
∆v
∆t
  1average acceleration2 (2.4)

Average acceleration of 
an object in straight-line 
motion. The bar designates 
“average.”

∆t is the time interval during which the change in velocity occurs.

∆v is the change in the 
 object’s velocity during the 
time interval ∆t. It’s given by 
∆v = v2 - v1.
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2.3 Acceleration 21

 a = lim
∆tS0

 
∆v
∆t

=
dv
dt
  1instantaneous acceleration2 (2.5)

As we did with velocity, we also use the term acceleration alone to mean instantaneous 
acceleration.

In one-dimensional motion, acceleration is either in the direction of the velocity or 
opposite it. In the former case the accelerating object speeds up, whereas in the latter it 
slows (Fig. 2.6). Although slowing is sometimes called deceleration, it’s simpler to use 
acceleration to describe the time rate of change of velocity no matter what’s happening. 
With two-dimensional motion, we’ll find much richer relationships between the directions 
of velocity and acceleration.

Since acceleration is the rate of change of velocity, its units are (distance per time) per 
time, or distance/time2. In SI, that’s m/s2. Sometimes acceleration is given in mixed units; 
for example, a car going from 0 to 60 mi/h in 10 s has an average acceleration of 6 mi/h/s.

Position, Velocity, and Acceleration
Figure 2.7 shows graphs of position, velocity, and acceleration for an object undergoing 
one-dimensional motion. In Fig. 2.7a, the rise and fall of the position-versus-time curve 
shows that the object first moves away from the origin, reverses, then reaches the origin again 
at t = 4 s. It then continues moving into the region x 6 0. Velocity, shown in Fig. 2.7b,  
is the slope of the position-versus-time curve in Fig. 2.7a. Note that the magnitude of the 

Here the position
reaches a maxi-
mum, so the 
velocity is zero.

Here the velocity
peaks, so the 
acceleration is zero.

(a)

(b)

(c)
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FIGURE 2.7 (a) Position, (b) velocity, and 
(c) acceleration versus time.

The instantaneous acceleration a is the 
acceleration at a single instant of time.

The result of that limiting procedure is the derivative 
dv/dt—the rate of change of velocity with respect to time.

a is given by the same limiting procedure 
that led to instantaneous velocity v.

CONCEPTUAL EXAMPLE 2.1 Acceleration without Velocity?
At the peak 
of its flight, 
the ball is 
instantaneously 
at rest.

Just before the peak,
v is positive;  just
after, it’s negative.

Since v is steadily decreasing, the 
acceleration is constant and negative.

(a)

(b)

(c)

Can an object be accelerating even though it’s not moving?

EVALUATE Figure 2.7 shows that velocity is the slope of the position 
curve—and the slope depends on how the position is changing, not 
on its actual value. Similarly, acceleration depends only on the rate of 
change of velocity, not on velocity itself. So there’s no intrinsic reason 
why there can’t be acceleration at an instant when velocity is zero.

ASSESS Figure 2.8, which shows a ball thrown straight up, is a case 
in point. Right at the peak of its flight, the ball’s velocity is instanta-
neously zero. But just before the peak it’s moving upward, and just 
after it’s moving downward. No matter how small a time interval you 
consider, the velocity is always changing. Therefore, the ball is accel-
erating, even right at the instant its velocity is zero.

MAKING THE CONNECTION Just 0.010 s before it peaks, the ball 
in Fig. 2.8 is moving upward at 0.098 m/s; 0.010 s after it peaks, 
it’s moving downward with the same speed. What’s its average ac-
celeration over this 0.02-s interval?

EVALUATE Equation 2.4 gives the average acceleration: a = ∆v/∆t  
=  1-0.098 m/s - 0.098 m/s2/10.020 s2 = -9.8 m/s2.  Here  we’ve 
implicitly chosen a coordinate system with a positive upward  
direction, so both the final velocity and the acceleration are negative. 
The time interval is so small that our result must be close to the instan-
taneous acceleration right at the peak—when the velocity is zero. You 
might recognize 9.8 m/s2 as the acceleration due to the Earth’s gravity. FIGURE 2.8 Our sketch for Conceptual Example 2.1.
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22 Chapter 2 Motion in a Straight Line

velocity (that is, the speed) is large where the curve in Fig. 2.7a is steep—that is, where posi-
tion is changing most rapidly. At the peak of the position curve, the object is momentarily at 
rest as it reverses, so there the position curve is flat and the velocity is zero. After the object 
reverses, at about 2.7 s, it’s heading in the negative x-direction, and so its velocity is negative.

Just as velocity is the slope of the position-versus-time curve, acceleration is the slope 
of the velocity-versus-time curve. Initially that slope is positive—velocity is increasing—
but eventually it peaks at the point of maximum velocity and zero acceleration, and then it 
decreases. That velocity decrease corresponds to a negative acceleration, as shown clearly 
in the region of Fig. 2.7c beyond about 1.3 s.

Acceleration is the rate of change of velocity, and velocity is the rate of change of 
position. That makes acceleration the rate of change of the rate of change of position. 
Mathematically, acceleration is the second derivative of position with respect to time. 
Symbolically, we write the second derivative as d2x/dt2. Then the relationship among  
acceleration, velocity, and position can be written

 a =
dv
dt

=
d
dt

 adx
dt

b =
d2x

dt2  (2.6)

Equation 2.6 expresses acceleration in terms of position through the calculus operation of 
taking the second derivative. If you’ve studied integrals in calculus, you can see that it should 
be possible to go the opposite way, finding position as a function of time given acceleration as 
a function of time. In Section 2.4 we’ll do this for the special case of constant acceleration, al-
though there we’ll take an algebra-based approach; Problem 93 obtains the same results using 
calculus. We’ll take a quick look at nonconstant acceleration in Section 2.6. The Application on 
this page provides an important technology that finds an object’s position from its acceleration.

2.3 An elevator is going up at constant speed, slows to a stop, then starts down and 
soon reaches the same constant speed it had going up. Is the elevator’s average accel-
eration between its upward and downward constant-speed motions (a) zero, (b) down-
ward, (c) first upward and then downward, or (d) first downward and then upward?

G
O

T 
IT

?

2.4 Constant Acceleration
LO 2.3 Determine velocity and position when acceleration is constant.

The description of motion has an especially simple form when acceleration is constant. 
Suppose an object starts at time t = 0 with some initial velocity v0 and constant accelera-
tion a. Later, at some time t, it has velocity v. Because the acceleration doesn’t change, its 
average and instantaneous values are identical, so we can write

a = a =
∆v
∆t

=
v - v0

t - 0
or, rearranging,

 v = v0 + at  1for constant acceleration only2 (2.7)

Velocity v as a function  
of time when acceleration  
a is constant.

Velocity changes linearly  
with time.

v0 is the initial velocity at time t = 0. Remember that this equation is only for the  
special case of constant acceleration!

SPECIAL CASES Many equations we develop are special cases of more general laws, and 
they’re limited to special circumstances. Equation 2.7 is a case in point: It applies only when 
acceleration is constant.

This equation says that the velocity changes from its initial value by an amount that is the 
product of acceleration and time.

Given an object’s initial position and velocity, 
and its subsequent acceleration—which may 
vary with time—it’s possible to invert Equation 
2.6 and solve for position (more on the mathe-
matics of this inversion in Section 2.6). Inertial 
guidance systems, also called inertial navigation 
systems, exploit this principle to allow subma-
rines, ships, and airplanes to keep track of their 
locations based solely on internal measurements 
of their own acceleration. This frees them from 
the need for external positioning references such 
as GPS, radar, or direct observation. Inertial 
guidance is especially important for submarines, 
which usually can’t access external sources for 
information about their positions. In the one- 
dimensional motion of this chapter, an inertial 
guidance system would consist of a single accel-
erometer whose reading is tracked continually. 
In practical systems, three accelerometers at 
right angles track acceleration in all three dimen-
sions. Information from on-board gyroscopes 
registers orientation, so the system “knows” the 
changing directions of the three accelerations.

Early inertial guidance systems were heavy 
and expensive, but the miniaturization of acceler-
ometers and gyroscopes—so that they’re now in 
every smartphone—has enabled smaller and less 
expensive inertial guidance systems. The photo 
shows a complete inertial navigation system de-
veloped by the U.S. Defense Advanced Research 
Projects Agency (DARPA) for use in locations 
where GPS signals aren’t available; it’s so small 
that it fits within the Lincoln Memorial on a penny!

APPLICATION Inertial 
Guidance
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2.4 Constant Acceleration 23

Having determined velocity as a function of time, we now consider position. With con-
stant acceleration, velocity increases steadily—and thus the average velocity over an interval 
is the average of the velocities at the beginning and the end of that interval. So we can write

 v = 1
21v0 + v2 (2.8)

for the average velocity over the interval from t = 0 to some later time when the velocity 
is v. We can also write the average velocity as the change in position divided by the time 
interval. Suppose that at time 0 our object was at position x0. Then its average velocity 
over a time interval from 0 to time t is

v =
∆x
∆t

=
x - x0

t - 0

where x is the object’s position at time t. Equating this expression for v with the expression 
in Equation 2.8 gives

 x = x0 + vt = x0 + 1
21v0 + v2t (2.9)

But we already found the instantaneous velocity v that appears in this expression; it’s given 
by Equation 2.7. Substituting and simplifying then give the position as a function of time:

 x = x0 + v0 t + 1
2 at2  1for constant acceleration only2 (2.10)

Does Equation 2.10 make sense? With no acceleration 1a = 02, position would in-
crease linearly with time, at a rate given by the initial velocity v0. With constant acceler-
ation, the additional term 12 at2 describes the effect of the ever-changing velocity; time is 
squared because the longer the object travels, the faster it moves, so the more distance it 
covers in a given time. Figure 2.9 shows the meaning of the terms in Equation 2.10.

How much runway do I need to land a jetliner, given touchdown speed and a constant 
acceleration? A question like this involves position, velocity, and acceleration without ex-
plicit mention of time. So we solve Equation 2.7 for time, t = 1v - v02/a, and substitute 
this expression for t in Equation 2.9 to write

x - x0 = 1
2 
1v0 + v21v - v02

a

or, since 1a + b21a - b2 = a2 - b2,

 v2 = v0
2 + 2a1x - x02 (2.11)

Equations 2.7, 2.9, 2.10, and 2.11 link all possible combinations of position, 
 velocity, and acceleration for motion with constant acceleration. We summarize them 
in Table 2.1 and remind you that they apply only in the case of constant acceleration.

Although we derived these equations algebraically, we could instead have used calcu-
lus. Problem 93 takes this approach in getting from Equation 2.7 to Equation 2.10.

Using the Equations of Motion
The equations in Table 2.1 fully describe motion under constant acceleration. Don’t regard 
them as separate laws, but recognize them as complementary descriptions of a single underly-
ing phenomenon—one-dimensional motion with constant acceleration. Having several equa-
tions provides convenient starting points for approaching problems. Don’t memorize these 
equations, but grow familiar with them as you work problems. We now offer a strategy for solv-
ing problems about one-dimensional motion with constant acceleration using these equations.

x0 is the initial position. It’s plotted 
as a horizontal line in Fig. 2.9.

This term results from the constant acceleration a. It gives a quadratic 
increase in position, as described by the curve in Fig. 2.9.

Position x as a function  
of time when acceleration 
a is constant

v0 is the initial velocity. The term v0t 
describes a linear change in position, as 
 described by the diagonal line in Fig. 2.9.

Remember that this equation 
is only for the special case of 
 constant acceleration!

1
2

Acceleration causes the
position–time graph to
curve upward.

With no
acceleration,

position changes
at a steady rate.

With v = 0 and a = 0, position doesn’t change.

x

tTime, t

Po
si

tio
n,

 x

x0

v0t
x0

Slope = v0

at2

FIGURE 2.9 Meaning of the terms in 
Equation 2.10.

Table 2.1 Equations of Motion for  
Constant Acceleration

Equation Contains Number

v = v0 + at v, a, t; no x 2.7 

x = x0 + 1
21v0 + v2t x, v, t; no a 2.9 

x = x0 + v0t + 1
2 at2 x, a, t; no v 2.10

v2 = v0
2 + 2a1x - x02 x, v, a; no t 2.11

}
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24 Chapter 2 Motion in a Straight Line

The next two examples are typical of problems involving constant acceleration. 
Example 2.3 is a straightforward application of the equations we’ve just derived to a single 
object. Example 2.4 involves two objects, in which case we need to write equations de-
scribing the motions of both objects.

INTERPRET Interpret the problem to be sure it asks about motion with constant acceleration. 
Next, identify the object(s) whose motion you’re interested in.

DEVELOP Draw a diagram with appropriate labels, and choose a coordinate system. For in-
stance, sketch the initial and final physical situations, or draw a position-versus-time graph. 
Then determine which equations of motion from Table 2.1 contain the quantities you’re given 
and will be easiest to solve for the unknown(s).

EVALUATE Solve the equations in symbolic form and then evaluate numerical quantities.

ASSESS Does your answer make sense? Are the units correct? Do the numbers sound reason-
able? What happens in special cases—for example, when a distance, velocity, acceleration, or 
time becomes very large or very small?

PROBLEM-SOLVING STRATEGY 2.1 Motion with Constant Acceleration

A jetliner touches down at 270 km/h. The plane then decelerates (i.e., 
undergoes acceleration directed opposite its velocity) at 4.5 m/s2. 
What’s the minimum runway length on which this aircraft can land?

INTERPRET We interpret this as being a problem about one- 
dimensional motion with constant acceleration and identify the 
airplane as the object of interest.

DEVELOP We determine that Equation 2.11, v2 = v0
2 + 2a1x - x02, 

relates distance, velocity, and acceleration; so our plan is to solve that 
equation for the minimum runway length. We want the airplane to 
come to a stop, so the final velocity v is 0, and v0 is the initial touch-
down velocity. If x0 is the touchdown point, then the quantity x - x0 is 
the distance we’re interested in; we’ll call this ∆x.

EVALUATE Setting v = 0 and solving Equation 2.11 then give

∆x =
-v0

2

2a
=

- 31270 km/h211000 m/km211/3600 h/s242

1221-4.5 m/s22 = 625 m

Note that we used a negative value for the acceleration because the 
plane’s acceleration is directed opposite its velocity—which we chose 
as the positive x-direction. We also converted the speed to m/s for 
compatibility with the SI units given for acceleration.

ASSESS Make sense? That 625 m is just over one-third of a mile, 
which seems a bit short. However, this is an absolute minimum with 
no margin of safety. For full-sized jetliners, the standard for minimum 
landing runway length is about 5000 feet or 1.5 km.

BE CAREFUL WITH MIXED UNITS Frequently, problems are 
stated in units other than SI. Although it’s possible to work 
consistently in other units, when in doubt, convert to SI. In 
this problem, the acceleration is originally in SI units but the 
velocity isn’t—a sure indication of the need for conversion.

EXAMPLE 2.3 Motion with Constant Acceleration: Landing a Jetliner
Worked Example with Variation Problems

A speeding motorist zooms through a 50 km/h zone at 75 km/h (that’s 
21 m/s) without noticing a stationary police car. The police officer im-
mediately heads after the speeder, accelerating at 2.5 m/s2. When the 
officer catches up to the speeder, how far down the road are they, and 
how fast is the police car going?

INTERPRET We interpret this as two problems about one-dimensional 
motion with constant acceleration. We identify the objects in question 
as the speeding car and the police car. Their motions are related be-
cause we’re interested in the point where the two coincide.

DEVELOP It’s helpful to draw a sketch showing qualitatively the 
position-versus-time graphs for the two cars. Since the speeding car 
moves with constant speed, its graph is a straight line. The police car is 
accelerating from rest, so its graph starts flat and gets increasingly 
steeper. Our sketch in Fig. 2.10 shows clearly the point we’re interested 

EXAMPLE 2.4 Motion with Two Objects: Speed Trap!

FIGURE 2.10 Our sketch of position versus time for the cars in 
Example 2.4.

Motorist
passes
police
car.

Police car
catches up.
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2.5 The Acceleration of Gravity 25

2.5 The Acceleration of Gravity
LO 2.4 Describe how gravity near Earth’s surface provides an example of  

constant acceleration.

Drop an object, and it falls at an increasing rate, accelerating because of gravity (Fig.  2.11).  
The acceleration is constant for objects falling near Earth’s surface, and furthermore it has 
the same value for all objects. This value, the acceleration of gravity, is designated g and 
is approximately 9.8 m/s2 near Earth’s surface.

The acceleration of gravity applies strictly only in free fall—motion under the influ-
ence of gravity alone. Air resistance, in particular, may dramatically alter the motion, giv-
ing the false impression that gravity acts differently on lighter and heavier objects. As 
early as the year 1600, Galileo is reputed to have shown that all objects have the same 
acceleration by dropping objects off the Leaning Tower of Pisa. Astronauts have verified 
that a feather and a hammer fall with the same acceleration on the airless Moon—although 
that acceleration is less than on Earth.

Although g is approximately constant near Earth’s surface, it varies slightly with 
latitude and even local geology. The variation with altitude becomes substantial over 
distances of tens to hundreds of kilometers. But nearer Earth’s surface it’s a good ap-
proximation to take g as strictly constant. Then an object in free fall undergoes constant 
acceleration, and the equations of Table 2.1 apply. In working gravitational problems, we 
usually replace x with y to designate the vertical direction. If we make the arbitrary but 
common choice that the upward direction is positive, then acceleration a becomes -g 
because the acceleration is downward.

in, when the two cars coincide for the second time. Equation 2.10, 
x = x0 + v0t + 1

2  at2, gives position versus time with constant accel-
eration. Our plan is (1) to write versions of this equation specialized 
to each car, (2) to equate the resulting position expressions to find the 
time when the cars coincide, and (3) to find the corresponding posi-
tion and the police car’s velocity. For the latter we’ll use Equation 2.7,  
v = v0 + at.

EVALUATE Let’s take the origin to be the point where the speeder 
passes the police car and t = 0 to be the corresponding time, as 
marked in Fig. 2.10. Then x0 = 0 in Equation 2.10 for both cars, 
while the speeder has no acceleration and the police car has no initial 
velocity. Thus our two versions of Equation 2.10 are

xs = vs0 t 1speeder2 and xp = 1
2 ap t

2 1police car2
Equating xs and xp tells when the speeder and the police car are at the 
same place, so we write vs0 t = 1

2 ap t
2. This equation is satisfied when 

t = 0 or t = 2vs0 /ap. Why two answers? We asked for any times when 
the two cars are in the same place. That includes the initial encounter at 

t = 0 as well as the later time t = 2vs0 /ap when the police car catches 
the speeder; both points are shown on our sketch. Where does this oc-
cur? We can evaluate using t = 2vs0 /ap in the speeder’s equation:

xs = vs0 t = vs0 
2vs0

ap
=

2vs 0
2

ap
=

122121 m/s22

2.5 m/s2 = 350 m

Equation 2.7 then gives the police car’s speed at this time:

vp = ap t = ap
2vs0

ap
= 2vs0 = 150 km/h

ASSESS Make sense? As Fig. 2.10 shows, the police car starts from rest 
and undergoes constant acceleration, so it has to be going faster at the 
point where the two cars meet. In fact, it’s going twice as fast—again, 
as in Example 2.2, that’s because the police car’s position depends qua-
dratically on time. That quadratic dependence also tells us that the po-
lice car’s position-versus-time graph in Fig. 2.10 is a parabola.

FIGURE 2.11 Strobe photo of a  
falling ball. Successive images are 
farther apart, showing that the ball is 
accelerating.

2.4 The police car in Example 2.4 starts with zero velocity and is going at twice the 
car’s velocity when it catches up to the car. So at some intermediate instant it must 
be going at the same velocity as the car. Is that instant (a) halfway between the times 
when the two cars coincide, (b) closer to the time when the speeder passes the sta-
tionary police car, or (c) closer to the time when the police car catches the speeder?
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26 Chapter 2 Motion in a Straight Line

In Example 2.5 the diver was moving downward, and the downward gravitational accel-
eration steadily increased his speed. But, as Conceptual Example 2.1 suggested, the accel-
eration of gravity is downward regardless of an object’s motion. Throw a ball straight up, 
and it’s accelerating downward even while moving upward. Since velocity and acceleration 
are in opposite directions, the ball slows until it reaches its peak, then pauses instanta-
neously, and then gains speed as it falls. All the while its acceleration is 9.8 m/s2 downward.

A diver drops from a 10-m-high cliff. At what speed does he enter the 
water, and how long is he in the air?

INTERPRET This is a case of constant acceleration due to gravity, 
and the diver is the object of interest. The diver drops a known dis-
tance starting from rest, and we want to know the speed and time 
when he hits the water.

DEVELOP Figure 2.12 is a sketch showing what the diver’s position 
versus time should look like. We’ve incorporated what we know: 
the initial position 10 m above the water, the start from rest, and the 
downward acceleration that results in a parabolic position-versus-time 
curve. Given the dive height, Equation 2.11 determines the speed v. 
Following our newly adopted convention that y designates the ver-
tical direction, we write Equation 2.11 as v2 = v 2

0 + 2a1y - y02. 
Since the diver starts from rest, v0 = 0 and the equation becomes 
v2 = -2g1y - y02. So our plan is first to solve for the speed at the 
water, then use Equation 2.7, v = v0 + at, to get the time.

EVALUATE Our sketch shows that we’ve chosen y = 0 at the water, 
so y0 = 10 m and Equation 2.11 gives

�v �  = 2-2g1y - y02 = 21-2219.8 m/s2210 m - 10 m2
 = 14 m/s

This is the magnitude of the velocity, hence the absolute value sign; 
the actual value is v = -14 m/s, with the minus sign indicating down-
ward motion. Knowing the initial and final velocities, we use Equation 
2.7 to find how long the dive takes. Solving that equation for t gives

t =
v0 - v

g
=

0 m/s - 1-14 m/s2
9.8 m/s2 = 1.4 s

Note the careful attention to signs here; we wrote v with its negative 
sign and used a = -g in Equation 2.7 because we defined downward 
to be the negative direction in our coordinate system.

ASSESS Make sense? Our expression for v gives a higher speed with 
a greater acceleration or a greater distance y - y0 —both as expected. 
Our approach here isn’t the only one possible; we could also have 
found the time by solving Equation 2.10 and then evaluating the speed 
using Equation 2.7.

EXAMPLE 2.5 Constant Acceleration Due to Gravity: Cliff Diving
Worked Example with Variation Problems

Curve is flat
here because diver
starts from rest.

We want this 
slope (speed) c

cand
this time.

FIGURE 2.12 Our sketch for Example 2.5.

You toss a ball straight up at 7.3 m/s; it leaves your hand at 1.5 m 
above the floor. Find when it hits the floor, the maximum height it 
reaches, and its speed when it passes your hand on the way down.

INTERPRET We have constant acceleration due to gravity, and here 
the object of interest is the ball. We want to find time, height, and 
speed.

DEVELOP The ball starts by going up, eventually comes to a stop, 
and then heads downward. Figure 2.13 is a sketch of the height versus 
time that we expect, showing what we know and the three quantities 
we’re after. Equation 2.10, y = y0 + v0 t + 1

2 at2, determines position 

as a function of time, so our plan is to use that equation to find the 
time the ball hits the floor (again, we’ve replaced horizontal position 
x with height y in Equation 2.10). Then we can use Equation 2.11, 
v2 = v0

2 + 2a1y - y02, to find the height at which v = 0 —that is, 
the peak height. Finally, Equation 2.11 will also give us the speed at 
any height, letting us answer the question about the speed when the 
ball passes the height of 1.5 m on its way down.

EVALUATE Our sketch shows that we’ve taken y = 0 at the 
f loor; so when the ball is at the f loor, Equation 2.10 becomes 
0 = y0 + v0 t - 1

2 gt2, which we can solve for t using the quadratic 
formula [Appendix A; t = 1v0 { 2v0

2 + 2y0  g2/g]. Here v0 is the 

EXAMPLE 2.6 Constant Acceleration Due to Gravity: Tossing a Ball
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2.6 When Acceleration Isn’t Constant 27

initial velocity, 7.3 m/s; it’s positive because the motion is initially 
upward. The initial position is the hand height, so y0 = 1.5 m, and 
g of course is 9.8 m/s2 (we accounted for the downward accelera-
tion by putting a = -g in Equation 2.10). Putting in these numbers 
gives t = 1.7 s or -0.18 s; the answer we want is 1.7 s. At the peak 
of its flight, the ball’s velocity is instantaneously zero because it’s 

moving neither up nor down. So we set v2 = 0 in Equation 2.11 to get 
0 = v0

2 - 2g1y - y02. Solving for y then gives the peak height:

y = y0 +
v0

2

2g
= 1.5 m +

17.3 m/s22

12219.8 m/s22 = 4.2 m

To find the speed when the ball reaches 1.5 m on the way down, 
we set y = y0 in Equation 2.11. The result is v2 = v0

2 , so v = {v0 or 
{7.3 m/s. Once again, there are two answers. The equation has given 
us all the velocities the ball has at 1.5 m—including the initial upward 
velocity and the later downward velocity. We’ve shown here that an 
upward-thrown object returns to its initial height with the same speed 
it had initially.

ASSESS Make sense? With no air resistance to sap the ball of its 
energy, it seems reasonable that the ball comes back down with the 
same speed—a fact we’ll explore further when we introduce energy 
conservation in Chapter 7. But why are there two answers for time 
and velocity? Equation 2.10 doesn’t “know” about your hand or the 
floor; it “assumes” the ball has always been undergoing downward 
acceleration g. We asked of Equation 2.10 when the ball would be 
at y = 0. The second answer, 1.7 s, was the one we wanted. But if 
the ball had always been in free fall, it would also have been on the 
floor 0.18 s earlier, heading upward. That’s the meaning of the other 
answer, -0.18 s, as we’ve indicated on our sketch. Similarly, Equation 
2.11 gave us all the velocities the ball had at a height of 1.5 m, includ-
ing both the initial upward velocity and the later downward velocity.

We’re given the
initial speed and
height.

Here is another
time the ball
would have been
at floor level.

The curve is flat at
the top since speed
is instantaneously 
zero.

We want this
height c

cand
this speed c

cand this 
time.

FIGURE 2.13 Our sketch for Example 2.6.

2.6 When Acceleration Isn’t Constant
LO 2.5 Use calculus to deal with nonconstant acceleration.

Sections 2.4 and 2.5 both dealt with constant acceleration. Fortunately, there are many 
important applications, such as situations involving gravity near Earth’s surface, where ac-
celeration is constant. But when it isn’t, then the equations listed in Table 2.1 don’t apply. 
In Chapter 3 you’ll see that acceleration can vary in magnitude, direction, or both. In the 
one-dimensional situations of the current chapter, a nonconstant acceleration a would be 
specified by giving a as a function of time t: a(t). If you’ve already studied integral calcu-
lus, then you know that integration is the opposite of differentiation. Since acceleration is 
the derivative of velocity, you get from acceleration to velocity by integration; from there 
you can get to position by integrating again. Mathematically, we express these relations as

 v1t2 = La1t2 dt (2.12)

 x1t2 = Lv1t2 dt (2.13)

 MULTIPLE ANSWERS Frequently the mathematics of a problem gives more than one 
answer. Think about what each answer means before discarding it! Sometimes an answer 
isn’t consistent with the physical assumptions of the problem, but other times all answers are 
meaningful even if they aren’t all what you’re looking for.

2.5 Standing on a roof, you simultaneously throw one ball straight up and drop 
another from rest. Which hits the ground first? Which hits the ground moving 
faster?G

O
T 

IT
?

NIST-F1, shown here with its developers, is one 
of two atomic clocks that set the United States’ 
standard of time. The clock is so accurate that 
it won’t gain or lose more than a second in 100 
million years! It gets its remarkable accuracy by 
monitoring a super-cold clump of freely falling 
cesium atoms for what is, in this context, a long 
time period of about 1 s. The atom clump is put in 
free fall by a more sophisticated version of the ball 
toss in Example 2.6. In the NIST-F1 clock,  laser 
beams gently “toss” the ball of atoms upward 
with a speed that gives it an up-and-down travel 
time of about 1 s (see Problem 72). For this reason 
NIST-F1 is called an atomic fountain clock. In the 
photo you can see the clock’s towerlike structure 
that accommodates this atomic fountain.

APPLICATION Keeping Time
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28 Chapter 2 Motion in a Straight Line

These results don’t fully determine v and x; you also need to know the initial conditions (usu-
ally, the values at time t = 0 ); these provide what are called in calculus the constants of inte-
gration. In Problem 93, you can evaluate the integral in Equation 2.13 for the case of constant 
acceleration, giving an alternate derivation of Equations 2.7 and 2.10. Problems 88, 94, and 95 
challenge you to use integral calculus to find an object’s position in the case of nonconstant 
accelerations, while Problem 96 explores the case of an exponentially decreasing acceleration.

Summary

Big Idea

The big ideas here are those of kinematics—the study of motion 
without regard to its cause. Position, velocity, and acceleration are 
the quantities that characterize motion:

Position Velocity

Rate of
change

Rate of
change

Acceleration

Key Concepts and Equations
Average velocity and acceleration involve changes in position and velocity, respectively, oc-
curring over a time interval ∆t:

 v =
∆x
∆t

 

 a =
∆v
∆t

Here ∆x is the displacement, or change in position, and ∆v is the change in velocity.
Instantaneous values are the limits of infinitesimally small time intervals and are given 

by calculus as the time derivatives of position and velocity:

 v =
dx
dt

 

 a =
dv
dt

∆t
∆x

Time, t

Po
si

tio
n,

 x

This line’s 
slope is the
average
velocity c

cand this line’s 
slope is the instantaneous
velocity.

∆t
∆v

Time, t
0

V
el

oc
ity

, v

cwhile the
instantaneous
acceleration a
is the slope of

this line.

The average acceleration a
is this line’s slope c

2.6 The graph shows accelera-
tion versus time for three differ-
ent objects, all of which start at 
rest from the same position. Only 
object (b) undergoes constant ac-
celeration. Which object is going 
fastest at the time t1?

G
O

T 
IT

?

(a)

(b)

(c)

0

Time, t

A
cc

el
er

at
io

n,
 a

0 t1

Chapter 2
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For Thought and Discussion 29

Applications
Constant acceleration is a special case that yields simple equations describing  
one-dimensional motion:

 v = v0 + at

 x = x0 + v0 t + 1
2 at2

 v2 = v0
2 + 2a1x - x02

These equations apply only in the case of constant acceleration.

1
2

x

tTime, t

Po
si

tio
n,

 x

x0

v0t
x0

Slope = v0

at2

An important example is the acceleration of 
gravity, essentially constant near Earth’s surface, 
with magnitude approximately 9.8 m/s2.

At the peak 
of its flight, 
the ball is 
instantaneously 
at rest.

Just before the peak,
v is positive;  just
after, it’s negative.

Since v is steadily decreasing, the 
acceleration is constant and negative.

v 0

v0

-v0

a 0

-9.8 m>s2

H
ei

gh
t, 

y

Time, t

Time, t

Time, t

 P

LO 2.1 Define fundamental motion concepts: position, velocity, and 
acceleration.
For Thought and Discussion Questions 2.2, 2.5, 2.6; 
Exercises 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.20, 2.21, 2.22, 
2.23, Problems 2.49, 2.51, 2.52

LO 2.2  Distinguish instantaneous from average velocity and 
acceleration.
For Thought and Discussion Questions 2.1, 2.4, 2.8, 2.9, 2.10; 
Exercises 2.17, 2.18, 2.19, 2.24, 2.25; Problems 2.50, 2.83

LO 2.3  Determine velocity and position when acceleration is constant.
For Thought and Discussion Question 2.7; Exercises 2.26, 

2.27, 2.28, 2.30, 2.31, 2.32, 2.33, 2.34; Problems 2.55, 2.56, 
2.57, 2.58, 2.61, 2.62, 2.63, 2.64, 2.65, 2.66, 2.67, 2.68, 2.69, 
2.70, 2.81, 2.87, 2.93

LO 2.4  Describe how gravity near Earth’s surface provides an exam-
ple of constant acceleration.
For Thought and Discussion Question 2.7; Exercises 2.29, 
2.35, 2.36, 2.37, 2.38, 2.39, 2.40; Problems 2.59, 2.60, 2.71, 
2.72, 2.73, 2.74, 2.75, 2.76, 2.77, 2.78, 2.79, 2.80, 2.82, 2.84, 
2.85, 2.86, 2.89, 2.90, 2.91, 2.92, 2.97

LO 2.5 Use calculus to deal with nonconstant acceleration.
Problems 2.53, 2.54, 2.88, 2.94, 2.95, 2.96

Mastering Physics Go to www.masteringphysics.com to access assigned homework and self-study tools such as 
Dynamic Study Modules, practice quizzes, video solutions to problems, and a whole lot more!

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

Learning Outcomes After finishing this chapter, you should be able to:

For Thought and Discussion

1. Under what conditions are average and instantaneous velocity 
equal?

2. Does a speedometer measure speed or velocity?
3. You check your odometer at the beginning of a day’s driving and 

again at the end. Under what conditions would the difference be-
tween the two readings represent your displacement?

4. Consider two possible definitions of average speed: (a) the av-
erage of the values of the instantaneous speed over a time in-
terval and (b) the magnitude of the average velocity. Are these 

definitions equivalent? Give two examples to demonstrate your 
conclusion.

5. Is it possible to be at position x = 0 and still be moving?
6. Is it possible to have zero velocity and still be accelerating?
7. If you know the initial velocity v0 and the initial and final heights 

y0 and y, you can use Equation 2.10 to solve for the time t when 
the object will be at height y. But the equation is quadratic in t, so 
you’ll get two answers. Physically, why is this?

8. In which of the velocity-versus-time graphs shown in Fig. 2.14 
would the average velocity over the interval shown equal the aver-
age of the velocities at the ends of the interval?
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30 Chapter 2 Motion in a Straight Line

b = 82 m/s, c = 4.9 m/s2, t is the time in seconds, and y is in me-
ters. (a) Use differentiation to find a general expression for the rock-
et’s velocity as a function of time. (b) When is the velocity zero?

Section 2.3 Acceleration
20. You’re driving at the 50 km/h speed limit when you spot a sign 

showing a speed-limit increase to 90 km/h. If it takes 25.3 s to 
reach the new speed limit, what’s your average acceleration? 
Express it in m/s2.

21. Starting from rest, a subway train first accelerates to 25 m/s, then 
brakes. Forty-eight seconds after starting, it’s moving at 17 m/s. 
What’s its average acceleration in this 48-s interval?

22. NASA’s New Horizons spacecraft was launched in 2006 and flew 
past Pluto in 2015. New Horizons’ solid-fuel booster rocket gave 
it an average acceleration of 6.16 m/s2, bringing it to a speed of 
16.3 km/s before the booster dropped away. How long did this 
acceleration last?

23. An egg drops from a second-story window, taking 1.12 s to fall 
and reaching 11.0 m/s just before hitting the ground. On contact, 
the egg stops completely in 0.131 s. Calculate the magnitudes of 
its average acceleration (a) while falling and (b) while stopping.

24. An airplane’s takeoff speed is 320 km/h. If its average accelera-
tion is 2.9 m/s2, how much time is it accelerating down the run-
way before it lifts off?

25. ThrustSSC, the world’s first supersonic car, accelerates from rest 
to 1000 km/h in 16 s. What’s its acceleration?

Section 2.4 Constant Acceleration
26. You’re driving at 70 km/h when you apply constant acceleration 

to pass another car. Six seconds later, you’re doing 80 km/h. How  
far did you go in this time?

27. Differentiate both sides of Equation 2.10, and show that you get 
Equation 2.7.

28. A 2016 study found that snakes’ heads, when striking, undergo 
average accelerations of about 40 m/s2, for a period of about 
50 ms. Using these values, find (a) the maximum speed of the 
snake’s head and (b) the distance the head travels during the 
strike. Give your answers to one significant figure.

29. A rocket starts from rest and rises with constant acceleration to a 
height h, at which point it’s rising at speed v. Find expressions for (a) 
the rocket’s acceleration and (b) the time it takes to reach height h.

30. Starting from rest, a car accelerates at a constant rate, reaching 88 km/h 
in 12 s. Find (a) its acceleration and (b) how far it goes in this time.

31. A car moving initially at 50 mi/h begins slowing at a constant 
rate 100 ft short of a stoplight. If the car comes to a full stop just 
at the light, what is the magnitude of its acceleration?

32. In a medical X-ray tube, electrons are accelerated to a velocity 
of 108 m/s and then slammed into a tungsten target. As they stop, 
the electrons’ rapid acceleration produces X rays. Given that it 
takes an electron on the order of 1 ns to stop, estimate the dis-
tance it moves while stopping.

33. California’s Bay Area Rapid Transit System (BART) uses an au-
tomatic braking system triggered by earthquake warnings. The 
system is designed to prevent disastrous accidents involving 
trains traveling at a maximum of 112 km/h and carrying a total 
of some 45,000 passengers at rush hour. If it takes a train 24 s to 
brake to a stop, how much advance warning of an earthquake is 
needed to bring a 112-km/h train to a reasonably safe speed of 42 
km/h when the earthquake strikes?

34. You’re driving at speed v0 when you spot a stationary moose on the 
road, a distance d ahead. Find an expression for the magnitude of 
the acceleration you need if you’re to stop before hitting the moose.
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FIGURE 2.15 Exercise 18

9. If you travel in a straight line at 50 km/h for 1 h and at 100 km/h 
for another hour, is your average velocity 75 km/h? If not, is it 
more or less?

10. If you travel in a straight line at 50 km/h for 50 km and then at 
100 km/h for another 50 km, is your average velocity 75 km/h? If 
not, is it more or less?

Exercises and Problems

Exercises

Section 2.1 Average Motion
11. In 2009, Usain Bolt of Jamaica set a world record in the 100-m 

dash with a time of 9.58 s. What was his average speed?
12. Earth’s diameter is approximately 8000 miles. Estimate the speed of 

a point on Earth’s equator as it’s carried around with Earth’s rotation.
13. Starting from home, you bicycle 24 km north in 2.5 h and then turn 

around and pedal straight home in 1.5 h. What are your (a) displace-
ment at the end of the first 2.5 h, (b) average velocity over the first 2.5 h,  
(c) average velocity for the homeward leg of the trip, (d) displace-
ment for the entire trip, and (e) average velocity for the entire trip?

14. The Voyager 1 spacecraft is expected to continue broadcasting 
data until at least 2020, when it will be some 14 billion miles 
from Earth. How long will it take Voyager’s radio signals, travel-
ing at the speed of light, to reach Earth from this distance?

15. Gwen Jorgensen of the United States won the 2016 Olympic  
triathlon, completing the 1.5-km swim, 40-km bicycle ride, and 
10-km run in 1 h, 56 min, 16 s. What was her average speed?

16. What’s the conversion factor from meters per second to miles per 
hour?

Section 2.2 Instantaneous Velocity
17. On a single graph, plot distance versus time for the first two trips 

from Houston to Des Moines described on page 17. For each 
trip, identify graphically the average velocity and, for each seg-
ment of the trip, the instantaneous velocity.

18. For the motion plotted in Fig. 2.15, estimate (a) the greatest veloc-
ity in the positive x-direction, (b) the greatest velocity in the neg-
ative x-direction, (c) any times when the object is instantaneously 
at rest, and (d) the average velocity over the interval shown.

v

t
(a)

v

t
(b)

v

t
(c)

FIGURE 2.14 For Thought and Discussion 8

19. A model rocket is launched straight upward. Its altitude 
y as a function of time is given by y = bt - ct2, where 
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Section 2.5 The Acceleration of Gravity
35. A delivery drone drops a package onto a customer’s porch. If the 

package can withstand a maximum impact speed of 8.00 m/s, what’s 
the maximum height from which the drone can drop the package?

36. Your friend is sitting 6.5 m above you on a tree branch. How fast 
should you throw an apple so it just reaches her?

37. A model rocket leaves the ground, heading straight up with speed v. 
Find expressions for (a) its maximum altitude and (b) its speed when 
it’s at half the maximum altitude.

38. A foul ball leaves the bat going straight up at 23 m/s. (a) How 
high does it rise? (b) How long is it in the air? Neglect the dis-
tance between bat and ground.

39. A Frisbee is lodged in a tree 6.5 m above the ground. A rock 
thrown from below must be going at least 3 m/s to dislodge the 
Frisbee. How fast must such a rock be thrown upward if it leaves 
the thrower’s hand 1.3 m above the ground?

40. Space pirates kidnap an earthling and hold him on one of the so-
lar system’s planets. With nothing else to do, the prisoner amuses 
himself by dropping his watch from eye level (170 cm) to the 
floor. He observes that the watch takes 0.95 s to fall. On what 
planet is he being held? (Hint: Consult Appendix E.)

Example Variations
The following problems are based on two examples from the text. Each 
set of four problems is designed to help you make connections that 
enhance your understanding of physics and to build your confidence 
in solving problems that differ from ones you’ve seen before. The first 
problem in each set is essentially the example problem but with differ-
ent numbers. The second problem presents the same scenario as the 
example but asks a different question. The third and fourth problems 
repeat this pattern but with entirely different scenarios.

41. Example 2.3: A jetliner touches down at 288 km/h. The plane 
then decelerates (i.e., undergoes acceleration directed opposite to 
its velocity) at 3.38 m/s2. What’s the minimum runway length on 
which this plane can land?

42. Example 2.3:  A jetliner touches down at 275 km/h on a 1.2-km-
long runway. What’s the minimum safe value for the magnitude 
of its acceleration as it slows to a stop?

43. Example 2.3:  You’re driving at 45.0 km/h when you spot a 
moose in the road ahead. If your car is capable of slowing at 
0.766 m/s2, how far from the moose do you need to hit the brakes?

44. Example 2.3: You’re driving at 45.0 km/h when you spot a 
moose in the road, 102 m ahead. What’s the minimum value for 
the magnitude of your braking acceleration if you’re to avoid hit-
ting the moose?

45. Example 2.5:  A diver drops from a 9.21-m high cliff. (a) At what 
speed does she enter the water? and (b) how long is she in the air?

46. Example 2.5:  A diver drops from a cliff, and enters the water 
1.05 s later. Find (a) the cliff height and (b) the speed with the 
diver enters the water.

47. Example 2.5: A delivery drone drops a well-cushioned package 
from a height of 12.5 m onto a customer’s porch. (a) At what 
speed does the package hit the porch? and (b) how long is it in 
the air?

48. Example 2.5: An online retailer makes deliveries by drone, and 
packages the goods so they can withstand an impact at up to 
10.0 m/s. (a) What’s the maximum height from which the drone 
can safely drop a package? and (b) how long would a package 
dropped from this height be in the air?

Problems
49. You allow 40 min to drive 25 mi to the airport, but you’re caught 

in heavy traffic and average only 20 mi/h for the first 15 min. What 
must your average speed be on the rest of the trip if you’re to make 
your flight?

50. You travel one-third of the distance to your destination at speed 
2v, and the remaining two-thirds at speed v. Find an expression 
for your average speed in terms of v.

51. You can run 9.0 m/s, 20% faster than your brother. How much 
head start should you give him in order to have a tie race over  
100 m?

52. A plane leaves Beijing for San Francisco, 9497 km away. With a 
strong tailwind, its speed is 1150 km/h. At the same time, a sec-
ond plane leaves San Francisco for Beijing. Flying into the wind, 
it makes only 687 km/h. When and where do the two planes pass?

53. An object’s  posi t ion is  given by x = bt + ct3,  where 
b = 1.50 m/s, c = 0.640 m/s3, and t is time in seconds. To 
study the limiting process leading to the instantaneous velocity, 
calculate the object’s average velocity over time intervals from 
(a) 1.00 s to 3.00 s, (b) 1.50 s to 2.50 s, and (c) 1.95 s to 2.05 
s. (d) Find the instantaneous velocity as a function of time by 
differentiating, and compare its value at 2 s with your average 
velocities.

54. An object’s position as a function of time t is given by x = bt4, 
with b a constant. Find an expression for the instantaneous ve-
locity, and show that the average velocity over the interval from 
t = 0 to any time t is one-fourth of the instantaneous velocity at t.

55. In a 400-m drag race, two cars start at the same time, and each 
maintains a constant acceleration. The winner’s acceleration is 
4.25 m/s2, and the winner reaches the finish line 248 ms before 
the loser does. By what distance is the loser behind when the 
winner reaches the finish line?

56. Squaring Equation 2.7 gives an expression for v2. Equation 2.11 
also gives an expression for v2. Equate the two expressions, and 
show that the resulting equation reduces to Equation 2.10.

57. During the complicated sequence that landed the rover Curiosity 
on Mars in 2012, the spacecraft reached an altitude of 142 m 
above the Martian surface, moving vertically downward at 32.0 
m/s. It then entered a so-called constant deceleration (CD) phase, 
during which its velocity decreased steadily to 0.75 m/s while it 
dropped to an altitude of 23 m. What was the magnitude of the 
spacecraft’s acceleration during this CD phase?

58. The position of a car in a drag race is measured each second, and 
the results are tabulated below.

Time t (s) 0 1 2 3 4 5

Position x (m) 0 1.7 6.2 17 24 40

Assuming the acceleration is approximately constant, plot po-
sition versus a quantity that should make the graph a straight 
line. Fit a line to the data, and from it determine the approximate 
acceleration.

59. A fireworks rocket explodes at a height of 82.0 m, producing frag-
ments with velocities ranging from 7.68 m/s downward to 16.7 
m/s upward. Over what time interval are fragments hitting the 
ground?

60. The muscles in a grasshopper’s legs can propel the insect upward 
at 3.0 m/s. How high can the grasshopper jump?

61. On packed snow, computerized antilock brakes can reduce a car’s 
stopping distance by 55%. By what percentage is the stopping 
time reduced?
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32 Chapter 2 Motion in a Straight Line

62. A particle leaves its initial position x0 at time t = 0, moving in the 
positive x-direction with speed v0 but undergoing acceleration of 
magnitude a in the negative x-direction. Find expressions for (a) the 
time when it returns to x0 and (b) its speed when it passes that point.

63. A hockey puck moving at 32 m/s slams through a wall of snow 
35 cm thick. It emerges moving at 18 m/s. Assuming constant 
acceleration, find (a) the time the puck spends in the snow and 
(b) the thickness of a snow wall that would stop the puck entirely.

64. A subway train is stalled in a station. A second train approaches 
the station at 68.5 km/h and brakes to a halt in 48.3 s, stopping just 
1.45 m short of the stalled train. What was the distance between 
the two trains at the instant the moving train began to brake?

65. A jetliner touches down at 220 km/h and comes to a halt 29 s 
later. What’s the shortest runway on which this aircraft can land?

66. A motorist suddenly notices a stalled car and slams on the 
brakes, slowing at 6.3 m/s2. Unfortunately, this isn’t enough, and 
a collision ensues. From the damage sustained, police estimate 
that the car was going 18 km/h at the time of the collision. They 
also measure skid marks 34 m long. (a) How fast was the motor-
ist going when the brakes were first applied? (b) How much time 
elapsed from the initial braking to the collision?

67. A racing car undergoing constant acceleration covers 140 m in 
3.6 s. (a) If it’s moving at 53 m/s at the end of this interval, what 
was its speed at the beginning of the interval? (b) How far did it 
travel from rest to the end of the 140-m distance?

68. The maximum braking acceleration of a car on a dry road is 
about 8 m/s2. If two cars move head-on toward each other at 88 
km/h (55 mi/h), and their drivers brake when they’re 85 m apart, 
will they collide? If so, at what relative speed? If not, how far 
apart will they be when they stop? Plot distance versus time for 
both cars on a single graph.

69. After 35 min of running, at the 9-km point in a 10-km race, you 
find yourself 100 m behind the leader and moving at the same 
speed. What should your acceleration be if you’re to catch up by 
the finish line? Assume that the leader maintains constant speed.

70. You’re speeding at 85 km/h when you notice that you’re only 10 m 
behind the car in front of you, which is moving at the legal speed 
limit of 60 km/h. You slam on your brakes, and your car slows at 
the rate of 4.2 m/s2. Assuming the other car continues at constant 
speed, will you collide? If so, at what relative speed? If not, what 
will be the distance between the cars at their closest approach?

71. Airbags cushioned the Mars rover Spirit’s landing, and the rover 
bounced some 15 m vertically after its first impact. Assuming 
no loss of speed at contact with the Martian surface, what was 
Spirit’s impact speed?

72. Calculate the speed with which cesium atoms must be “tossed” 
in the NIST-F1 atomic clock so that their up-and-down travel 
time is 1.0 s. (See the Application on page 27.)

73. A falling object travels one-fourth of its total distance in the last 
second of its fall. From what height was it dropped?

74. You’re on a NASA team engineering a probe to land on Jupiter’s 
moon Io, and your job is to specify the impact speed the probe 
can tolerate without damage. Rockets will bring the probe to a 
halt 100 m above the surface, after which it will fall freely. What 
speed do you specify? (Consult Appendix E.)

75. You’re atop a building of height h, and a friend is poised to drop 
a ball from a window at h/2. Find an expression for the speed at 
which you should simultaneously throw a ball downward, so the 
two hit the ground at the same time.

76. A castle’s defenders throw rocks down on their attackers from 
a 15-m-high wall, with initial speed 10 m/s. How much faster 

are the rocks moving when they hit the ground than if they were 
simply dropped?

77. Two divers jump from a 3.00-m platform. One jumps upward at 
1.80 m/s, and the second steps off the platform as the first passes 
it on the way down. (a) What are their speeds as they hit the  
water? (b) Which hits the water first and by how much?

78. A balloon is rising at 10 m/s when its passenger throws a ball 
straight up at 12 m/s relative to the balloon. How much later does 
the passenger catch the ball?

79. In 2014 the Philae spacecraft became the first artifact to land on 
a comet. Unfortunately, Philae bounced off the comet’s surface 
and ultimately landed in a nonideal location. After its first contact, 
Philae was moving upward at 38 cm/s, and it rose to a maximum 
height of about 1 km. Estimate the gravitational acceleration of the 
comet, assuming it’s constant (not a very good assumption in this 
case).

80. You’re at mission control for a rocket launch, deciding whether 
to let the launch proceed. A band of clouds 5.3 km thick ex-
tends upward from 1.9 km altitude. The rocket will accelerate at 
4.6 m/s2, and it isn’t allowed to be out of sight for more than 30 s. 
Should you allow the launch?

81. You’re an investigator for the National Transportation Safety 
Board, examining a subway accident in which a train going at 
80 km/h collided with a slower train traveling in the same direc-
tion at 25 km/h. Your job is to determine the relative speed of the 
collision to help establish new crash standards. The faster train’s 
“black box” shows that its brakes were applied and it began slow-
ing at the rate of 2.1 m/s2 when it was 50 m from the slower train, 
while the slower train continued at constant speed. What do you 
report?

82. In 2012, daredevil skydiver Felix Baumgartner jumped from a 
height of 23.0 miles over New Mexico, becoming the first sky-
diver to break the sound barrier. The acceleration of gravity at 
his jump height was 9.70 m/s2, and there was essentially no air  
resistance at that altitude. (a) How long did it take Baumgartner 
to reach the speed of sound, which is 311 m/s at that altitude?  
(b) How far did he fall during that time?

83. Consider an object traversing a distance L, part of the way at speed 
v1 and the rest of the way at speed v2. Find expressions for the 
object’s average speed over the entire distance L when the object 
moves at each of the two speeds v1 and v2 for (a) half the total time 
and (b) half the total distance. (c) In which case is the average speed 
greater?

84. An object’s position as a function of time is given by x = bt2 - ct4, 
where b has the value 1.82 m/s2, which puts the object at x = 0 at 
t = 0. (a) Find the value of c such that the object will again be 
at x = 0 when t = 2.54 s. Also, find (b) the object’s speed and 
(c) its acceleration at that time.

85. Ice skaters, ballet dancers, and basketball players executing ver-
tical leaps often give the illusion of “hanging” almost motionless 
near the top of the leap. To see why this is, consider a leap to 
maximum height h. Of the total time spent in the air, what frac-
tion is spent in the upper half (i.e., at y 7 1

2h)?
86. You’re staring idly out your dorm window when you see a water 

balloon fall past. If the balloon takes 0.22 s to cross the 1.3-m 
vertical extent of the window, from what height above the win-
dow was it dropped?

87. A police radar’s effective range is 1.0 km, and your radar detec-
tor’s range is 1.9 km. You’re going 110 km/h in a 70 km/h zone 
when the radar detector beeps. At what rate must you slow to 
avoid a speeding ticket?
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Answers to Chapter Questions 33

88. An object starts moving in a straight line from position x0, at time 
t = 0, with velocity v0. Its acceleration is given by a = a0 + bt, 
where a0 and b are constants. Use integration to find expressions for 
(a) the instantaneous velocity and (b) the position, as functions of 
time.

89. You’re a consultant on a movie set, and the producer wants a car to 
drop so that it crosses the camera’s field of view in time ∆t. The field 
of view has height h. Derive an expression for the height above the 
top of the field of view from which the car should be released.

90. (a) For the ball in Example 2.6, find its velocity just before it hits 
the floor. (b) Suppose you had tossed a second ball straight down 
at 7.3 m/s (from the same place 1.5 m above the floor). What 
would its velocity be just before it hits the floor? (c) When would 
the second ball hit the floor? (Interpret any multiple answers.)

91. Your roommate is an aspiring novelist and asks your opinion on 
a matter of physics. The novel’s central character is kept awake 
at night by a leaky faucet. The sink is 19.6 cm below the faucet. 
At the instant one drop leaves the faucet, another strikes the sink 
below and two more are in between on the way down. How many 
drops per second are keeping the protagonist awake?

92. Boxes move at constant speed v along a conveyer belt in an au-
tomated factory. A robotic hand is suspended a distance h above 
the conveyer belt, and its purpose is to drop a product into each 
box. The robot’s eyes observe each box as it moves along the 
belt. Find an expression for the location of the box, expressed as 
a distance from a point below the robotic hand, at the instant the 
hand should release the product.

93. Derive Equation 2.10 by integrating Equation 2.7 over time. 
You’ll have to interpret the constant of integration.

94. An object’s acceleration increases quadratically with time: 
a(t) = bt2, where b = 0.041 m/s4. If the object starts from rest, 
how far does it travel in 6.3 s?

95. An object’s velocity as a function of time is given by 
v(t) = bt - ct3, where b and c are positive constants with ap-
propriate units. If the object starts at x = 0 at time t = 0, find 
expressions for (a) the time when it’s again at x = 0 and (b) its 
acceleration at that time.

96. An object’s acceleration decreases exponentially with time: 
a1t2 = a0 e

-bt, where a0 and b are constants. (a) Assuming the 
object starts from rest, determine its velocity as a function of 
time. (b) Will its speed increase indefinitely? (c) Will it travel 
indefinitely far from its starting point?

97. A ball is dropped from rest at a height h0 above the ground. At the 
same instant, a second ball is launched with speed v0 straight up 
from the ground, at a point directly below where the other ball is 
dropped. (a) Find a condition on v0 such that the two balls will col-
lide in mid-air. (b) Find an expression for the height at which they 
collide.

Passage Problems
A wildlife biologist is studying the hunting patterns of tigers. She 
anesthetizes a tiger and attaches a GPS collar to track its movements. 

The collar transmits data on the tiger’s position and velocity. Figure 
2.16 shows the tiger’s velocity as a function of time as it moves on a 
one-dimensional path.

98. At which marked point(s) is the tiger not moving?
a. E only
b. A, E, and H
c. C and F
d. none of the points (it’s always moving)

99. At which marked point(s) is the tiger not accelerating?
a. E only
b. A, E, and H
c. C and F
d. all of the points (it’s never accelerating)

100. At which point does the tiger have the greatest speed?
a. B b. C c. D d. F

101. At which point does the tiger’s acceleration have the greatest 
magnitude?
a. B b. C c. D d. F

102. At which point is the tiger farthest from its starting position at 
t = 0?
a. C b. E c. F d. H 

Answers to Chapter Questions

Answer to Chapter Opening Question
Although the ball’s velocity is zero at the top of its motion, its acceler-
ation is -9.8 m/s2, as it is throughout the toss.

Answers to GOT IT? Questions
2.1 (a) and (b); average speed is greater for (c)
2.2 (b) moves with constant speed; (a) reverses; (d) speeds up
2.3 (b) downward
2.4  (a) halfway between the times; because its acceleration is con-

stant, the police car’s speed increases by equal amounts in equal 
times. So it gets from 0 to half its final velocity—which is twice 
the car’s velocity—in half the total time.

2.5 The dropped ball hits first; the thrown ball hits moving faster.
2.6 (a)
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FIGURE 2.16 The tiger’s velocity (Passage 
Problems 98–102.)
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What’s the speed of an orbiting satellite? How should I leap to win the 
long-jump competition? How do I engineer a curve in the road for 

safe driving? These and many other questions involve motion in more than 
one dimension. In this chapter we extend the ideas of one-dimensional 
motion to these more complex—and more interesting—situations.

3.1 Vectors
LO 3.1 Describe position in two and three dimensions, using 

vectors.

We’ve seen that quantities describing motion have direction as well as magni-
tude. In Chapter 2, a simple plus or minus sign took care of direction. But now, 
in two or three dimensions, we need a way to account for all possible direc-
tions. We do this with mathematical quantities called vectors, which express 
both magnitude and direction. Vectors stand in contrast to scalars, which are 
quantities that have no direction.

Position and Displacement
The simplest vector quantity is position. Given an origin, we can characterize 
any position in space by drawing an arrow from the origin to that position. 
That arrow represents a position vector, which we call r

!
. The arrow over the 

r indicates that this is a vector quantity, and it’s crucial to include the arrow 
whenever you’re dealing with vectors. Figure 3.1 shows a position vector in 
a two- dimensional coordinate system; this vector describes a point that’s 2 m 
from the origin, in a direction 30°  from the horizontal axis.

Suppose you walk from the origin straight to the point described by the 
vector r

!
1 in Fig. 3.1, and then you turn right and walk another 1 m. Figure 3.2 

Motion in Two and Three Dimensions

Learning Outcomes
After finishing this chapter you should be able to:

LO 3.1 Describe position in two and three dimensions,  
using vectors.

LO 3.2 Represent velocity and acceleration as vectors.

LO 3.3 Relate velocities in different reference frames.

LO 3.4 Analyze motion in two dimensions.

LO 3.5 Predict the motion of projectiles subject to gravity.

LO 3.6 Describe circular motion as accelerated motion.

At what angle should this penguin leave the 
 water to maximize the range of its jump?

Skills & Knowledge You’ll Need
■■ Motion concepts: position, velocity, 

and acceleration (Sections 2.1–2.3)

■■ The quantitative description of 
one-dimensional motion with  
constant acceleration (Section 2.4)

■■ The acceleration of gravity near 
Earth’s surface (Section 2.5)

1 
Doing Physics

2 
Motion in a 

Straight Line

4 
Force  

and Motion

5 
Using Newton’s 

Laws3

34
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3.1 Vectors 35

shows how you can tell where you end up. Draw a second vector whose length represents 
1 m and that points to the right; we’ll call this vector ∆r

!
 because it’s a displacement vector, 

representing a change in position. Put the tail of ∆r
!
 at the head of the vector r

!
1; then the head 

of ∆r
!
 shows your ending position. The result is the same as if you had walked straight from 

the origin to this position. So the new position is described by a third vector r
!
2, as indicated 

in Fig. 3.2. What we’ve just described is vector addition. To add two vectors, put the second 
vector’s tail at the head of the first; the sum is then the vector that extends from the tail of the 
first vector to the head of the second, as does r

!
2 in Fig. 3.2.

A vector has both magnitude and direction—but because that’s all the information it 
contains, it doesn’t matter where it starts. So you’re free to move a vector around to form 
vector sums. Figure 3.3 shows some examples of vector addition and also shows that vec-
tor addition obeys simple rules you know for regular arithmetic.

r1

O is the
arbitrary
origin.

The vector r1
describes the
position of this 
point.

30°

2.0 m

O

u

u

FIGURE 3.1 A position vector ru1.

r1

r2

∆r

30°

u

u

u

FIGURE 3.2 Vectors ru1 and ∆ru sum to ru2.

C
S

Vector addition is commutative:  
A + B = B + A.

A A AA
A + B A + B

B + A
B + C

B B B

B

SSSS

S

S
S

SS

S

S

S

S

S

S

S S

SS Vector addition is also associative:
1A + B2 + C = A + 1B + C2.

SS SS S S

C
S

S

A + 1B + C2S S S1A + B2 + C
S SS

FIGURE 3.3 Vector addition is commutative and associative.

Multiplication
You and I jog in the same direction, but you go twice as far. Your displacement vector, 
B
S

, is twice as long as my displacement vector, A
S

; mathematically, B
S

= 2A
S

. That’s what 
it means to multiply a vector by a scalar; simply rescale the magnitude of the vector by 
that scalar. If the scalar is negative, then the vector direction reverses—and that provides a 
way to subtract vectors. In Fig. 3.2, for example, you can see that r

!
1 = r

!
2 + 1-12∆r

!
, or 

simply r
!
1 = r

!
2 - ∆r

!
. Later, we’ll see ways to multiply two vectors, but for now the only 

multiplication we consider is a vector multiplied by a scalar.

Vector Components
You can add vectors graphically, as shown in Fig. 3.2, or you can use geometric relationships 
like the laws of sines and cosines to accomplish the same thing algebraically. In both these 
approaches, you specify a vector by giving its magnitude and direction. But often it’s more 
convenient instead to describe vectors using their components in a given coordinate system.

A coordinate system is a framework for describing positions in space. It’s a mathematical 
construct, and you’re free to choose whatever coordinate system you want. You’ve already 
seen Cartesian or rectangular coordinate systems, in which a pair of numbers 1x, y2 rep-
resents each point in a plane. You could also think of each point as representing the head of 
a position vector, in which case the numbers x and y are the vector components. The compo-
nents tell how much of the vector is in the x-direction and how much is in the y-direction. Not 
all vectors represent actual positions in space; for example, there are velocity, acceleration, 
and force vectors. The lengths of these vectors represent the magnitudes of the corresponding 
physical quantities. For an arbitrary vector quantity A

S
, we designate the components Ax and 

Ay (Fig. 3.4). Note that the components themselves aren’t vectors but scalars.
In two dimensions it takes two quantities to specify a vector—either its magnitude and 

direction or its components. They’re related by the Pythagorean theorem and the defini-
tions of the trig functions, as shown in Fig. 3.4:

 A = 2Ax
2 + Ay

2 and tan u =
Ay

Ax
  1vector magnitude and direction2 (3.1)

Here’s the y-
component 
of A.

Here’s the x-
component of A.

This is the
magnitude
of A.

This is A’s
direction.

Ay

Ax

A cos u

A sin u 

u

A x
2  + A y

2

A = 2
S

S

S S

A
S

FIGURE 3.4 Magnitude/direction and 
 component representations of vector A

S
.
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36 Chapter 3 Motion in Two and Three Dimensions

Without the arrow above it, a vector’s symbol stands for the vector’s magnitude. Going the 
other way, we have

 Ax = A cos u and Ay = A sin u  1vector components2 (3.2)

If a vector A
S

 has zero magnitude, we write A
S

= 0
S

, where the vector arrow on the zero 
indicates that both components must be zero.

Unit Vectors
It’s cumbersome to say “a vector of magnitude 2 m at 30° to the x-axis” or, equivalently, 
“a vector whose x- and y-components are 1.73 m and 1.0 m, respectively.” We can express 
this more succinctly using the unit vectors in (read “i hat”) and jn. These unit vectors have 
magnitude 1, no units, and point along the x- and y-axes, respectively. In three dimensions 
we add a third unit vector, kn, along the z-axis. Any vector in the x-direction can be written 
as some number—perhaps with units, such as meters or meters per second—times the unit 
vector in, and analogously in the y-direction using jn. That means any vector in a plane can 
be written as a sum involving the two unit vectors: A

S
= Ax in + Ayjn (Fig. 3.5a). Similarly, 

any vector in space can be written with the three unit vectors (Fig. 3.5b).
The unit vectors convey only direction; the numbers that multiply them give size and 

units. Together they provide compact representations of vectors, including units. The dis-
placement vector r

!
1 in Fig. 3.1, for example, is r

!
1 = 1.7 in + 1.0jn m.

Vector Arithmetic with Unit Vectors
Vector addition is simple with unit vectors: Just add the corresponding components. If 
A
S

= Ax in + Ayjn and B
S

= Bx in + Byjn, for example, then their sum is

A
S

+ B
S

= 1Ax in + Ayjn2 + 1Bx in + Byjn2 = 1Ax + Bx2 in + 1Ay + By2jn
Subtraction and multiplication by a scalar are similarly straightforward.

A = A xi 
+ A y

j

(a)

(b)

Ay

AxAxi

Ay j

x

z

Azk

y

Ay j

k

j
Axi

i

jn

n

n

n

n

n

n

in

A is the sum of the
vectors Axi and Ay jn

n

n

n

n

A
S

S

n

S

FIGURE 3.5 Vectors in (a) a plane and 
(b) space, expressed using unit vectors.

You drive to a city 165 km from home, going 35.0° north of east. 
Express your new position in unit vector notation, using an east–west/ 
north–south coordinate system.

INTERPRET We interpret this as a problem about writing a vector 
in unit vector notation, given its magnitude and direction.

DEVELOP Unit vector notation multiplies a vector’s x- and y- 
components by the unit vectors in and jn and sums the results, so we 
draw a sketch showing those components (Fig. 3.6). Our plan is to 
solve for the two components, multiply by the unit vectors, and then 
add. Equations 3.2 determine the components.

EVALUATE We have x = r cos u = 1165 km21cos 35.0°2 = 135 km 
and y = r sin u = 1165 km21sin 35.0°2 = 94.6 km. Then the posi-
tion of the city is

r
!

= 135in + 94.6jn km

ASSESS Make sense? Figure 3.6 suggests that the x-component 
should be longer than the y-component, as our answer indicates. Our 

sketch shows the component values and the final answer. Note that we 
treat 135in + 94.6jn as a single vector quantity, labeling it at the end 
with the appropriate unit, km.

Unit Vectors: Taking a DriveEXAMPLE 3.1

The city’s position
is described by the
vector r.

u

FIGURE 3.6 Our sketch for Example 3.1.

3.1 Which vector describes a displacement of 10 units in a direction 30° below the 
positive x-axis? (a) 10 in - 10jn; (b) 5.0 in - 8.7jn; (c) 8.7 in - 5.0jn; (d) 101 in + jn2 

G
O

T 
IT

?
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3.2 Velocity and Acceleration Vectors 37

3.2 Velocity and Acceleration Vectors
LO 3.2 Represent velocity and acceleration as vectors.

We defined velocity in one dimension as the rate of change of position. In two or three 
dimensions it’s the same thing, except now the change in position—displacement—is a 
vector. So we write

 v
!

=
∆r

!

∆t
 1average velocity2 (3.3)

for the average velocity, in analogy with Equation 2.1. Here division by ∆t simply means 
multiplying by 1/∆t. As before, instantaneous velocity is given by a limiting process:

 v
!

= lim
∆tS0  
 

∆r
!

∆t
=

dr
!

dt
 1instantaneous velocity2 (3.4)

∆t is the time interval during which the 
change in position occurs.

Average velocity is a vector v
!
, 

indicated by the arrow overscore. 
The bar designates “average.”

∆r
!
 is the displacement during the time interval 

∆t. It’s a vector given by ∆r
!

= r
!
2 - r

!
1.

dr
!
 and dt are infinitesimally small quantities 

that result from the limiting procedure.
The instantaneous velocity v

!
 is the 

 velocity at a single instant of time.

This limiting procedure gives the ratio ∆r
u
/∆t in the 

limit of infinitesimally small time intervals ∆t.
Instantaneous velocity is given by the derivative d r

u
/dt—

the rate of change of position with respect to time.

Again, that derivative dr
u
/dt is shorthand for the result of the limiting process, taking ever 

smaller time intervals ∆t and the corresponding displacements ∆r
!
. Another way to look at 

Equation 3.4 is in terms of components. If r
!

= xin + yjn, then we can write

v
!

=
dr

!

dt
=

dx
dt
in +

dy

dt
jn = vx in + vyjn

where the velocity components vx and vy are the derivatives of the position components.

Acceleration is the rate of change of velocity, so we write

Average acceleration is a vector.  
The bar designates “average.”

∆t is the time interval during which 
the change in velocity occurs.

∆v
!
 is the change in the object’s velocity during the 

time interval ∆t. It’s given by ∆v
!

= v
!
2 - v

!
1.

The instantaneous acceleration a
!
 is the 

acceleration at a single instant of time.

Instantaneous acceleration is given by the 
derivative d v

!>dt—the rate of change of 
velocity with respect to time.

This limiting procedure gives the ratio 
∆v

!>∆t in the limit of infinitesimally 
small time intervals ∆t.

d v
!
 and dt are infinitesimally small quantities 

that result from the limiting procedure.

a

a

v0

v0

∆v = a∆t

∆v = a∆t

v = v0 + ∆v

v = v0 + a∆t

(a)

(b)

u

u

u

u

u

u

uuu

u

u

uu

u

FIGURE 3.7 When vu  and au are collinear,  
generally only the speed changes. 
(However, if the acceleration acts long 
enough, the object may come to a stop 
and then reverse direction.)

 a
!

=
∆v

!

∆t
  1average acceleration2 (3.5)

for the average acceleration and

 a
!

= lim
∆tS0  
 

∆v
!

∆t
=

dv
!

dt
 1instantaneous acceleration2 (3.6)

 VECTORS TELL IT ALL Are you 
thinking there should be a minus 
sign in Fig. 3.7b because the speed 
is decreasing? Nope: Vectors have 
both magnitude and direction, and 
the vector  addition v

!
= v

!
0 + a

!
∆t 

tells it all. In Fig. 3.7b, ∆v
!
 points to 

the left, and that takes care of the 
“subtraction.”
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38 Chapter 3 Motion in Two and Three Dimensions

for the instantaneous acceleration. We can also express instantaneous acceleration in 
 components, as we did for velocity:

a
!

=
dv

!

dt
=

dvx

dt
in +

dvy

dt
jn = ax in + ayjn

Velocity and Acceleration in Two Dimensions
Motion in a straight line may or may not involve acceleration, but motion on curved 
paths in two or three dimensions is always accelerated motion. Why? Because moving in 
multiple dimensions means changing direction—and any change in velocity, including 
direction, involves acceleration. Get used to thinking of acceleration as meaning more 
than “speeding up” or “slowing down.” It can equally well mean “changing direction,” 
whether or not speed is also changing. Whether acceleration results in a speed change, a 
direction change, or both depends on the relative orientation of the velocity and acceler-
ation  vectors.

Suppose you’re driving down a straight road at speed v0 when you step on the gas to 
give a constant acceleration a

!
 for a time ∆t. Equation 3.5 shows that the change in your 

velocity is ∆v
!

= a
!
∆t. In this case the acceleration is in the same direction as your veloc-

ity and, as Fig. 3.7a shows, the result is an increase in the magnitude of your velocity; that 
is, you speed up. Step on the brake, and your acceleration is opposite your velocity, and 
you slow down (Fig. 3.7b).

In two dimensions acceleration and velocity can be at any angle. In general, 
 acceleration then changes both the magnitude and the direction of the velocity 
(Fig. 3.8). Particularly interesting is the case when a

!
 is perpendicular to v

!
; then only 

the  direction of motion changes. If acceleration is constant—in both magnitude and 
direction—then the two vectors won’t stay perpendicular once the direction of v

!
 starts 

to change, and the magnitude will change, too. But in the special case where accelera-
tion changes direction so it’s always perpendicular to velocity, then it’s strictly true that 
only the direction of motion changes. Figure 3.9 illustrates this point, which we’ll soon 
explore quantitatively.

3.2 An object is accelerating downward. Which, if any, of the following must be 
true? (a) The object cannot be moving upward; (b) the object cannot be moving in a 
straight line; (c) the object is moving directly downward; (d) if the object’s motion is 
instantaneously horizontal, it can’t continue to be so.G
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a

v0

v = v0 + ∆v

∆v = a∆t

u

uu

uuu

u

FIGURE 3.8 In general, acceleration 
changes both the magnitude and the 
direction of velocity.

3.3 Relative Motion
LO 3.3 Relate velocities in different reference frames.

You stroll down the aisle of a plane, walking toward the front at a leisurely 4 km/h. 
Meanwhile the plane is moving relative to the ground at 1000 km/h. Therefore, you’re mov-
ing at 1004 km/h relative to the ground. As this example suggests, velocity is meaningful 
only when we know the answer to the question, “Velocity relative to what?” That “what” 
is called a frame of reference. Often we know an object’s velocity relative to one frame of 
reference—for example, your velocity relative to the plane—and we want to know its veloc-
ity relative to some other reference frame—in this case the ground. In this one- dimensional 
case, we can simply add the two velocities. If you had been walking toward the back of 
the plane, then the two velocities would have opposite signs and you would be going at 
996 km/h relative to the ground.

The same idea works in two dimensions, but here we need to recognize that velocity 
is a vector. Suppose that airplane is flying with velocity v

!
′ relative to the air. If a wind is 

blowing, then the air is moving with some velocity V
S

 relative to the ground. The plane’s 

v0

v

v

∆v = a∆t

a

a

Initially a changes only
the direction of v, but
soon a and v are no longer
perpendicular, so 0v 0 changes,
too.

If a stays perpendicular
to v, then only direction
changes.

(a)

(b)

u

u

u

u

u

u

u

u

u

u

u

u

u

u

FIGURE 3.9 Acceleration that is always per-
pendicular to velocity changes only the 
direction.
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3.3 Relative Motion 39

velocity v
!
 relative to the ground is the vector sum of its velocity relative to the air and the 

air’s velocity relative to the ground:

 v
!

= v
!
′ + V

S
  1relative velocity2 (3.7)

v
!
 is the velocity of an object relative 

to a particular frame of reference, 
such as the air.

V
S

 is the relative velocity between the 
two reference frames, such as the wind 
velocity relative to the ground.

v
!
 is the velocity of an object relative to another 

frame of reference, such as the ground.

EXAMPLE 3.2 Relative Velocity: Navigating a Jetliner

A jetliner flies at 960 km/h relative to the air. It’s going from Houston 
to Omaha, 1290 km northward. At cruising altitude a wind is blowing 
eastward at 190 km/h. In what direction should the plane fly? How 
long will the trip take?

INTERPRET This is a problem involving relative velocities. We 
identify the given information: the plane’s speed, but not its di-
rection, in the reference frame of the air; the plane’s direction, but 
not its speed, in the reference frame of the ground; and the wind 
velocity, both speed and direction.

DEVELOP Equation 3.7, v
!

= v
!
′ + V

S
, applies, and we identify v

!
 as the 

plane’s velocity relative to the ground, v
!
′ as its velocity relative to the 

air, and V
S

 as the wind velocity. Equation 3.7 shows that v
!
′ and V

S
 add 

vectorially to give v
!
 that, with the given information, helps us draw the 

situation (Fig. 3.10). Measuring the angle of v
!
′ and the length of v

!
 in the 

diagram would then give the answers. However, we’ll work the problem 
algebraically using vector components. Since the plane is flying north-
ward and the wind is blowing eastward, a suitable coordinate system has 
its x-axis eastward and y-axis northward. Our plan is to work out the vec-
tor components in these coordinates and then apply Equation 3.7.

EVALUATE Using Equations 3.2 for the vector components, we can 
express the three vectors as

v
!
′ = v′ cos u in + v′ sin ujn, V

S
= V in, and v

!
= vjn

Here we know the magnitude v′ of the velocity v
!
′, but we don’t 

know the angle u. We know the magnitude V of the wind velocity 
V
S

, and we also know its direction—toward the east. So V
S

 has only 
an x-component. Meanwhile we want the velocity v

!
 relative to the 

ground to be purely northward, so it has only a y-component—al-
though we don’t know its magnitude v. We’re now ready to put the 
three velocities into Equation 3.7. Since two vectors are equal only 
if all their components are equal, we can express the vector Equation 
3.7 as two separate scalar equations for the x- and y-components:

 x@component:  v′ cos u + V = 0
 y@component:  v′ sin u + 0 = v

The rest is math, evaluating the unknowns u and v. Solving the x equa-
tion gives

u = cos-1 a-
V
v′
b = cos-1 a-

190 km/h
960 km/h

b = 101.4°

This angle is measured from the x-axis (eastward; see Fig. 3.10), so 
it amounts to a flight path 11° west of north. We can then evaluate v 
from the y equation:

v = v′ sin u = 1960 km/h21sin 101.4°2 = 941 km/h

That’s the plane’s speed relative to the ground. Going 1290 km will 
then take 11290 km2/1941 km/h2 = 1.4 h or 1 h, 24 min.

ASSESS Make sense? The plane’s heading of 11° west of north seems 
reasonable compensation for an eastward wind blowing at 190 km/h, 
given the plane’s airspeed of 960 km/h. If there were no wind, the trip 
would take 1 h, 20 min (1290 km divided by 960 km/h), so our time of 
1 h, 24 min with the wind makes sense.FIGURE 3.10 Our vector diagram for Example 3.2.

Here we use lowercase letters for the velocities of an object relative to two different refer-
ence frames; we distinguish the two with the prime on one of the velocities. The capital V

S
 is 

the relative velocity between the two frames. In general, Equation 3.7 lets us use the velocity 
of an object in one reference frame to find its velocity relative to another frame—provided 
we know that relative velocity V

S
. Example 3.2 illustrates the application of this idea to air-

craft navigation.
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40 Chapter 3 Motion in Two and Three Dimensions

3.4 Constant Acceleration
LO 3.4 Analyze motion in two dimensions.

When acceleration is constant, the individual components of the acceleration vector are 
themselves constant. Furthermore, the component of acceleration in one direction has no 
effect on the motion in a perpendicular direction (Fig. 3.11). Then with constant accelera-
tion, the separate components of the motion must obey the constant-acceleration formulas 
we developed in Chapter 2 for one-dimensional motion. Using vector notation, we can 
then generalize Equations 2.7 and 2.10 to read

N

(1)

(2)

(3)

3.3 An airplane is making a 500-km trip directly north that is sup-
posed to take exactly 1 h. For 100-km/h winds blowing in each of 
the directions (1), (2), and (3) shown, does the plane’s speed rel-
ative to the air need to be (a) less than, (b) equal to, or (c) greater 
than 500 km/h?

G
O

T 
IT

?Vertical spacing is the same, showing 
that vertical and horizontal motions 
are independent.

FIGURE 3.11 Two marbles, one dropped 
and the other projected horizontally.

where r
!
 is the position vector. In two dimensions, each of these vector equations rep-

resents a pair of scalar equations describing constant acceleration in two mutually perpen-
dicular directions. Equation 3.9, for example, contains the pair x = x0 + vx0 t + 1

2ax t
2 and 

y = y0 + vy0 t + 1
2ay t

2. (Remember that the components of the displacement vector r
!
 are 

just the coordinates x and y.) In three dimensions there would be a third equation for the 
z-component. Starting with these vector forms of the equations of motion, you can apply 
Problem-Solving Strategy 2.1 to problems in two or three dimensions.

You’re windsurfing at 7.3 m/s when a gust hits, accelerating your sail-
board at 0.82 m/s2 at 60° to your original direction. If the gust lasts 8.7 s,  
what’s the magnitude of the board’s displacement during this time?

INTERPRET This is a problem involving constant acceleration in 
two dimensions. The key concept is that motion in perpendicular 
directions is independent, so we can treat the problem as involving 
two separate one-dimensional motions.

DEVELOP Equation 3.9, r
!

= r
!
0 + v

!
0 t + 1

2 a
!
t2, will give the board’s 

displacement. We need a coordinate system, so we take the x-axis 
along the board’s initial motion, with the origin at the point where 
the gust first hits. Our plan is to find the components of the acceler-
ation vector and then apply the two components of Equation 3.9 to 
get the components of the displacement. In Fig. 3.12 we draw the 
acceleration vector to determine its components.

EXAMPLE 3.3 Acceleration in Two Dimensions: Windsurfing
Worked Example with Variation Problems

FIGURE 3.12 Our sketch of the sailboard’s acceleration components.

v
!
 is an object’s velocity at any time t. a

!
 is the object’s acceleration, and t is the time.

 v
!

= v
!
0 + a

!
t  1for constant acceleration only2 (3.8)

v
!
0 is its initial velocity at t = 0.

 r
!

= r
!
0 + v

!
0 t + 1

2 a
!
t2  1for constant acceleration only2 (3.9)

t is the time.r
!
 is an object’s position at any time t.

r
!
0 is its initial position at t = 0. a

!
 is its acceleration.v

!
0 is its initial 

velocity.
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3.5 Projectile Motion 41

3.5 Projectile Motion
LO 3.5 Predict the motion of projectiles subject to gravity.

A projectile is an object that’s launched into the air and then moves predominantly un-
der the influence of gravity. Examples are numerous; baseballs, jets of water (Fig. 3.14), 
fireworks, missiles, ejecta from volcanoes, drops of ink in an ink-jet printer, and leaping 
dolphins are all projectiles.

To treat projectile motion, we make two simplifying assumptions: (1) We neglect 
any variation in the direction or magnitude of the gravitational acceleration, and (2) we 
 neglect air resistance. The first assumption is equivalent to neglecting Earth’s curvature, 
and is valid for projectiles whose displacements are small compared with Earth’s radius. 
Air resistance has a more variable effect; for dense, compact objects it’s often negligi-
ble, but for objects whose ratio of surface area to mass is large—like ping-pong balls and 
 parachutes—air resistance dramatically alters the motion.

To describe projectile motion, it’s convenient to choose a coordinate system with 
the y-axis vertically upward and the x-axis horizontal. With the only acceleration pro-
vided by gravity, ax = 0 and ay = -g, so the components of Equations 3.8 and 3.9 
become

  vx = vx0  (3.10)

  vy = vy0 - gt  (3.11)

  x = x0 + vx0 t  (3.12)

  y = y0 + vy0 t - 1
2 gt2 (3.13)

EVALUATE With the x-direction along the initial velocity, v
!
0 = 7.3in m/s. 

As Fig. 3.12 shows, the acceleration is a
!

= 0.41in + 0.71jn m/s2.  
Our choice of origin gives x0 = y0 = 0, so the two components of 
Equation 3.9 are

 x = vx0 t + 1
2 ax t

2 = 79.0 m

 y = 1
2 ay t

2 = 26.9 m

where we used the appropriate components of a
!
 and where t = 8.7 s. 

The new position vector is then r
!

= xin + yjn = 79.0in + 26.9jn m, 

giving a net displacement of r = 2x2 + y2 = 83 m.

ASSESS Make sense? Figure 3.13 shows how the acceleration de-
flects the sailboard from its original path and also increases its speed 
somewhat. Since the acceleration makes a fairly large angle with the 
initial velocity, the change in direction is the greater effect.

FIGURE 3.13 Our sketch of the displacement r
!
, velocity v

!
, and 

acceleration a
!
 at the end of the wind gust. The actual path 

of the sailboard during the gust is indicated by the dashed 
curve.

FIGURE 3.14 Water droplets–each an 
 individual projectile–combine to form 
graceful parabolic arcs in this fountain.

3.4 An object is moving initially in the +x-direction. Which of the  following ac-
celerations, all acting for the same time interval, will cause the greatest change 
in its speed? In its direction? (a) 10 in m/s2; (b) 10jn m/s2; (c) 10 in + 5jn m/s2; 
(d) 2 in - 8jn m/s2G

O
T 

IT
?

(for constant 
 gravitational 
 acceleration)

We take g to be positive, and account for the downward direction using minus signs. 
Equations 3.10–3.13 tell us mathematically what Fig. 3.15 tells us physically: Projectile 
motion comprises two perpendicular and independent components—horizontal motion 
with constant velocity and vertical motion with constant acceleration.

(+
+
)

++
*
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FIGURE 3.15 Velocity and acceleration at five points on a projectile’s 
path. Also shown are horizontal and vertical components.

A raging flood has washed away a section of highway, creating a gash 
1.7 m deep. A car moving at 31 m/s goes straight over the edge. How 
far from the edge of the washout does it land?

INTERPRET This is a problem involving projectile motion, and it asks for 
the horizontal distance the car moves after it leaves the road. We’re given 
the car’s initial speed and direction (horizontal) and the distance it falls.

DEVELOP Figure 3.16a shows the situation, and we’ve sketched 
the essentials in Fig. 3.16b. Since there’s no horizontal accelera-
tion, Equation 3.12, x = x0 + vx0 t, would determine the unknown 
 distance if we knew the time. But horizontal and vertical motions 
are independent, so we can find the time until the car hits the ground 
from the vertical motion alone, as determined by Equation 3.13, 
y = y0 + vy0 t - 1

2gt2. So our plan is to get the time from Equation 

3.13 and then use that time in Equation 3.12 to get the horizontal 
distance. If we choose the origin as the bottom of the washout, then 
y0 = 1.7 m. Then we want the time when y = 0.

EVALUATE With vy0 = 0, we solve Equation 3.13 for t:

t = A2y0

g
= A12211.7 m2

19.8 m/s22
= 0.589 s

During this time the car continues to move horizontally at vx0 = 31 m/s,  
so Equation 3.12 gives x = vx0 t = 131m/s210.589s2 = 18 m.

Note that we carried three significant figures in our interme-
diate answer for the time t to avoid roundoff error in our final two- 
significant-figure answer. Often intermediate calculations in examples 
are done keeping many more significant figures because we work 

EXAMPLE 3.4 Finding the Horizontal Distance: Washout!

INTERPRET Make sure that you have a problem involving the constant acceleration of gravity 
near Earth’s surface, and that the motion involves both horizontal and vertical components. 
Identify the object or objects in question and whatever initial or final positions and velocities 
are given. Know what quantities you’re being asked to find.

DEVELOP Establish a horizontal/vertical coordinate system, and write the separate compo-
nents of the equations of motion (Equations 3.10–3.13). The equations for different compo-
nents will be linked by a common variable—namely, time. Draw a sketch showing the initial 
motion and a rough trajectory.

EVALUATE Solve your individual equations simultaneously for the unknowns of the problem.

ASSESS Check that your answer makes sense. Consider special cases, like purely vertical or 
horizontal initial velocities. Because the equations of motion are quadratic in time, you may 
have two answers. One answer may be the one you want, but you gain more insight into phys-
ics if you consider the meaning of the second answer, too.

PROBLEM-SOLVING STRATEGY 3.1 Projectile Motion
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3.5 Projectile Motion 43

directly from a calculator’s intermediate values. Alternatively, we 
could have kept the time in symbolic form, t = 22y0 /g. Often you 
can gain more physical insight from an answer that’s expressed sym-
bolically before you put in the numbers.

(a) (b)

1.7 m

FIGURE 3.16 (a) The highway and car, and (b) our sketch.

u0

v0

Horizontal range

y

xvx0

vy0

u

FIGURE 3.17 Parabolic trajectory of a 
projectile.

Although air resistance significantly influences 
baseball trajectories, to a first approximation 
baseballs behave like projectiles. For a given 
speed off the bat, this means a pop fly’s “hang 
time” is much greater than that of a nearly hor-
izontal line drive, and that makes the f ly ball 
much easier to catch (see photo).

APPLICATION Pop Flies, Line 
Drives, and 
Hang Times

ASSESS Make sense? About half a second to drop 1.7 m or about 6 ft 
seems reasonable, and at 31 m/s an object will go somewhat farther 
than 15 m in this time.

Projectile Trajectories
We’re often interested in the path, or trajectory, of a projectile without the details of 
where it is at each instant of time. We can specify the trajectory by giving the height y as 
a function of the horizontal position x. Consider a projectile launched from the origin at 
some angle u0 to the horizontal, with initial speed v0. As Fig. 3.17 suggests, the compo-
nents of the initial velocity are vx0 = v0 cos u0 and vy0 = v0 sin u0. Then Equations 3.12 
and 3.13 become

x = v0 cos u0 t and y = v0 sin u0 t - 1
2 gt2

Solving the x equation for the time t gives

t =
x

v0 cos u0

Using this result in the y equation, we have

y = v0 sin u0 a x
v0 cos u0

b - 1
2 g a x

v0 cos u0
b

2

or

 y = x tan u0 -
g

2v0
2 cos2 u0

 x2  1projectile trajectory2 (3.14)

Equation 3.14 gives a mathematical description of the projectile’s trajectory. Since y is a 
quadratic function of x, the trajectory is a parabola.

The Horizontal Range of a Projectile
How far will a soccer ball go if I kick it at 12 m/s at 50° to the horizontal? If I can throw 
a rock at 15 m/s, can I get it across a 30-m-wide pond? How far off vertical can a rocket’s 

 MULTISTEP PROBLEMS Example 3.4 asked for the horizontal distance the car traveled. For 
that we needed the time—which we weren’t given. This is a common situation in all but 
the simplest physics problems. You need to work through several steps to get the answer—
in this case solving first for the unknown time and then for the distance. In essence, we 
solved two problems in Example 3.4: the first involving vertical motion and the second 
horizontal motion.

M03_WOLF8559_04_SE_C03.indd   43 11/13/18   11:56 PM



44 Chapter 3 Motion in Two and Three Dimensions

EXAMPLE 3.5 Finding the Trajectory: Out of the Hole

A construction worker stands in a 2.6-m-deep hole, 3.1 m from the edge 
of the hole. He tosses a hammer to a companion outside the hole. If the 
hammer leaves his hand 1.0 m above the bottom of the hole at an angle 
of 35°, what’s the minimum speed it needs to clear the edge of the hole? 
How far from the edge of the hole does it land?

INTERPRET We’re concerned about where an object is but not when, 
so we interpret this as a problem about the trajectory—specifically, the 
minimum-speed trajectory that just grazes the edge of the hole.

DEVELOP We draw the situation in Fig. 3.18, choosing a  coordinate 
system with its origin at the worker’s hand. Equation 3.14 determines 
the trajectory, so our plan is to find the speed that makes the trajectory 
pass just over the edge of the hole at x = 3.1 m, y = 1.6 m.

EVALUATE To find the minimum speed we solve Equation 3.14 for 
v0, using the coordinates of the hole’s edge for x and y:

v0 = B gx2

2 cos2 u0 1x tan u0 - y2 = 11 m/s

To find where the hammer lands, we need to know the horizontal position 
x when y = 1.6 m. Rearranging Equation 3.14 into the standard form for 
a quadratic equation gives 1g/2v0

2 cos2 u02x2 - 1tan u02x + y = 0. 

Applying the quadratic formula (Appendix A) gives x = 3.1 m 
and x = 8.7 m; the second value is the one we want. That 8.7 m is 
the distance from our origin at the worker’s hand, and amounts to 
8.7 m - 3.1 m = 5.6 m from the hole’s edge.

ASSESS Make sense? The other answer to the quadratic, x = 3.1 m, 
is a clue that we did the problem correctly. That 3.1 m is the distance 
to the edge of the hole. The fact that we get this position when we ask 
for a vertical height of 1.6 m confirms that the trajectory does indeed 
just clear the edge of the hole.

We want v0 so that the hammer will
just clear the point x = 3.1 m, 
y = 1.6 m.

FIGURE 3.18 Our sketch for Example 3.5.

trajectory be and still land within 50 km of its launch point? As in these examples, we’re 
frequently interested in the horizontal range of a projectile—that is, how far it moves 
horizontally over level ground.

For a projectile launched on level ground, we can determine when the projectile will 
return to the ground by setting y = 0 in Equation 3.14:

0 = x tan u0 -
g

2v0
2 cos2 u0

 x2 = x atan u0 -
gx

2v0
2 cos2 u0

b

There are two solutions: x = 0, corresponding to the launch point, and

x =
2v0

2

g
 cos2 u0 tan u0 =

2v0
2

g
 sin u0 cos u0

But sin 2u0 = 2 sin u0 cos u0, so this becomes

 x =
v0

2

g
 sin 2u0  1horizontal range2 (3.15)

 KNOW YOUR LIMITS We emphasize that Equation 3.15 gives the horizontal range—the 
distance a projectile travels horizontally before returning to its starting height. From the 
way it was derived—setting y = 0—you can see that it does not give the horizontal distance 
when the projectile returns to a different height (Fig. 3.19).

Here the particle returns to its
starting height, so Equation 3.15
applies.

Here the particle lands at a
different height, so Equation 3.15
doesn’t apply.

(a)

(b)

FIGURE 3.19 Equation 3.15 
 applies in (a) but not in (b).

The maximum range occurs when sin 2u = 1 in Equation 3.15, which occurs when 
u = 45°. As Fig. 3.20 suggests, the range for a given launch speed v0 is equal for angles 
equally spaced on either side of 45°—as you can prove in Problem 76.
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3.5 Projectile Motion 45

After a short engine firing, an atmosphere-probing rocket reaches 
4.6 km/s. If the rocket must land within 50 km of its launch site, 
what’s the maximum allowable deviation from a vertical trajectory?

INTERPRET Although we’re asked about the launch angle, the 
 50-km criterion is a clue that we can interpret this as a problem 
about the horizontal range. That “short engine firing” means we 
can neglect the distance over which the rocket fires and consider it 
a projectile that leaves the ground at v0 = 4.6 km/s.

DEVELOP Equation 3.15, x = 1v0
2/g2 sin 2u0, determines the hori-

zontal range, so our plan is to solve that equation for u0 with range 
x = 50 km.

EVALUATE We have sin 2u0 = gx/v0
2 = 0.0232. There are two solu-

tions, corresponding to 2u0 = 1.33° and 2u0 = 180° - 1.33°. The 
second is the one we want, giving a launch angle u0 = 90° - 0.67°. 
Therefore the launch angle must be within 0.67° of vertical.

ASSESS Make sense? At 4.6 km/s, this rocket goes quite high, so 
with even a small deviation from vertical it will land far from its 
launch point. Again we’ve got two solutions. The one we rejected 
is like the low trajectories of Fig. 3.20; although it gives a 50-km 
range, it isn’t going to get our rocket high into the  atmosphere.

EXAMPLE 3.6 Projectile Range: Probing the Atmosphere

3.5 Two projectiles are launched simultaneously from the same point on a horizontal 
surface, one at 45° to the horizontal and the other at 60°. Their launch speeds are dif-
ferent and are chosen so that the two projectiles travel the same horizontal distance 
before landing. Which of the following statements is true? (a) A and B land at the 
same time; (b) B’s launch speed is lower than A’s and B lands sooner; (c) B’s launch 
speed is lower than A’s and B lands later; (d) B’s launch speed is higher than A’s and 
B lands sooner; or (e) B’s launch speed is higher than A’s and B lands later.

G
O

T 
IT

?
CONCEPTUAL EXAMPLE 3.1 Projectile Flight Times

The ranges in Fig. 3.20 are equal for angles on either side of 45°. How 
do the flight times compare?

EVALUATE  We’re being asked about the times projectiles spend 
on the trajectories shown. Since horizontal and vertical motions 
are independent, f light time depends on how high the projectile 
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FIGURE 3.20 Trajectories for a projectile launched at 50 m>s.

goes. So we can argue from the vertical motions that the  trajectory 
with the higher launch angle takes longer. We can also argue from 
horizontal motions: Horizontal distances of the paired trajectories 
are the same, but the lower trajectory has a greater horizontal ve-
locity component, so again the lower trajectory takes less time.

ASSESS  Consider the extreme cases of near-vertical and near- 
horizontal trajectories. The former goes nearly straight up and down, 
taking a relatively long time but returning essentially to its starting 
point. The latter hardly gets anywhere because it immediately hits 
the ground right at its starting point, so it takes just about no time!

MAKING THE CONNECTION Find the flight times for the 30° and 
60° trajectories in Fig. 3.20.

EVALUATE  The range of Equation 3.15 is also equal to the horizontal ve-
locity vx multiplied by the time: vx t = v 2

0  sin 2u0/g. Using vx0 = v0 cos u0 
and solving for t gives t = 2v0 sin u0/g. Using Fig. 3.20’s v0 = 50 m/s 
yields t30 = 5.1 s and t60 = 8.8 s. You can explore this time difference 
more generally in Problem 71.

 KNOW THE FUNDAMENTALS Equations 3.14 and 3.15 for a projectile’s trajectory and range 
are useful, but they’re not fundamental equations of physics. Both follow directly from the 
equations for constant acceleration. If you think that specialized results like Equations 3.14 
and 3.15 are on an equal footing with more fundamental equations and principles, then 
you’re seeing physics as a hodgepodge of equations and missing the big picture of a science 
with a few underlying principles from which all else follows.
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3.6 Uniform Circular Motion
LO 3.6 Describe circular motion as accelerated motion.

An important case of accelerated motion in two dimensions is uniform circular  motion—
that of an object describing a circular path at constant speed. Although the speed is con-
stant, the motion is accelerated because the direction of the velocity is changing.

Uniform circular motion is common. Many spacecraft are in circular orbits, and the 
orbits of the planets are approximately circular. Earth’s daily rotation carries you around 
in uniform circular motion. Pieces of rotating machinery describe uniform circular motion, 
and you’re temporarily in circular motion as you drive around a curve. Electrons undergo 
circular motion in magnetic fields.

Here we derive an important relationship among the acceleration, speed, and radius of 
uniform circular motion. Figure 3.21 shows several velocity vectors for an object moving 
with speed v around a circle of radius r. Velocity vectors are tangent to the circle, indicat-
ing the instantaneous direction of motion. In Fig. 3.22a we focus on two nearby points 
described by position vectors r

!
1 and r

!
2, where the velocities are v

!
1 and v

!
2. Figures 3.22b 

and 3.22c show the corresponding displacement ∆r
!

= r
!
2 - r

!
1 and velocity difference 

∆v
!

= v
!
2 - v

!
1.

Because v
!
1 is perpendicular to r

!
1, and v

!
2 is perpendicular to r

!
2, the angles u shown in all 

three parts of Fig. 3.22 are the same. Therefore, the triangles in Fig. 3.22b and Fig. 3.22c  
are similar, and we can write

∆v
v

=
∆r
r

Now suppose the angle u is small, corresponding to a short time interval ∆t for motion 
from position r

!
1 to r

!
2. Then the length of the vector ∆r

!
 is approximately the length of the 

circular arc joining the endpoints of the position vectors, as suggested in Fig. 3.22b. The 
length of this arc is the distance the object travels in the time ∆t, or v∆t, so ∆r ≃ v∆t. 
Then the relation between similar triangles becomes

∆v
v

≃
v ∆t

r

Rearranging this equation gives an approximate expression for the magnitude of the aver-
age acceleration:

a =
∆v
∆t

≃
v2

r

Taking the limit ∆t S 0 gives the instantaneous acceleration; in this limit the angle 
u approaches 0, the circular arc and ∆r

!
 become indistinguishable, and the relation 

∆r ≃ v ∆t becomes exact. So we have

 a =
v2

r
  1uniform circular motion2 (3.16)

The velocities
are tangent to 
the circular path.

FIGURE 3.21 Velocity vectors in 
circular motion are tangent to 
the circular path.

u
u
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∆r

∆v

v1

v1

v2

v2

r2

r2

∆r is the
difference
r2 - r1 c

cand ∆v is the 
difference v2 - v1.

These angles
are the same,
so the triangles
are similar.

(a)

(b) (c)

u
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u
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u

u

u

u u

u

u

FIGURE 3.22 Position and velocity vectors 
for two nearby points on the circular path.

r is the radius of the circular path.

for the magnitude of the instantaneous acceleration of an object moving in a circle of 
radius r at constant speed v. What about its direction? As Fig. 3.22c suggests, ∆v

!
 is very 

nearly perpendicular to both velocity vectors; in the limit ∆t S 0, ∆v
!
 and the acceleration 

∆v
!
/∆t become exactly perpendicular to the velocity. The direction of the acceleration vec-

tor is therefore toward the center of the circle.
Our geometric argument would work for any point on the circle, so we conclude that 

the acceleration has constant magnitude v2/r and always points toward the center of the 

v is the object’s speed, which is constant 
even though its velocity is changing.

a is the magnitude of an object’s acceleration 
when it’s in uniform circular motion.
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circle. Isaac Newton coined the term centripetal to describe this center-pointing accelera-
tion. However, we’ll use that term sparingly because we want to emphasize that centripetal 
acceleration is fundamentally no different from any other acceleration: It’s simply a vector 
describing the rate of change of velocity.

Does Equation 3.16 make sense? Yes. An increase in speed v means the time ∆t for a 
given change in direction of the velocity becomes shorter. Not only that, but the associated 
velocity change ∆v

!
 is larger. These two effects combine to give an acceleration that de-

pends on the square of the speed. On the other hand, an increase in the radius with a fixed 
speed increases the time ∆t associated with a given change in velocity, so the acceleration 
is inversely proportional to the radius.

Find the orbital period (the time to complete one orbit) of the 
International Space Station in its circular orbit at altitude 400 km, 
where the acceleration of gravity is 89% of its surface value.

INTERPRET This is a problem about uniform circular motion.

DEVELOP Given the radius and acceleration, we could use Equation 
3.16, a = v2/r, to determine the orbital speed. But we’re given the al-
titude, not the orbital radius, and we want the period, not the speed. So 
our plan is to write the speed in terms of the period and use the result in 
Equation 3.16. The orbital altitude is the distance from Earth’s surface, 
so we’ll need to add Earth’s radius to get the orbital radius r.

EVALUATE The speed v is the orbital circumference, 2pr, divided by 
the period T. Using this in Equation 3.16 gives

a =
v2

r
=

12pr/T22

r
=

4p2r

T2

Appendix E lists Earth’s radius as RE = 6.37 Mm, giving an orbital 
radius r = RE + 400 km = 6.77 Mm. Solving our acceleration ex-

pression for the period then gives T = 24p2r/a = 5536 s = 92 min, 
where we used a = 0.89g.

ASSESS Make sense? Astronauts orbit Earth in about an hour and 
a half, experiencing multiple sunrises and sunsets in a 24-hour day. 
Our answer of 92 min is certainly consistent with that. There’s no 
choice here; for a given orbital radius, Earth’s size and mass de-
termine the period. Because astronauts’ orbits are limited to a few 
hundred kilometers, a distance small compared with RE, variations 
in g and T are minimal. Any such “low Earth orbit” has a period 
of approximately 90 min. At higher altitudes, gravity diminishes 
significantly and periods lengthen; the Moon, for example, orbits 
in 27 days. We’ll discuss orbits more in Chapter 8.

EXAMPLE 3.7 Uniform Circular Motion: The International Space Station

An engineer is designing a flat, horizontal road for an 80 km>h speed 
limit (that’s 22.2 m/s). If the maximum acceleration of a vehicle on this 
road is 1.5 m/s2, what’s the minimum safe radius for curves in the road?

INTERPRET Even though a curve is only a portion of a circle, we can 
still interpret this problem as involving uniform circular motion.

DEVELOP Equation 3.16, a = v2/r, gives the acceleration in terms of 
the speed and radius. Here we have the acceleration and speed, so our 
plan is to solve for the radius.

EVALUATE Using the given numbers, we have r = v2/a =  122.2 m/s22/ 
1.5 m/s2 = 329 m.

ASSESS Make sense? A speed of 80 km>h is pretty fast, so we need 
a wide curve to keep the required acceleration below its design value. 
If the curve is sharper, vehicles may slide off the road. We’ll see more 
clearly in subsequent chapters how vehicles manage to negotiate high-
speed curves.

EXAMPLE 3.8 Uniform Circular Motion: Engineering a Road
Worked Example with Variation Problems

 CIRCULAR MOTION AND CONSTANT ACCELERATION The direction toward the center 
changes as an object moves around a circular path, so the acceleration vector is not 
constant, even though its magnitude is. Uniform circular motion is not motion with constant 
acceleration, and our constant-acceleration equations do not apply. In fact, we know that 
constant acceleration in two dimensions implies a parabolic trajectory, not a circle.
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Chapter 3 Summary

Big Idea

at
u

ar
u

a
u

The radial acceleration ar
changes only the
direction of motion.

u

The car is slowing, so
its tangential acceleration at
is opposite its velocity.

u

v
u

FIGURE 3.23 Acceleration of a car that 
slows as it rounds a curve.

Nonuniform Circular Motion
What if an object moves in a circular path but its speed changes? Then it has components of 
acceleration both perpendicular and parallel to its velocity. The former, the  radial accelera-
tion ar, is what changes the direction to keep the object in circular motion. Its magnitude is 
still v2/r, with v now the instantaneous speed. The parallel component of acceleration, also 
called tangential acceleration at because it’s tangent to the circle, changes the speed but 
not the direction. Its magnitude is therefore the rate of change of speed, or dv/dt. Figure 3.23 
shows these two acceleration components for a car rounding a curve. We’ll explore these 
two components of acceleration further in Chapter 10, when we study rotational motion.

Finally, what if the radius of a curved path changes? At any point on a curve we can 
define a radius of curvature. Then the radial acceleration is still v2/r, and it can vary if ei-
ther v or r changes along the curve. The tangential acceleration is still tangent to the curve, 
and it still describes the rate of change of speed. So it’s straightforward to generalize the 
ideas of uniform circular motion to cases where the motion is nonuniform either because 
the speed changes, or because the radius changes, or both.

A

B

C

D
E

3.6 An object moves in a horizontal plane with 
constant speed on the path shown. At which 
marked point is the magnitude of its acceleration 
greatest?

G
O

T 
IT

?

Quantities characterizing motion in two and three dimensions have 
both magnitude and direction and are described by vectors. Position, 
velocity, and acceleration are all vector quantities, related as they are 
in one dimension:

These vector quantities need not 
have the same direction. In par-
ticular, acceleration that’s perpen-
dicular to velocity changes the 
 direction but not the magnitude 
of the velocity. Acceleration that’s 
collinear changes only the mag-
nitude of the velocity. In general, 
both change.

Components of motion in two perpendicular directions are indepen-
dent. This reduces problems in two and three dimensions to sets of 
one-dimensional problems that can be solved with the methods of 
Chapter 2.

y

y

x

x+= 

Position Velocity

Rate of
change

Rate of
change

Acceleration

a, v perpendicular

a, v collinear

arbitrary angle between a, v

a
u

v
u

∆v
u

a
u

∆v
u

v
u

a
u

v
u

∆v
u
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Applications
When acceleration is constant, motion is described by vector equations that generalize the 
one-dimensional equations of Chapter 2:

v
!

= v
!
0 + a

!
t  r

!
= r

!
0 + v

!
0 t + 1

2 a
!
t2

In uniform circular motion the magnitudes of 
velocity and acceleration remain constant, but 
their directions continually change. For an ob-
ject moving in a circular path of radius r, the 
magnitudes of a

!
 and v

!
 are related by

a = v2/r

r

a
u

a
u

v
u

v
u

An important application of constant- acceleration 
motion in two dimensions is projectile motion 
under the influence of gravity.

Projectile trajectory:

y = x tan u0 -
g

2v2
0 cos2 u0

 x2

x

y

u

v0
u
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Learning Outcomes After finishing this chapter you should be able to:

LO 3.1 Describe position in two and three dimensions, using vectors.
For Thought and Discussion Questions 3.1, 3.2, 3.10; 
Exercises 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17; Problems 
3.52, 3.53, 3.61

LO 3.2 Represent velocity and acceleration as vectors.
For Thought and Discussion Questions 3.3, 3.8; Exercises 
3.18, 3.19, 3.20, 3.21, 3.22, 3.23, 3.24, 3.25; Problems 3.55, 
3.56, 3.58

LO 3.3 Relate velocities in different reference frames.
For Thought and Discussion Question 3.9; Exercises 3.26, 
3.27, 3.28, 3.29; Problems 3.54, 3.60, 3.77

LO 3.4 Analyze motion in two dimensions.
For Thought and Discussion Questions 3.5, 3.9; Exercises 
3.30, 3.31; Problems 3.63, 3.64, 3.89

LO 3.5 Predict the motion of projectiles subject to gravity.
For Thought and Discussion Questions 3.6, 3.7; Exercises 
3.32, 3.33, 3.34, 3.35, 3.36, 3.37; Problems 3.62, 3.65, 3.66, 
3.67, 3.68, 3.69, 3.70, 3.71, 3.72, 3.74, 3.75, 3.76, 3.78, 3.79, 
3.82, 3.83, 3.84, 3.85, 3.86, 3.87, 3.88, 3.90, 3.91, 3.94

LO 3.6 Describe circular motion as accelerated motion.
For Thought and Discussion Question 3.4; Exercises 3.38, 3.39, 
3.40, 3.41, 3.42, 3.43; Problems 3.57, 3.80, 3.81, 3.92, 3.93

Key Concepts and Equations
Vectors can be described by magnitude and 
direction or by components. In two dimen-
sions these representations are related by

 A = 2Ax
2 + Ay

2  and  u = tan-1 
Ay

Ax

 Ax = A cos u  and  Ay = A sin u

A compact way to express vectors involves 
unit vectors that have magnitude 1, have no 
units, and point along the coordinate axes:

A
S

= Ax in + Ayjn

Velocity is the rate of change of the position 
vector r

!
:

v
!

=
d r

!

dt

Acceleration is the rate of change of velocity:

a
!

=
d v

!

dt

in

jn

Ay

Ax

A cosu

A sinu 

u

A x
2  + A y

2

A = 
A = A xi 

+ A y
j

n

n

S

Ay jn

Axin

2
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50 Chapter 3 Motion in Two and Three Dimensions

For Thought and Discussion

1. Under what conditions is the magnitude of the vector sum 
A
S

+ B
S

 equal to the sum of the magnitudes of the two vectors?
2. Can two vectors of equal magnitude sum to zero? How about two 

vectors of unequal magnitude? Repeat for three vectors.
3. Can an object have a southward acceleration while moving north-

ward? A westward acceleration while moving northward?
4. You’re a passenger in a car rounding a curve. The driver claims 

the car isn’t accelerating because the speedometer reading is un-
changing. Explain why the driver is wrong.

5. In what sense is Equation 3.8 really two (or three) equations?
6. Is a projectile’s speed constant throughout its parabolic trajectory?
7. Is there any point on a projectile’s trajectory where velocity and 

acceleration are perpendicular?
8. How is it possible for an object to be moving in one direction but 

accelerating in another?
9. You’re in a bus moving with constant velocity on a level road 

when you throw a ball straight up. When the ball returns, does 
it land ahead of you, behind you, or back at your hand? Explain.

10. Which of the following are legitimate mathematical equa-
tions? Explain. (a) v = 5 in m/s; (b) v

!
= 5 m/s; (c) a

!
= dv/dt; 

(d) a
!

= dv
!
/dt; (e) v

!
= 5 in m/s.

Exercises and Problems

Exercises

Section 3.1 Vectors
11. You walk 1.57 km north, then 0.846 km east. Find (a) the magni-

tude of your displacement vector and (b) its direction, expressed 
as an angle relative to the northward direction.

12. An ion in a mass spectrometer follows a semicircular path of ra-
dius 15.2 cm. What are (a) the distance it travels and (b) the mag-
nitude of its displacement?

13. A migrating whale follows the coast of Mexico and California. It 
first travels 360 km northwest, then turns due north and travels an-
other 410 km. Determine graphically the magnitude and direction 
of its displacement.

14. Vector A
S

 has magnitude 3.0 m and points to the right; vector B
S

 
has magnitude 4.0 m and points vertically upward. Find the mag-

nitude and direction of vector C
S

 such that A
S

+ B
S

+ C
S

= 0
S

.
15. Use unit vectors to express a displacement of 120 km at 29° 

counterclockwise from the x-axis.
16. Find the magnitude of the vector 34in + 13jn m and determine its 

angle to the x-axis.
17. (a) What’s the magnitude of in + jn? (b) What angle does it make 

with the x-axis?

Section 3.2 Velocity and Acceleration Vectors
18. You’re leading an international effort to save Earth from an aster-

oid heading toward us at 15 km/s. Your team mounts a rocket on the 
 asteroid and fires it for 10 min, after which the asteroid is moving at 
19 km/s at 28° to its original path. In a news conference, what do you 
report for the magnitude of the acceleration imparted to the asteroid?

19. An object’s velocity vector v
!
 has components related by vy = -vx. 

What are the possible values for the angle that v
!
 makes with the 

x-axis?
20. A car drives north at 40 mi/h for 10 min, then turns east and goes 

5.0 mi at 60 mi/h. Finally, it goes southwest at 30 mi/h for 6.0 
min. Determine the car’s (a) displacement and (b) average veloc-
ity for this trip.

21. An object’s velocity is v
!

= ct3in + djn, where t is time and c and 
d are positive constants with appropriate units. What’s the direc-
tion of the object’s acceleration?

22. A car, initially going eastward, rounds a 90° curve and ends 
up heading southward. If the speedometer reading remains 
constant, what’s the direction of the car’s average acceleration 
vector?

23. What are (a) the average velocity and (b) the average acceleration 
of the tip of the 2.4-cm-long hour hand of a clock in the inter-
val from noon to 6 pm? Use unit vector notation, with the x-axis 
pointing toward 3 and the y-axis toward noon.

24. An object is moving with speed v when it’s subject to an acceler-
ation that leaves it moving at an angle u to its original direction 
of motion, with twice its original speed. Find an expression for 
the angle between the acceleration vector and the original direc-
tion of the object’s motion.

25. An object is moving in the x-direction at 1.3 m/s when it un-
dergoes an acceleration a

!
= 0.52jn m/s2. Find its velocity vector 

after 4.4 s.

Section 3.3 Relative Motion
26. You’re piloting a small plane on a route directly north, but there’s 

a wind blowing from the west at 59.8 km/h. If your plane’s air-
speed (i.e., its speed relative to the air) is 465 km/h, in what di-
rection should you head?

27. You wish to row straight across a 63-m-wide river. You can row 
at a steady 1.3 m/s relative to the water, and the river flows at 
0.57 m/s. (a) What direction should you head? (b) How long will 
it take you to cross the river?

28. A plane with airspeed 370 km/h flies a course perpendicular to 
the jet stream, its nose pointed into the jet stream at 32° from its 
flight direction. Find the speed of the jet stream.

29. A flock of geese is attempting to migrate due south, but the wind 
is blowing from the west at 5.1 m/s. If the birds can fly at 7.5 m/s 
relative to the air, what direction should they head?

Section 3.4 Constant Acceleration
30. The position of an object as a function of time is given by 

r
!

= 13.2t + 1.8t22in + 11.7t - 2.4t22jn m, with t in seconds. 
Find the object’s acceleration vector.

31. You’re sailboarding at 6.5 m/s when a wind gust hits, lasting 
6.3 s and accelerating your board at 0.48 m/s2 at 35° to your orig-
inal direction. Find the magnitude and direction of your displace-
ment during the gust.

Section 3.5 Projectile Motion
32. You toss an apple horizontally at 8.7 m/s from a height of 2.6 m. 

Simultaneously, you drop a peach from the same height. How 
long does each take to reach the ground?

33. A carpenter tosses a shingle horizontally off an 8.8-m-high roof 
at 11 m/s. (a) How long does it take the shingle to reach the 
ground? (b) How far does it move horizontally?

34. An arrow fired horizontally at 41 m/s travels 23 m horizontally. 
From what height was it fired?

35. Droplets in an ink-jet printer are ejected horizontally at 12 m/s 
and travel a horizontal distance of 1.0 mm to the paper. How far 
do they fall in this interval?

36. Protons drop 1.2 μm over the 1.7-km length of a particle acceler-
ator. What’s their approximate average speed?

37. If you can hit a golf ball 180 m on Earth, how far can you hit it 
on the Moon? (Your answer will be an underestimate because it 
neglects air resistance on Earth.)
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Problems
52. Vector A

S
 has magnitude 1.0 m and points 35° clockwise from the 

x-axis. Vector B
S

 has magnitude 1.8 m. Find the direction of B
S

 
such that A

S
+ B

S
 is in the y-direction.

53. Let A
S

= 15in - 40jn and B
S

= 31jn + 18kn. Find C
S

 such that 
A
S

+ B
S

+ C
S

= 0
S

.
54. You’re a pilot beginning a 1280-km flight to a city due south of 

your starting point. Your plane’s airspeed (i.e., its speed relative 
to the air) is 846 km/h, and air traffic control says you’ll have to 
head 11.5° west of south to maintain a course due south. If the 
flight takes 115 min, what are the magnitude and direction of the 
wind velocity?

55. A particle’s position is r
!

= 1ct2 - 2dt32in + 12ct2 - dt32jn, 
where c and d are positive constants. Find expressions for times 
t 7 0 when the particle is moving in (a) the x-direction and (b) 
the y-direction.

56. An object moving at 50 m/s is subject to an acceleration of mag-
nitude 20 m/s2 that lasts for 2 s. At the end of that time interval, 
it’s moving at 88 m/s. Estimate, to the nearest 30°, the angle be-
tween the initial velocity and the acceleration (i.e., is that angle 
closer to 0°, to 30°, to 60°, or to 90°?). Explain your reasoning.

57. You’re designing a “cloverleaf” highway interchange. Vehicles 
will exit the highway and slow to a constant 70 km/h before ne-
gotiating a circular turn. If a vehicle’s acceleration is not to ex-
ceed 0.40g (i.e., 40% of Earth’s gravitational acceleration), then 
what’s the minimum radius for the turn? Assume the road is flat, 
not banked (more on this in Chapter 5).

58. An object undergoes acceleration 2.3in + 3.6jn m/s2 for 10 s. At 
the end of this time, its velocity is 33in + 15jn m/s. (a) What was 
its velocity at the beginning of the 10-s interval? (b) By how 
much did its speed change? (c) By how much did its direction 
change? (d) Show that the speed change is not given by the mag-
nitude of the acceleration multiplied by the time. Why not?

59. The New York Wheel is the world’s largest Ferris wheel. It’s 183 
meters in diameter and rotates once every 37.3 min. Find the 
magnitudes of (a) the average velocity and (b) the average accel-
eration at the wheel’s rim, over a 5.00-min interval. (c) Compare 
your answer to (b) with the wheel’s instantaneous accelerations.

60. A ferryboat sails between towns directly opposite each other on a 
river, moving at speed v′ relative to the water. (a) Find an expres-
sion for the angle it should head at if the river flows at speed V. 
(b) What’s the significance of your answer if V 7 v′?

61. The sum of two vectors, A
S

+ B
S

, is perpendicular to their differ-
ence, A

S
- B

S
. How do the vectors’ magnitudes compare?

62. A delivery drone approaches a customer’s porch, flying 8.65 m 
above the porch at 21.5 km/h. (a) At what horizontal distance 
from the desired landing spot should it release a package? (b) At 
what speed will the package hit the porch?

63. An object is initially moving in the x-direction at 4.5 m/s, when 
it undergoes an acceleration in the y-direction for a period of 18 
s. If the object moves equal distances in the x- and y-directions 
during this time, what’s the magnitude of its acceleration?

64. A particle leaves the origin with its initial velocity given 
by v

!
0 = 11in + 14jn m/s, undergoing constant acceleration 

a
!

= -1.2in + 0.26jn m/s2. (a) When does the particle cross the 
y-axis? (b) What’s its y-coordinate at the time? (c) How fast is it 
moving, and in what direction?

65. A kid fires a squirt gun horizontally from 1.6 m above the 
ground. It hits another kid 2.1 m away square in the back, 0.93 m 
above the ground. What was the water’s initial speed?

66. A projectile has horizontal range R on level ground and reaches 
maximum height h. Find an expression for its initial speed.

Section 3.6 Uniform Circular Motion
38. China’s high-speed rail network calls for a minimum turn radius 

of 7.0 km for 350-km/h trains. What’s the magnitude of a train’s 
acceleration in this case?

39. The minute hand of a clock is 7.50 cm long. Find the magnitude 
of the acceleration of its tip.

40. How fast would a car have to round a 75-m-radius turn for its 
acceleration to be numerically equal to that of gravity?

41. Determine the acceleration of the Moon, which completes a 
nearly circular orbit of 384.4 Mm radius in 27.3 days.

42. Global Positioning System (GPS) satellites circle Earth at alti-
tudes of approximately 20,000 km, where the gravitational accel-
eration has 5.8% of its surface value. To the nearest hour, what’s 
the orbital period of the GPS satellites?

43. Pilots of high-performance aircraft risk loss of consciousness if 
they undergo accelerations exceeding about 5g. For a military jet 
flying at 2470 km/h (about twice the speed of sound), what’s the 
minimum radius for a turn that will keep the acceleration below 5g?

Example Variations
The following problems are based on two examples from the text. Each 
set of four problems is designed to help you make connections that 
enhance your understanding of physics and to build your confidence 
in solving problems that differ from ones you’ve seen before. The first 
problem in each set is essentially the example problem but with differ-
ent numbers. The second problem presents the same scenario as the 
example but asks a different question. The third and fourth problems 
repeat this pattern but with entirely different scenarios.

44. Example 3.3: You’re windsurfing at 6.28 m/s when a gust hits, 
accelerating your sailboard at 0.714 m/s2 at 48.8° to your original 
direction. If the gust lasts 5.42 s, what’s the magnitude of the 
board’s displacement during this time?

45. Example 3.3: You’re windsurfing at 5.68 m/s when a gust hits, ac-
celerating your sailboard at 62.5° to your original direction. The gust 
lasts 5.42 s, and the board’s displacement during this time is 37.2 m. 
Find the magnitude of the board’s acceleration during the gust.

46. Example 3.3: A hockey puck glides across the ice at 27.7 m/s, 
when a player whacks it with her hockey stick, giving it an ac-
celeration of 448 m/s2 at 75.0° to its original direction. If the 
acceleration lasts 41.3 ms, what’s the magnitude of the puck’s 
displacement during this time?

47. Example 3.3: A hockey puck glides across the ice at 27.7 m/s, 
when a player whacks it with her hockey stick, giving it an ac-
celeration at 64.3° to its original direction. The acceleration lasts 
50.3 ms, and the puck’s displacement during this time is 1.76 m. 
Find the magnitude of the puck’s acceleration.

48. Example 3.8: An engineer is designing a flat, horizontal road 
for a 90-km/h speed limit. If the maximum acceleration of a vehi-
cle on this road is 4.36 m/s2, what’s the minimum safe radius for 
curves in the road?

49. Example 3.8: An engineer is designing a flat, horizontal road 
with a curve whose radius is 125 m. Under dry conditions, the 
engineer can count on an acceleration of at least 5.0 m/s2, pro-
vided by the tires of vehicles rounding the curve. What should be 
the posted speed limit, given to the nearest 10 km/h?

50. Example 3.8: A jet plane is capable of an acceleration of mag-
nitude 0.564g when it turns. If the plane is flying at 988 km/h, 
what’s the minimum turning radius for the plane?

51. Example 3.8: A jet plane is capable of an acceleration of magni-
tude 0.612g when it turns. If the plane is to make a turn of radius 
8.77 km, what’s its maximum possible speed?
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52 Chapter 3 Motion in Two and Three Dimensions

67. You throw a baseball at a 45° angle to the horizontal, aiming 
straight at a friend who’s sitting in a tree a distance h above level 
ground. At the instant you throw your ball, your friend drops an-
other ball. (a) Show that the two balls will collide, no matter what 
your ball’s initial speed, provided it’s greater than some mini-
mum value. (b) Find an expression for that minimum speed.

68. In a chase scene, a movie stuntman runs horizontally off the flat roof of 
one building and lands on another roof 1.9 m lower. If the gap between 
the buildings is 4.5 m wide, how fast must he run to cross the gap?

69. The meadow jumping mouse, Zapus hudsonius, inhabits much of 
North America and can jump as high as 1 m. A jumping mouse 
is 48.3 cm from a 62.0-cm-high garden fence. (a) How fast and 
(b) at what angle should it jump so it just clears the fence without 
going any higher?

70. Derive a general formula for the horizontal distance covered by a 
projectile launched horizontally at speed v0 from height h.

71. Consider two projectiles launched on level ground with the same 
speed, at angles 45° { a. Show that the ratio of their f light 
times is tan1a + 45°2.

72. You toss a protein bar to your 
hiking companion located 8.6 m 
up a 39° slope, as shown in Fig. 
3.24. Determine the initial veloc-
ity vector so that when the bar 
reaches your friend, it’s moving 
horizontally.

73. The table below lists position 
versus time for an object moving 
in the x–y plane, which is hori-
zontal in this case. Make a plot 
of position y versus x to deter-
mine the nature of the object’s path. Then determine the magni-
tudes of the object’s velocity and acceleration.

Time, t (s) x (m) y (m) Time, t (s) x (m) y (m)

0 0 0 0.70 2.41 3.15

0.10 0.65 0.09 0.80 2.17 3.75

0.20 1.25 0.33 0.90 1.77 4.27

0.30 1.77 0.73 1.00 1.25 4.67

0.40 2.17 1.25 1.10 0.65 4.91

0.50 2.41 1.85 1.20 0.00 5.00

0.60 2.50 2.50

74. A projectile launched at angle u to the horizontal reaches maxi-
mum height h. Show that its horizontal range is 4h>tan u.

75. As an expert witness, you’re testifying in a case involving a mo-
torcycle accident. A motorcyclist driving in a 60-km/h zone hit a 
stopped car on a level road. The motorcyclist was thrown from 
his bike and landed 39 m down the road. You’re asked whether he 
was speeding. What’s your answer?

76. Show that, for a given initial speed, the horizontal range of a pro-
jectile is the same for launch angles 45° + a and 45° - a.

77. A basketball player is 15 ft horizontally from the center of the bas-
ket, which is 10 ft off the ground. At what angle should the player 
aim the ball from a height of 8.2 ft with a speed of 26 ft/s?

78. A projectile is launched from the edge of a table, a height h off 
the floor. It rises to a maximum height h above the table and then 
lands on the floor a horizontal distance 2h from the edge of the 
table. Find (a) an expression for the magnitude of the initial ve-
locity and (b) an exact value for the launch angle.

BIO

DATA
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8.6 m

39°

FIGURE 3.24 Problem 72

79. Consider the two projectiles in GOT IT? 3.5. Suppose the 45° pro-
jectile is launched with speed v and that it’s in the air for time t. 
Find expressions for (a) the launch speed and (b) the flight time 
of the 60° projectile, in terms of v and t.

80. In the 2015 film The Martian, astronauts ride the Hermes space-
ship between Earth and Mars. To help keep the astronauts’ bodies 
in good shape on the long interplanetary voyages, Hermes rotates 
to simulate Martian gravity. If the spacecraft’s maximum diame-
ter is 38.0 m, what should be its rotation period (the time to com-
plete one rotation) if the acceleration at its outer edge is to equal 
the gravitational acceleration at Mars (see Appendix E)?

81. Your car can sustain an ac-
celeration of 0.825g while 
turning on a dry road. You’re 
driving at 90.0 km/h when 
you spot a truck jackknifed 
across the road. If you swerve 
in a circular arc, as shown in 
Fig. 3.25, how far from the 
truck do you have to start 
swerving to avoid the truck? 
Assume your speed doesn’t change.

82. Your alpine rescue team is using a slingshot to send an emer-
gency medical packet to climbers stranded on a ledge, as shown 
in Fig. 3.26; your job is to calculate the launch speed. What do 
you report?

FIGURE 3.25 Problem 81

270 m

390 m

70°

FIGURE 3.26 Problem 82

83. If you can throw a stone straight up to height h, what’s the max-
imum horizontal distance you could throw it over level ground?

84. In a conversion from military to peacetime use, a missile with 
maximum horizontal range 180 km is being adapted for studying 
Earth’s upper atmosphere. What’s the maximum altitude it can 
achieve if launched vertically?

85. A soccer player can kick the ball 28 m on level ground, with its 
initial velocity at 40° to the horizontal. At the same initial speed 
and angle to the horizontal, what horizontal distance can the 
player kick the ball on a 15° upward slope?

86. A diver leaves a 3-m board on a trajectory that takes her 2.5 m 
above the board and then into the water 2.8 m horizontally from 
the end of the board. At what speed and angle did she leave the 
board?

87. Using calculus, you can find a function’s maximum or mini-
mum by differentiating and setting the result to zero. Do this for 
Equation 3.15, differentiating with respect to u, and thus verify 
that the maximum range occurs for u = 45°.

88. You’re a consulting engineer specializing in athletic facilities, 
and you’ve been asked to help design the Olympic ski jump pic-
tured in Fig. 3.27. Skiers will leave the jump at 28 m/s and 9.5° 

CH
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Answers to Chapter Questions 53

below the horizontal, and land 55 m horizontally from the end of 
the jump. Your job is to specify the slope of the ground so skiers’ 
trajectories make an angle of only 3.0° with the ground on land-
ing, ensuring their safety. What slope do you specify?

3°

9.5°

55 m

FIGURE 3.27 Problem 88

89. An object moves with constant speed in the x-direction, but in the 
y-direction it’s subject to an acceleration that increases linearly 
with time: a(t) = bt, where b is a constant. Derive an equation 
analogous to Equation 3.14, giving the object’s trajectory in this 
situation. (Assume there’s no gravity.)

90. Your medieval history class is constructing a trebuchet, a 
 catapult-like weapon for hurling stones at enemy castles. The 
plan is to launch stones off a 75-m-high cliff, with initial speed 
36 m/s. Some members of the class think a 45° launch angle will 
give the maximum range, but others claim the cliff height makes 
a difference. What do you give for the angle that will maximize 
the range?

91. Generalize Problem 90 to find an expression for the angle that 
will maximize the range of a projectile launched with speed v0 
from height h above level ground.

92. (a) Show that the position of a particle on a circle of radius R 
with its center at the origin is r

!
= R1cos u in + sin ujn2, where u is 

the angle the position vector makes with the x-axis. (b) If the par-
ticle moves with constant speed v starting on the x-axis at t = 0, 
find an expression for u in terms of time t and the period T to 
complete a full circle. (c) Differentiate the position vector twice 
with respect to time to find the acceleration, and show that its 
magnitude is given by Equation 3.16 and its direction is toward 
the center of the circle.

93. An object moves in a circular path of radius R in the x - y plane, 
where the origin is at the center of the circle. It starts from rest at 
x = R and goes counterclockwise, undergoing constant tangen-
tial acceleration at. Find expressions for (a) the magnitude and 
(b) the direction (relative to the positive x-axis) of its acceleration 
vector when it’s traversed a quarter of the circle and thus crosses 
the positive y-axis.

94. After launch, a projectile lands a horizontal distance 2R from 
its launch point and a vertical distance R below its launch point. 
Here R is the horizontal range the projectile would have had if 
launched over level ground at the same launch angle. Find the 
launch angle.

Passage Problems
Alice (A), Bob (B), and Carrie (C) all start from their dorm and head 
for the library for an evening study session. Alice takes a straight path, 

CH

CH

CH

while the paths Bob and Carrie follow are portions of circular arcs, as 
shown in Fig. 3.28. Each student walks at a constant speed. All three 
leave the dorm at the same time, and they arrive simultaneously at the 
library.

95. Which statement characterizes the distances the students travel?
a. They’re equal.
b. C 7 A 7 B
c. C 7 B 7 A
d. B 7 C 7 A

96. Which statement characterizes the students’ displacements?
a. They’re equal.
b. C 7 A 7 B
c. C 7 B 7 A
d. B 7 C 7 A

97. Which statement characterizes their average speeds?
a. They’re equal.
b. C 7 A 7 B
c. C 7 B 7 A
d. B 7 C 7 A

98. Which statement characterizes their accelerations while walking 
(not starting and stopping)?
a. They’re equal.
b. None accelerates.
c. A 7 B 7 C
d. C 7 B 7 A
e. B 7 C 7 A
f. There’s not enough information to decide.

Answers to Chapter Questions

Answer to Chapter Opening Question
Assuming negligible air resistance, the penguin should leave the 
 water at a 45° angle.

Answers to GOT IT? Questions
3.1 (c)
3.2 (d) only
3.3 (1) (c); (2) (c); (3) (a)
3.4  (c) gives the greatest change in speed; (b) gives the greatest 

change in direction
3.5 (e)
3.6 (c)

Library

Dorm

B

C

A

FIGURE 3.28 Passage Problems 95–98
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An interplanetary spacecraft moves effortlessly, yet its engines shut 
down years ago. Why does it keep moving? A baseball heads toward 

the batter. The batter swings, and suddenly the ball is heading toward left 
field. Why did its motion change?

Questions about the “why” of motion are the subject of dynamics. Here 
we develop the basic laws that answer those questions. Isaac Newton first 
stated these laws more than 300 years ago, yet they remain a vital part of 
physics and engineering today, helping us guide spacecraft to distant plan-
ets, develop better cars, and manipulate the components of individual cells.

4.1 The Wrong Question
LO 4.1 Articulate the Newtonian paradigm that it’s about change 

in motion.

We began this chapter with two questions: one about why a spacecraft moved 
and the other about why a baseball’s motion changed. For nearly 2000 years 
following the work of Aristotle (384–322 bce), the first question—Why do 
things move?—was the crucial one. And the answer seemed obvious: It took 
a force—a push or a pull—to keep something moving. This idea makes sense: 
Stop exerting yourself when jogging, and you stop moving; take your foot off 
the gas pedal, and your car soon stops. Everyday experience seems to suggest 
that Aristotle was right, and most of us carry in our heads the Aristotelian idea 
that motion requires a cause—something that pushes or pulls on a moving 
object to keep it going.

Skills & Knowledge You’ll Need
■■ How to express motion quantities as 

vectors (Sections 3.1–3.2)

■■ How to describe motion under con-
stant acceleration (Sections 3.4–3.5)

■■ How to describe circular motion as  
a case of accelerated motion  
(Section 3.6)

Learning Outcomes
After finishing this chapter you should be able to:

LO 4.1 Articulate the Newtonian paradigm that it’s about change in 
motion.

LO 4.2 List Newton’s three laws of motion.

LO 4.3 Solve problems involving Newton’s second law.

LO 4.4 Name the fundamental forces of nature.

LO 4.5 Describe quantitatively how gravity acts on objects.

LO 4.6 Distinguish apparent weight from actual weight.

LO 4.7 Identify Newton’s third-law force pairs and find their  
values.

LO 4.8 Determine the forces exerted by springs.

Force and Motion

What forces did engineers have to  
consider when they developed the Mars 
Curiosity rover’s “sky crane”  
landing system?

6
Energy, Work, 

and Power

5
Using Newton’s 

Laws43
Motion in Two and 
Three Dimensions

2
Motion in a 

Straight Line

54
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4.2 Newton’s First and Second Laws 55

Actually, “What keeps things moving?” is the wrong question. In the early 1600s, 
Galileo Galilei did experiments that convinced him that a moving object has an intrinsic 
“quantity of motion” and needs no push to keep it moving (Fig. 4.1). Instead of answering 
“What keeps things moving?,” Galileo declared that the question needs no answer. In so 
doing, he set the stage for centuries of progress in physics, beginning with the achieve-
ments of Issac Newton and culminating in the work of Albert Einstein.

The Right Question
Our first question—about why the spacecraft keeps moving—is the wrong question. So 
what’s the right question? It’s the second one, about why the baseball’s motion changed. 
Dynamics isn’t about what causes motion itself; it’s about what causes changes in mo-
tion. Changes include starting and stopping, speeding up and slowing down, and chang-
ing direction. Any change in motion begs an explanation, but motion itself does not. Get 
used to this important idea and you’ll have a much easier time with physics. But if you 
remain secretly an Aristotelian, looking for causes of motion itself, you’ll find it difficult 
to understand and apply the simple laws that actually govern motion.

Galileo identified the right question about motion. But it was Isaac Newton who formu-
lated the quantitative laws describing how motion changes. We use those laws today for 
everything from designing antilock braking systems, to building skyscrapers, to guiding 
spacecraft.

4.2 Newton’s First and Second Laws
LO 4.2 List Newton’s three laws of motion.

What caused the baseball’s motion to change? It was the bat’s push. The term force de-
scribes a push or a pull. And the essence of dynamics is simply this:

Force causes change in motion.

We’ll soon quantify this idea, writing equations and solving numerical problems. But 
the essential point is in the simple sentence above. If you want to change an object’s mo-
tion, you need to apply a force. If you see an object’s motion change, you know there’s a 
force acting. Contrary to Aristotle, and probably to your own intuitive sense, it does not 
take a force to keep something in unchanging motion; force is needed only to change an 
object’s motion.

The Net Force
You can push a ball left or right, up or down. Your car’s tires can push the car forward 
or backward, or make it round a curve. Force has direction and is a vector quantity. 
Furthermore, more than one force can act on an object. We call the individual forces 
on an object interaction forces because they always involve other objects interacting 
with the object in question. In Fig. 4.2a, for example, the interaction forces are ex-
erted by the people pushing the car. In Fig. 4.2b, the interaction forces include the force 
of air on the plane, the engine force from the hot exhaust gases, and Earth’s gravita-
tional force.

We now explore in more detail the relation between force and change in motion. 
Experiment shows that what matters is the net force, meaning the vector sum of all indi-
vidual interaction forces acting on an object. If the net force on an object isn’t zero, then 
the object’s motion must be changing—in direction or speed or both (Fig. 4.2a). If the net 
force on an object is zero—no matter what individual interaction forces contribute to the 
net force—then the object’s motion is unchanging (Fig. 4.2b).

cit always
rises to its
starting height c

If a ball is
released here c

cso if the
surface is made
horizontal, the ball
should roll forever.

FIGURE 4.1 Galileo considered balls rolling 
on inclines and concluded that a ball on a 
horizontal surface should roll forever.

Here there’s a nonzero
net force acting on the
car, so the car’s motion
is changing.

The three forces sum to zero,
so the plane moves in a straight
line with constant speed.

(a)

(b)

Fnet
S

F1
S

F2
S

Fair
S Fnet = 0

SS

Fengine
S

Fg
S

FIGURE 4.2 The net force determines the 
change in an object’s motion.
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56 Chapter 4 Force and Motion

Newton’s First Law
The basic idea that force causes change in motion is the essence of Newton’s first law:

Newton’s first law of motion: A body in uniform motion remains in uniform  
motion, and a body at rest remains at rest, unless acted on by a nonzero net force.

The word “uniform” here is essential; uniform motion means unchanging motion—that 
is, motion in a straight line at constant speed. The phrase “a body at rest” isn’t really 
necessary because rest is just the special case of uniform motion with zero speed, but we 
include it for consistency with Newton’s original statement.

The first law says that uniform motion is a perfectly natural state, requiring no explana-
tion. Again, the word “uniform” is crucial. The first law does not say that an object moving 
in a circle will continue to do so without a nonzero net force; in fact, it says that an object 
moving in a circle—or in any other curved path—must be subject to a nonzero net force 
because its motion is changing.

Newton’s first law is simplicity itself, but it’s counter to our Aristotelian preconcep-
tions; after all, your car soon stops when you take your foot off the gas. But because the 
motion changes, that just means—as the first law says—that there must be a nonzero net 
force acting. That force is often a “hidden” one, like friction, that isn’t as obvious as the 
push or pull of muscle. Watch an ice show or hockey game, where frictional forces are 
minimal, and the first law becomes a lot clearer.

Newton’s Second Law
Newton’s second law quantifies the relation between force and change in motion. Newton 
reasoned that the product of mass and velocity was the best measure of an object’s “quan-
tity of motion.” The modern term is momentum, and we write

 p
!

= mv
!
  1momentum2 (4.1)

for the momentum of an object with mass m and velocity v
!
. As the product of a scalar 

(mass) and a vector (velocity), momentum is itself a vector quantity. Newton’s second law 
relates the rate of change of an object’s momentum to the net force acting on that object:

Newton’s second law of motion: The rate at which a body’s momentum changes 
is equal to the net force acting on the body:

 F
S

net =
d  p

!

dt
  1Newton>s second law2 (4.2)

When a body’s mass remains constant, we can use the definition of momentum, 
p
!

= mv
!
, to write

F
S

net =
dp

!

dt
=

d1mv
!2

dt
= m 

dv
!

dt

4.1 A curved barrier lies on a horizontal tabletop, as shown. 
A ball rolls along the barrier, and the barrier exerts a force that 
guides the ball in its curved path. After the ball leaves the barrier, 
which of the dashed paths shown does it follow?G

O
T 

IT
?

(a)

(b)
(c)
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4.2 Newton’s First and Second Laws 57

But dv
!>dt is the acceleration a

!
, so

 F
S

net = ma
!
  1Newton>s second law, constant mass2 (4.3)

We’ll be using the form given in Equation 4.3 almost exclusively in the next few chapters. 
But keep in mind that Equation 4.2 is Newton’s original expression of the second law, 
that it’s more general than Equation 4.3, and that it embodies the fundamental concept of 
momentum.We’ll return to Newton’s law in the form of Equation 4.3, and elaborate on 
momentum, when we consider many-particle systems in Chapter 9.

Newton’s second law includes the first law as the special case F
S

net = 0
S

. In this case 
Equation 4.3 gives a

!
= 0

S
, so an object’s velocity doesn’t change.

UNDERSTANDING NEWTON To apply Newton’s law successfully, you have to understand 
the terms explained in the annotations to Equation 4.3. On the left is the net force F

S
net—the 

vector sum of all real, physical interaction forces acting on an object. On the right is maS—not 
a force but the product of the object’s mass and acceleration. The equal sign says that they 
have the same value, not that they’re the same thing. So don’t go adding an extra force maS 
when you’re applying Newton’s second law.

Mass, Inertia, and Force
Because it takes force to change an object’s motion, the first law implies that objects 
naturally resist changes in motion. The term inertia describes this resistance, and for 
that reason the first law is also called the law of inertia. Just as we describe a sluggish 
person as having a lot of inertia, so an object that is hard to start moving—or hard to 
stop once started—has a lot of inertia. If we solve the second law for the acceleration 
a
!
, we find that a

!
= F

S
/m—showing that a given force is less effective in changing 

the motion of a more massive object (Fig. 4.3). The mass m that appears in Newton’s 
laws is thus a measure of an object’s inertia and determines the object’s response to a  
given force.

By comparing the acceleration of a known and an unknown mass in response to the 
same force, we can determine the unknown mass. From Newton’s second law for a force 
of magnitude F,

F = mknownaknown and F = munknownaunknown

where we’re interested only in magnitudes so we don’t use vectors. Equating these two 
expressions for the same force, we get

 
munknown

mknown
=

aknown

aunknown
 (4.4)

Equation 4.4 is an operational definition of mass; it shows how, given a known mass and 
force, we can determine other masses.

The force required to accelerate a 1-kg mass at the rate of 1 m/s2 is defined to be  
1 newton (N). Equation 4.3 shows that 1 N is equivalent to 1 kg # m/s2. Other common 
force units are the English pound (lb, equal to 4.448 N) and the dyne, a metric unit equal 
to 10-5 N. A 1-N force is rather small; you can readily exert forces measuring hundreds of 
newtons with your own body.

a
u

a
u

F
S

F
S

FIGURE 4.3 The loaded truck has greater 
mass—more inertia—so its acceleration is 
smaller when the same force is applied.

F
S

net is the net force—the 
vector sum of all real, 
physical forces acting on 
an object.

ma
!
 is the product of the object’s mass 

and its acceleration; it’s not a force.

Equal sign indicates that the two sides are math-
ematically equal—but that doesn’t mean they’re 
the same physically. Only F

S
net involves physical 

forces.
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Inertial Reference Frames
Why don’t flight attendants serve beverages when an airplane is accelerating down the 
runway? For one thing, their beverage cart wouldn’t stay put, but would accelerate toward 
the back of the plane even in the absence of a net force. So is Newton’s first law wrong? 
No, but Newton’s laws don’t apply in an accelerating airplane. With respect to the ground, 
in fact, the beverage cart is doing just what Newton says it should: It remains in its original 
state of motion, while all around it plane and passengers accelerate toward takeoff.

In Section 4.3 we defined a reference frame as a system against which we measure 
velocities; more generally, a reference frame is the “background” in which we study phys-
ical reality. Our airplane example shows that Newton’s laws don’t work in all reference 
frames; in particular, they’re not valid in accelerating frames. Where they are valid is in 
reference frames undergoing uniform motion—called inertial reference frames because 
only in these frames does the law of inertia hold. In a noninertial frame like an accelerating 
airplane, a car rounding a curve, or a whirling merry-go-round, an object at rest doesn’t 
remain at rest, even when no force is acting. A good test for an inertial frame is to check 
whether Newton’s first law is obeyed—that is, whether an object at rest remains at rest, 
and an object in uniform motion remains in uniform motion, when no force is acting on it.

Strictly speaking, our rotating Earth is not an inertial frame, and therefore Newton’s 
laws aren’t exactly valid on Earth. But the acceleration associated with Earth’s rotation is 
generally small compared with accelerations we’re interested in, so we can usually treat 
Earth as an inertial reference frame. An important exception is the motion of oceans and 
atmosphere; here, scientists must take Earth’s rotation into account.

EXAMPLE 4.1   Force from Newton: A Car Accelerates
Worked Example with Variation Problems

A 1200-kg car accelerates from rest to 20 m/s in 7.8 s, moving in a 
straight line with constant acceleration. (a) Find the net force acting 
on the car. (b) If the car then rounds a bend 85 m in radius at a steady 
20 m/s, what net force acts on it?

INTERPRET In this problem we’re asked to evaluate the net force 
on a car (a) when it undergoes constant acceleration and (b) when 
it rounds a turn. In both cases the net force is entirely horizontal, so 
we need to consider only the horizontal component of Newton’s law.

DEVELOP Figure 4.4 shows the horizontal force acting on the car in 
each case; since this is the net force, it’s equal to the car’s mass mul-
tiplied by its acceleration. We aren’t actually given the acceleration in 
this problem, but for (a) we know the change in speed and the time 
involved, so we can write a = ∆v/∆t. For (b) we’re given the speed 
and the radius of the turn; since the car is in uniform circular motion, 
Equation 3.16 applies, and we have a = v2/r.

EVALUATE We solve for the unknown acceleration and evaluate the 
numerical answers for both cases:

(a)  Fnet = ma = m 
∆v
∆t

= 11200 kg2 a20 m/s
7.8 s

b = 3.1 kN

(b)  Fnet = ma = m 
v2

r
= 11200 kg2 

120 m/s22

85 m
= 5.6 kN

ASSESS First, the units worked out; they were actually kg #m/s2,  
but that defines the newton. The answers came out in thousands of 
newtons, but we moved the decimal point three places and changed 
to kilonewtons (kN) for convenience. And the numbers seem to 
make sense; we mentioned that 1 N is a rather small force, so it’s not 
 surprising to find forces on cars measured in kilonewtons.

Note that Newton’s law doesn’t distinguish between forces that 
change an object’s speed, as in (a), and forces that change its direction, 
as in (b). Newton’s law relates force, mass, and acceleration in all cases.

(a) (b)

FIGURE 4.4 Our sketch of the net force on the car 
in Example 4.1.

4.2 A nonzero net force acts on an object. Which of the following is true? (a) the 
object necessarily moves in the same direction as the net force; (b) under some cir-
cumstances the object could move in the same direction as the net force, but in other 
situations it might not; (c) the object cannot move in the same direction as the net forceG
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4.3 Forces 59

If Earth isn’t an inertial frame, what is? That’s a surprisingly subtle question, and it 
pointed Einstein toward his general theory of relativity. The law of inertia is intimately 
related to questions of space, time, and gravity—questions whose answers lie in Einstein’s 
theory. We’ll look briefly at that theory in Chapter 33.

4.3 Forces
LO 4.4 Name the fundamental forces of nature.

The most familiar forces are pushes and pulls you apply yourself, but passive objects can 
apply forces, too. A car collides with a parked truck and comes to a stop. Why? Because 
the truck exerts a force on it. The Moon circles Earth rather than moving in a straight line. 
Why? Because Earth exerts a gravitational force on it. You sit in a chair and don’t fall to 
the floor. Why not? Because the chair exerts an upward force on you, countering gravity.

Some forces, like those you apply with your muscles, can have values that you choose. 
Other forces take on values determined by the situation. When you sit in the chair shown 
in Fig. 4.5, the downward force of gravity on you causes the chair to compress slightly. 
The chair acts like a spring and exerts an upward force. When the chair compresses enough 
that the upward force is equal in magnitude to the downward force of gravity, there’s no 
net force and you sit without accelerating. The same thing happens with tension forces 
when objects are suspended from ropes or cables—the ropes stretch until the force they 
exert balances the force of gravity (Fig. 4.6).

Forces like the pull you exert on your rolling luggage, the force of a chair on your 
body, and the force a baseball exerts on a bat are contact forces because the force is ex-
erted through direct contact. Other forces, like gravity and electric and magnetic forces, 
are action-at-a-distance forces because they seemingly act between distant objects, like 
Earth and the Moon. Actually, the distinction isn’t clear-cut; at the microscopic level, 
contact forces involve action-at-a-distance electric forces between molecules. And the 
action-at-a-distance concept itself is troubling. How can Earth “reach out” across empty 
space and pull on the Moon? Later we’ll look at an approach to forces that avoids this 
quandary.

The Fundamental Forces
Gravity, tension forces, compression forces, contact forces, electric forces, friction 
forces—how many kinds of forces are there? At present, physicists identify three basic 
forces: the gravitational force, the electroweak force, and the strong force.

Gravity is the weakest of the fundamental forces, but because it acts attractively be-
tween all matter, gravity’s effect is cumulative. That makes gravity the dominant force 
in the large-scale universe, determining the structure of planets, stars, galaxies, and the 
universe itself.

The electroweak force subsumes electromagnetism and the weak nuclear force. 
Virtually all the nongravitational forces we encounter in everyday life are electromagnetic, 
including contact forces, friction, tension and compression forces, and the forces that bind 
atoms into chemical compounds. The weak nuclear force is less obvious, but it’s crucial in 
the Sun’s energy production—providing the energy that powers life on Earth.

The strong force describes how particles called quarks bind together to form protons, 
neutrons, and a host of less-familiar particles. The force that joins protons and neutrons 
to make atomic nuclei is a residue of the strong force between their constituent quarks. 
Although the strong force isn’t obvious in everyday life, it’s ultimately responsible for the 
structure of matter. If its strength were slightly different, atoms more complex than helium 
couldn’t exist, and the universe would be devoid of life!

Unifying the fundamental forces is a major goal of physics. Over the centuries we’ve 
come to understand seemingly disparate forces as manifestations of a more fundamental 
underlying force. Figure 4.7 suggests that the process continues, as physicists attempt first 
to unify the strong and electroweak forces, and then ultimately to add gravity to give a 
“Theory of Everything.”

Fg
S

T
S

FIGURE 4.6 The climbing rope exerts an 
upward tension force T

!
 that balances the 

force of gravity.

Electromagnetism

Electricity Magnetism

Theory of Everything

Weak

Grand Unified Force

ElectroweakStrongGravity

FIGURE 4.7 Unification of forces is a 
major theme in physics.

Fc
S

Fg
S

When you sit in a chair,
the chair compresses and
exerts an upward force that
balances gravity.

FIGURE 4.5 A compression force.
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60 Chapter 4 Force and Motion

4.4 The Force of Gravity
LO 4.5 Describe quantitatively how gravity acts on objects.

LO 4.6 Distinguish apparent weight from actual weight.

Newton’s second law shows that mass is a measure of a body’s resistance to changes in 
motion—its inertia. A body’s mass is an intrinsic property; it doesn’t depend on location. 
If my mass is 65 kg, it’s 65 kg on Earth, in an orbiting spacecraft, or on the Moon. That 
means no matter where I am, a force of 65 N gives me an acceleration of 1 m/s2.

We commonly use the term “weight” to mean the same thing as mass. In physics, 
though, weight is the force that gravity exerts on a body. Near Earth’s surface, a freely 
falling body accelerates downward at 9.8 m/s2; we designate this acceleration vector by g

!
. 

Newton’s second law, F
S

= ma
!
, then says that the force of gravity on a body of mass m is 

mg
!
; this force is the body’s weight:

 w
!

= mg
!
  1weight2 (4.5)

With my 65-kg mass, my weight near Earth’s surface is then 165 kg219.8 m/s22 or 640 
N. On the Moon, where the acceleration of gravity is only 1.6 m/s2, I would weigh only 
100 N. And in the remote reaches of intergalactic space, far from any gravitating object, 
my weight would be essentially zero.

One reason we confuse mass and weight is the common use of the SI unit kilogram 
to describe “weight.” At the doctor’s office you may be told that you “weigh” 55 kg. You 
don’t; you have a mass of 55 kg, so your weight is 155 kg219.8 m/s22 or 540 N. The unit of 
force in the English system is the pound, so giving your weight in pounds is correct.

That we confuse mass and weight at all results from the remarkable fact that the gravi-
tational acceleration of all objects is the same. This makes a body’s weight, a gravitational 
property, proportional to its mass, a measure of its inertia in terms that have nothing to 
do with gravity. First inferred by Galileo from his experiments with falling bodies, this 
relation between gravitation and inertia seemed a coincidence until the early 20th century. 

Weight is a force, so it’s a vector quantity, 
written with an arrow overscore.

The vector g
!
 points downward and 

has magnitude g.

Weight, w
!
, is the force that gravity 

exerts on an object.
Weight is given by the product of the object’s 
mass and the gravitational acceleration g

!
.

EXAMPLE 4.2  Mass and Weight: Exploring Mars

The rover Curiosity that landed on Mars in 2012 weighed 8.82 kN on 
Earth. What were its mass and weight on Mars?

INTERPRET Here we’re asked about the relation between mass and 
weight, and the object we’re interested in is the Curiosity rover.

DEVELOP Equation 4.5 describes the relation between mass and 
weight. Writing this equation in scalar form because we’re interested 
only in magnitudes, we have w = mg.

EVALUATE First we want to find mass from weight, so we solve for 
m using the Earth weight and Earth’s gravity:

m =
w
g

=
8.82 kN

9.81 m/s2 = 899 kg

This mass is the same everywhere, so the weight on Mars is given by 
w = mgMars = 1899 kg213.71 m/s22 = 3.34 kN. Here we found the 
acceleration of gravity on Mars in Appendix E.

ASSESS Make sense? Sure: Mars’s gravitational acceleration is lower 
than Earth’s, and so is the spacecraft’s weight on Mars.
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4.4 The Force of Gravity 61

Finally Albert Einstein showed how that simple relation reflects the underlying geometry 
of space and time in a way that intimately links gravitation and acceleration.

Weightlessness
Aren’t astronauts “weightless”? Not according to our definition. At the altitude of the 
International Space Station, the acceleration of gravity has about 89% of its value at 
Earth’s surface, so the gravitational forces mg

!
 on the station and its occupants are almost 

as large as on Earth. But the astronauts seem weightless, and indeed they feel weightless 
(Fig. 4.8). What’s going on?

Imagine yourself in an elevator whose cable has broken and is dropping freely down-
ward with the gravitational acceleration g. In other words, the elevator and its occupant are 
in free fall, with only the force of gravity acting. If you let go of a book, it too falls freely 
with acceleration g. But so does everything else around it—and therefore the book stays 
put relative to you (Fig. 4.9a). To you, the book seems “weightless,” since it doesn’t seem 
to fall when you let go of it. And you’re “weightless” too; if you jump off the elevator’s 
floor, you float to the ceiling rather than falling back. You, the book, and the elevator are 
all falling, but because all have the same acceleration that isn’t obvious to you. The grav-
itational force is still acting; it’s making you fall. So you really do have weight, and your 
condition is best termed apparent weightlessness.

FIGURE 4.8 These astronauts only seem weightless.

The film Apollo 13 shows Tom Hanks and his fellow actors floating weight-
lessly around the cabin of their movie-set spacecraft. What special effects did 
Hollywood use here? None. The actors’ apparent weightlessness was the real 
thing. But even Hollywood’s budget wasn’t enough to buy a space-shuttle 
flight. So the producers rented NASA’s weightlessness training aircraft, aptly 
dubbed the “Vomit Comet.” This airplane executes parabolic trajectories that 
mimic the free-fall motion of a projectile, so its occupants experience apparent 
weightlessness.

Movie critics marveled at how Apollo 13 “simulated the weightlessness of 
outer space.” Nonsense! The actors were in free fall just like the real astronauts 
on board the real Apollo 13, and they experienced exactly the same physical 
 phenomenon—apparent weightlessness when moving under the influence of 
gravity alone.

In contrast to Apollo 13, scenes of apparent weightlessness in the 2013 film 
Gravity were done with special effects. That’s one reason the film’s star, Sandra 
Bullock, wears her hair short; it would be too difficult to simulate individual 
free-floating strands of long hair.

APPLICATION Hollywood Goes Weightless
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62 Chapter 4 Force and Motion

A falling elevator is a dangerous place; your state of apparent weightlessness would end 
with a deadly smash caused by nongravitational contact forces when you hit the ground. 
But apparent weightlessness occurs permanently in a state of free fall that doesn’t intersect 
Earth—as in an orbiting spacecraft (Fig. 4.9b). It’s not being in outer space that makes 
astronauts seem weightless; it’s that they, like our hapless elevator occupant, are in free 
fall—moving under the influence of the gravitational force alone. The condition of appar-
ent weightlessness in orbiting spacecraft is sometimes called “microgravity.”

a
u

a
u

a
u

a
u

a
u

a
u

In a freely falling elevator you
and your book seem weightless
because both fall with the same
acceleration as the elevator.

Like the elevator in (a), an orbiting
spacecraft is falling toward Earth,
and because its occupants also fall
with the same acceleration, they
experience apparent weightlessness.

(a)

(b)

Earth

Earth

FIGURE 4.9 Objects in free fall appear 
weightless because they all experience 
the same acceleration.

4.3 A popular children’s book explains the weightlessness astronauts experience by 
saying there’s no gravity in space. If there were no gravity in space, what would be 
the motion of a space shuttle, a satellite, or the Moon? (a) a circular orbit; (b) an 
elliptical orbit; (c) a straight lineG
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4.5 Using Newton’s Second Law
LO 4.3 Solve problems involving Newton’s second law.

The interesting problems involving Newton’s second law are those where more than one 
force acts on an object. To apply the second law, we then need the net force. For an object 
of constant mass, the second law relates the net force and the acceleration:

F
S

net = ma
!

Using Newton’s second law with multiple forces is easier if we draw a free-body 
 diagram, a simple diagram that shows only the object of interest and the forces 
 acting on it.

Tactics 4.1 DRAWING A FREE-BODY DIAGRAM

Drawing a free-body diagram, which shows the forces acting on an object, is the key to solving problems with 
Newton’s laws. To make a free-body diagram:

1. Identify the object of interest and all the forces acting on it.
2. Represent the object as a dot.
3. Draw the vectors for only those forces acting on the object, with their tails all starting on the dot.

Figure 4.10 shows two examples where we reduce physical scenarios to free-body diagrams. We often add a 
coordinate system to the free-body diagram so that we can express force vectors in components.

n
u

n
u

Fg
S

Fg
S

Fg
S

Fg
S
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S

T
S

1

1

2 2

3

3

Force from
sloping
ground

Gravity

Gravity

Identify
all forces 
acting on
the object.

Both forces
act on the 
dot. Both forces 

act on the 
dot.

Elevator 
and
contents 
reduce
to dot.

Skier
reduces
to dot.

Identify all
forces acting 
on the object.

Cable
tension

Physical
situation

Free-body
diagram

Physical
situation

Free-body
diagram

(a) (b)

FIGURE 4.10 Free-body diagrams. (a) A one-dimensional situation like those we discuss in this 
chapter. (b) A two-dimensional situation. We’ll deal with such cases in Chapter 5.
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4.5 Using Newton’s Second Law 63

Our IDEA strategy applies to Newton’s laws as it does to other physics problems. For 
the second law, we can elaborate on the four IDEA steps:

INTERPRET Interpret the problem to be sure that you know what it’s asking and that Newton’s 
second law is the relevant concept. Identify the object of interest and all the individual interac-
tion forces acting on it.

DEVELOP Draw a free-body diagram as described in Tactics 4.1. Develop your solution plan by 
writing Newton’s second law, F

S
net = ma

!
, with F

S
net expressed as the sum of the forces you’ve 

identified. Then choose a coordinate system so you can express Newton’s law in components.

EVALUATE At this point the physics is done, and you’re ready to execute your plan by solving 
Newton’s second law and evaluating the numerical answer(s), if called for. Even in the one- 
dimensional problems of this chapter, remember that Newton’s law is a vector equation; that will 
help you get the signs right. You need to write the components of Newton’s law in the coordinate 
system you chose, and then solve the resulting equation(s) for the quantity(ies) of interest.

ASSESS Assess your solution to see that it makes sense. Are the numbers reasonable? Do the 
units work out correctly? What happens in special cases—for example, when a mass, force, or 
acceleration becomes very small or very large, or an angle becomes 0° or 90°?

PROBLEM-SOLVING STRATEGY 4.1 Newton’s Second Law

A 740-kg elevator accelerates upward at 1.1 m/s2, pulled by a cable of 
negligible mass. Find the tension force in the cable.

INTERPRET In this problem we’re asked to evaluate one of 
the forces on an object. First we identify the object of interest. 
Although the problem asks about the cable tension, it’s the elevator 
on which that tension acts, so the elevator is the object of interest. 
Next, we identify the forces acting on the elevator. There are two: 
the downward force of gravity F

S
g and the upward cable tension T

S
.

DEVELOP Figure 4.11a shows the elevator accelerating upward; 
Fig. 4.11b is a free-body diagram representing the elevator as a dot 
with the two force vectors acting on it. The applicable equation is 
Newton’s second law, F

S
net = ma

!
, with F

S
net given by the sum of the 

forces we’ve identified:

 F
S

net = T
S

+ F
S

g = ma
!
 (4.6)

 VECTORS TELL IT ALL Are you tempted to put a minus sign 
in this equation because one force is downward? Don’t! 
A vector contains all the information about its direction. 
You don’t have to worry about signs until you write the 
components of a vector equation in the coordinate system 
you chose.

Now we need to choose a coordinate system. Here all the forces 
are vertical, so we’ll choose our y-axis pointing upward.

EVALUATE Now we’re ready to rewrite Newton’s second law—
Equation 4.6 in this case—in our coordinate system. Formally, we re-
move the vector signs and add coordinate subscripts—just y in this case:

 Ty + Fgy = may (4.7)

There’s still no need to worry about signs. Now, what is Ty? Since 
the tension points upward and we’ve chosen that to be the positive 
direction, the component of tension in the y-direction is its magni-
tude T. What about Fgy? Gravity points downward, so this compo-
nent is negative. Furthermore, we know that the magnitude of the 
gravitational force is mg. So Fgy = -mg. Then our Newton’s law 
equation becomes

T - mg = may

so

 T = may + mg = m1ay + g2 (4.8)

For the numbers given, this equation yields

T = m1ay + g2 = 1740 kg211.1 m/s2 + 9.8 m/s22 = 8.1 kN

ASSESS We can see that this answer makes sense—and learn a 
lot more about physics—from the algebraic form of the answer in 
Equation 4.8. Consider some special cases: If the acceleration ay were 
zero, then the net force on the elevator would have to be zero. In that 

EXAMPLE 4.3 Newton’s Second Law: In the Elevator
Worked Example with Variation Problems

a
u

(a) (b)

FIGURE 4.11 The forces on the elevator are the cable tension T
S

 and 
gravity F

S
g.

(continued)
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64 Chapter 4 Force and Motion

Apparent Weight
How heavy do you actually feel when you’re in the elevator of Example 4.3 or at Earth’s 
equator in Conceptual Example 4.1? In the elevator, the normal force from the floor pushes 
upward on you, and the feeling of weight in your body is a response to that force. If the el-
evator isn’t accelerating, then the upward normal force balances gravity, and what you feel 
is your actual weight—that is, the force that gravity exerts on you. But if the elevator is 
accelerating upward, the normal force is greater than gravity to give an upward net force, 

case Equation 4.8 gives T = mg. Makes sense: The cable is then sup-
porting the elevator’s weight mg but not exerting any additional force 
to accelerate it.

On the other hand, if the elevator is accelerating upward, then the 
cable has to provide an extra force in addition to the weight; that’s 
why the tension becomes may + mg. Numerically, our answer of 8.1 
kN is greater than the elevator’s weight—and the cable had better be 
strong enough to handle the extra force.

Finally, if the elevator is accelerating downward, then ay is neg-
ative, and the cable tension is less than the weight. In free fall, 
ay = -g, and the cable tension would be zero.

You might have reasoned out this problem in your head. But we did 
it very thoroughly because the strategy we followed will let you solve 
all problems involving Newton’s second law, even if they’re much 
more complicated. If you always follow this strategy and don’t try to 
find shortcuts, you’ll become confident in using Newton’s second law.

4.4 For each of the following situations, would the cable tension in Example 4.3 
be (a) greater than, (b) less than, or (c) equal to the elevator’s weight? (1) elevator 
starts moving upward, accelerating from rest; (2) elevator decelerates to a stop while 
moving upward; (3) elevator starts moving downward, accelerating from rest; (4) el-
evator slows to a stop while moving downward; (5) elevator is moving upward with 
constant speed
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CONCEPTUAL EXAMPLE 4.1 At the Equator

When you stand on a scale, the scale pushes up to support you, and the 
scale reading shows the force with which it’s pushing. If you stand on a 
scale at Earth’s equator, is the reading greater or less than your weight?

EVALUATE The question asks about the force the scale exerts on 
you, in comparison to your weight (the gravitational force on you). 
Figure 4.12 is our sketch, showing the scale force upward and the 
gravitational force downward, toward Earth’s center. You’re in cir-
cular motion about Earth’s center, so the direction of your accel-
eration is toward the center (downward). According to Newton’s 
second law, the net force and acceleration are in the same direc-
tion. The only two forces acting on you are the downward force of 

gravity and the upward force of the scale. For them to sum to a net 
force that’s downward, the force of gravity—your weight—must be 
larger. Therefore, the scale reading must be less than your weight.

ASSESS Make sense? Yes: If the two forces had equal magnitudes, 
the net force would be zero—inconsistent with the fact that you’re ac-
celerating. And if the scale force were greater, you’d be accelerating in 
the wrong direction! The same effect occurs everywhere except at the 
poles, but its analysis is more complicated because the acceleration is 
toward Earth’s axis, not the center.

MAKING THE CONNECTION By what percentage is the scale 
reading at the equator less than your actual weight?

EVALUATE Using Earth’s radius RE from Appendix E, and its  
24-hour rotation period, you can find your acceleration: From 
Equation 3.16, it’s v2/RE. Following Problem-Solving Strategy 4.1 and 
working in a coordinate system with the vertical direction upward, 

you’ll find that Newton’s second law becomes Fscale - mg = -m 
v2

RE
, 

or Fscale = mg - mv2/RE. So the scale reading differs from your 
weight mg by mv2/RE. Working the numbers shows that’s a difference 
of only 0.34%. Note that this result doesn’t depend on your mass m.FIGURE 4.12 Our sketch for Conceptual Example 4.1.
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4.6 Newton’s Third Law 65

and you feel heavier. If it’s accelerating downward—whether it’s moving down or up is 
irrelevant—then you feel lighter. We call that feeling of weight your apparent weight. 
If you stood on a spring scale in the elevator, then the scale would push up on you with a 
force that’s reflected in the scale reading. So the scale reads your apparent weight—which 
may or not be the same as your actual weight. The situation in Conceptual Example 4.1 
is similar: Here you have a downward acceleration associated with Earth’s rotation, so the 
downward gravitational force is greater than the upward force that the scale exerts. The 
scale reading, which is your apparent weight, is therefore less than your actual weight. 
And you feel slightly lighter, although, as the “Making the Connection” problem in the ex-
ample shows, the effect is unnoticeably small. Finally, those astronauts in Section 4.4 have 
zero apparent weight, which is why we called their condition “apparent weightlessness.”

4.6 Newton’s Third Law
LO 4.2 List Newton’s three laws of motion.

LO 4.7 Identify Newton’s third-law force pairs and find their values.

LO 4.8 Determine the forces exerted by springs.

Push your book across your desk, and you feel the book push back (Fig. 4.13a). Kick a 
ball with bare feet, and your toes hurt. Why? You exert a force on the ball, and the ball 
exerts a force back on you. A rocket engine exerts forces that expel hot gases out of its 
nozzle—and the hot gases exert a force on the rocket, accelerating it forward (Fig. 4.13b).

Whenever one object exerts a force on a second object, the second object also exerts 
a force on the first. The two forces are in opposite directions, but they have equal magni-
tudes. This fact constitutes Newton’s third law of motion. The familiar expression “for 
every action there is an equal and opposite reaction” is Newton’s 17th-century language. 
But there’s really no distinction between “action” and “reaction”; both are always present. 
In modern language, the third law states:

Newton’s third law of motion: If object A exerts a force on object B, then object 
B exerts an oppositely directed force of equal magnitude on A.

Newton’s third law is about forces between objects. It says that such forces always 
occur in pairs—that it’s not possible for object A to exert a force on object B without B ex-
erting a force back on A. You can now see why we coined the term “interaction forces”—
when there’s force between two objects, it’s always a true interaction, with both objects 
exerting forces and both experiencing forces. We’ll use the terms interaction force pair 
and third-law pair for the two forces described by Newton’s third law.

It’s crucial to recognize that the forces of a third-law pair act on different objects; the 
force F

S
AB of object A acts on object B, and the force F

S
BA of B acts on A. The forces have 

equal magnitudes and opposite directions, but they don’t cancel to give zero net force be-
cause they don’t act on the same object. In Fig. 4.13a, for example, F

S
AB is the force the 

hand exerts on the book. There’s no other horizontal force acting on the book, so the net 
force on the book is nonzero and the book accelerates. Failure to recognize that the two 
forces of a third-law pair act on different objects leads to a contradiction, embodied in the 
famous horse-and-cart dilemma illustrated in Fig. 4.14.

Rocket pushes
on gases.

Gases push
on rocket.

(b)

(a)

FBA
S

Book pushes
on hand
with force
FBA.
S

Hand pushes on
book with force FAB.

S

FAB
S

F2
S

F1
S

FIGURE 4.13 Newton’s third law says that 
forces always come in pairs. With objects 
in contact, both forces act at the contact 
point. To emphasize that the two forces 
act on different objects, we draw them 
slightly displaced.

These forces constitute an equal but opposite
pair, but they don’t act on the same object, so
they don’t cancel.

The force on the horse
arises as a reaction to
the horse pushing back
on the road.

The forward force from
the road is greater than
the backward force
from the cart, so the net
force is forward.

FIGURE 4.14 The horse-and-cart dilemma: 
The horse pulls on the cart, and the cart 
pulls back on the horse with a force of 
equal magnitude. So how can the pair ever 
get moving? No problem: The net force 
on the horse involves forces from different 
third-law pairs. Their magnitudes aren’t 
equal, and the horse experiences a net force 
in the forward direction.

4.5 The figure shows two blocks with two forces acting on the pair. Is the net force 
on the larger block (a) greater than 2 N, (b) equal to 2 N, or (c) less than 2 N?

1 kg

5 N 3 N
3 kg

G
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66 Chapter 4 Force and Motion

A contact force such as the force between the books in Example 4.4 is called a 
normal force (symbol n

!
) because it acts at right angles to the surfaces in contact. 

Other examples of normal forces are the upward force that a table or bridge exerts 
on objects it supports, and the force perpendicular to a sloping surface supporting an 
object (Fig. 4.16).

Newton’s third law also applies to forces like gravity that don’t involve direct contact. 
Since Earth exerts a downward force on you, the third law says that you exert an equal 
upward force on Earth (Fig. 4.17). If you’re in free fall, then Earth’s gravity causes you to 
accelerate toward Earth. Earth, too, accelerates toward you—but it’s so massive that this 
acceleration is negligible.

Measuring Force
Newton’s third law provides a convenient way to measure forces using the tension or com-
pression force in a spring. A spring stretches or compresses in proportion to the force 
exerted on it. By Newton’s third law, the force on the spring is equal and opposite to the 

EXAMPLE 4.4 Newton’s Third Law: Pushing Books

On a frictionless horizontal surface, you push with force F
S

on a book 
of mass m1 that in turn pushes on a book of mass m2 (Fig. 4.15a). 
What force does the second book exert on the first?

F
S

(a)

(b)

(c)

m1

m2

F12
S

F21
S

FIGURE 4.15 Horizontal forces on the books of Example 4.4. Not 
shown are the vertical forces of gravity and the normal force from 
the surface supporting the books.

INTERPRET This problem is about the interaction between two ob-
jects, so we identify both books as objects of interest.

DEVELOP In a problem with multiple objects, it’s a good idea to 
draw a separate free-body diagram for each object. We’ve done that in  
Figs. 4.15b and 4.15c, keeping very light images of the books them-
selves. Now, we’re asked about the force the second book exerts on 
the first. Newton’s third law would give us that force if we knew the 

force the first book exerts on the second. Since that’s the only hori-
zontal force acting on book 2, we could get it from Newton’s second 
law if we knew the acceleration of book 2. So here’s our plan: (1) Find 
the acceleration of book 2; (2) use Newton’s second law to find the 
net force on book 2, which in this case is the single force F

S
12; and (3) 

apply Newton’s third law to get F
S

21, which is what we’re looking for.

EVALUATE (1) The total mass of the two books is m1 + m2, and 
the net force applied to the combination is F

S
. Newton’s second law, 

F
S

= ma
!
, gives

a
!

=
F
S

m
=

F
S

m1 + m2

for the acceleration of both books, including book 2. (2) Now that we 
know book 2’s acceleration, we use Newton’s second law to find F

S
12, 

which, since it’s the only horizontal force on book 2, is the net force 
on that book:

F
S

12 = m2 a
!

= m2 
F
S

m1 + m2
=

m2

m1 + m2
F
S

(3) Finally, the forces the books exert on each other constitute a third-
law pair, so we have

F
S

21 = - F
S

12 = -
m2

m1 + m2
F
S

ASSESS You can see that this result makes sense by considering the 
first book. It too undergoes acceleration a

!
= F

S
/1m1 + m22, but there 

are two forces acting on it: the applied force F
S

 and the force F
S

21 from 
the second book. So the net force on the first book is

F
S

+ F
S

21 = F
S

-
m2

m1 + m2
F
S

=
m1

m1 + m2
F
S

= m1a
!

consistent with Newton’s second law. Our result shows that Newton’s 
second and third laws are both necessary for a fully consistent descrip-
tion of the motion.
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4.6 Newton’s Third Law 67

force the spring exerts on whatever is stretching or compressing it (Fig. 4.18). The spring’s 
stretch or compression thus provides a measure of the force on whatever object is attached 
to the spring.

In an ideal spring, the stretch or compression is directly proportional to the force ex-
erted by the spring. Hooke’s law expresses this proportionality mathematically:

 Fs = -kx  1Hooke>s law, ideal spring2 (4.9)

Here Fs is the spring force, x is the distance the spring has been stretched or compressed 
from its normal length, and k is the spring constant, which measures the “stiffness” of the 
spring. Its units are N/m. The minus sign shows that the spring force is opposite the distor-
tion of the spring: Stretch it, and the spring responds with a force opposite the stretching 
force; compress it, and the spring pushes back against the compressing force. Real springs 
obey Hooke’s law only up to a point; stretch it too much, and a spring will deform and 
eventually break.

A spring scale is a spring with an indicator and a scale calibrated in force units 
(Fig. 4.19). Common examples include many bathroom scales, hanging scales in super-
markets, and laboratory spring scales. Even electronic scales are spring scales, with their 
“springs” materials that produce electrical signals when deformed by an applied force.

Hang an object on a spring scale, and the spring stretches until its force counters the 
gravitational force on the object. Or, with a stand-on scale, the spring compresses until 
it supports you against gravity. Either way, the spring force is equal in magnitude to the 
weight mg, and thus the spring indicator provides a measure of weight. Given g, this pro-
cedure also provides the object’s mass.

Be careful, though: A spring scale provides the true weight only if the scale isn’t ac-
celerating; otherwise, the scale reading is only an apparent weight. Weigh yourself in an 
accelerating elevator and you may be horrified or delighted, depending on the direction of 
the acceleration. Conceptual Example 4.1 made this point qualitatively, and Example 4.5 
does so quantitatively.

n
un

u

n
u

n
u

Fg
S

Fg
S

Fg
S Fg

S Fnet
S

Free-body diagram

Free-body diagram

(a)

(b)

The normal force acts 
perpendicular to the 
surface.

The normal force and 
gravitational force
don’t balance, so the
block slides down 
the slope.

The upward normal force from the table supports the
block against gravity. These two forces act on the
same object, so they don’t constitute a third-law pair.

FIGURE 4.16 Normal forces. Also shown in 
each case is the gravitational force.

A spring at its normal length 
does not exert a force.

A stretched spring pulls inward to oppose the 
stretch. It applies a rightward force on the wall
and a leftward force on the hand.

A compressed spring pushes outward. The 
spring’s force on the wall is to the left and
on the hand to the right.

(a)

(b)

(c)

x = 0

x 7 0

x 6 0

FIGURE 4.18 A spring responds to stretching or compression with an oppositely 
directed force.

FIGURE 4.17 Gravitational forces on you 
and on Earth form a third-law pair. Figure 
is obviously not to scale!

F
S

F (newtons)

0 1 2 3 4

FIGURE 4.19 A spring scale.

4.6 (1) Would the answer to (a) in Example 4.5 change if the helicopter were not at 
rest but moving upward at constant speed? (2) Would the answer to (b) change if the 
helicopter were moving downward but still accelerating upward?G

O
T 

IT
?
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68 Chapter 4 Force and Motion

Hook one end of a spring to any part of an accelerating car, airplane, rocket, or whatever, and attach 
a mass m to the other end. The spring stretches until it provides the force needed to bring the mass 
along with the accelerating vehicle, sharing its acceleration. If you measure the spring’s stretch and 
know its spring constant, you can get the force. If you know the mass m, you can then use F = ma to 
get the acceleration. You’ve made an accelerometer!

Accelerometers based on this simple principle are widely used in industrial, transportation, robot-
ics, and scientific applications. Often they’re three-axis devices, with three mutually perpendicular 
springs to measure all three components of the acceleration vector. The drawing shows a simplified 
two-axis accelerometer for measuring accelerations in a horizontal plane.

Today’s accelerometers are miniature devices based on technology called MEMS, for microelec-
tromechanical systems. They’re etched out of a tiny silicon chip that includes electronics for mea-
suring stretch and determining acceleration. Your car employs a number of these accelerometers, 
including those that sense when to deploy the airbags.

Your smartphone contains a three-axis MEMS accelerometer (see photo, which is magnified 
some 700 times) that determines the phone’s acceleration in three mutually perpendicular directions. 
The components in a smartphone accelerometer are only a fraction of a millimeter across. Apps are 
available to record accelerometer data, making your smartphone a useful device for physics experi-
ments. Problem 67 explores smartphone accelerometer data.

APPLICATION  Accelerometers, MEMS, Airbags, and Smartphones

m

EXAMPLE 4.5 True and Apparent Weight: A Helicopter Ride

A helicopter rises vertically, carrying concrete for a ski-lift foundation. A 
35-kg bag of concrete sits in the helicopter on a spring scale whose spring 
constant is 3.4 kN/m. By how much does the spring compress (a) when the 
helicopter is at rest and (b) when it’s accelerating upward at 1.9 m/s2?

INTERPRET This problem is about concrete, a spring scale, and 
a helicopter. Ultimately, that means it’s about mass, force, and 
 acceleration—the content of Newton’s laws. We’re interested in the 
spring and the concrete mass resting on it, which share the  motion 
of the helicopter. We identify two forces acting on the concrete: 

gravity and the spring force F
S

s.

DEVELOP As with any Newton’s law problem, we start with a free-
body diagram (Fig. 4.20). We then write Newton’s second law in its 
vector form,

F
S

net = F
S

s + F
S

g = ma
!

Vectors tell it all; don’t worry about signs at this point. Our equation 
expresses all the physics of the situation, but before we can move on 
to the solution, we need to choose a coordinate system. Here it’s con-
venient to take the y-axis vertically upward.

EVALUATE The forces are in the vertical direction, so we’re con-
cerned with only the y-component of Newton’s law: Fsy + Fgy = may. 
The spring force is upward and, from Hooke’s law, it has magnitude kx, 
so Fsy = kx. Gravity is downward with magnitude mg, so Fgy = -mg. 
The y-component of Newton’s law then becomes kx - mg = may, 
which we solve to get

x =
m1ay + g2

k

Putting in the numbers (a) with the helicopter at rest 1ay = 02 and (b) 
with ay = 1.9 m/s2 gives

(a)  x =
m1ay + g2

k
=

135 kg2 10 + 9.8 m/s22
3400 N/m

= 10 cm

(b)  x =
135 kg211.9 m/s2 + 9.8 m/s22

3400 N/m
= 12 cm

ASSESS Why is the answer to (b) larger? Because, just as with the 
cable in Example 4.3, the spring needs to provide an additional force 
to accelerate the concrete upward.

FIGURE 4.20 Our drawings for Example 4.5.
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Solving Problems with Newton’s Laws

INTERPRET Interpret the problem to be sure that you know what it’s asking 
and that Newton’s second law is the relevant concept. Identify the object of 
interest and all the individual interaction forces acting on it.

DEVELOP Draw a free-body diagram as described in Tactics 4.1. Devel-
op your solution plan by writing Newton’s second law, F

S
net = ma

!
, with 

F
S

net expressed as the sum of the forces you’ve identified. Then choose a 
coordinate system so you can express Newton’s law in components.

EVALUATE At this point the physics is done, and you’re ready to execute 
your plan by solving Newton’s second law and evaluating the numerical 
answer(s), if called for. Remember that even in the one-dimensional prob-
lems of this chapter, Newton’s law is a vector equation; that will help you 
get the signs right. You need to write the components of Newton’s law in 
the coordinate system you chose, and then solve the resulting equation(s) 
for the quantity(ies) of interest.

The big idea of this chapter—and of all Newtonian mechanics—is that force causes change in motion, not motion itself. Uniform motion—straight 
line, constant speed—needs no cause or explanation. Any deviation, in speed or direction, requires a net force. This idea is the essence of Newton’s 
first and second laws. Combined with Newton’s third law, these laws provide a consistent description of motion.

Newton’s First Law
A body in uniform motion remains in uni-
form motion, and a body at rest remains at 
rest, unless acted on by a nonzero net force.

This law is implicit in Newton’s second law.

Newton’s Second Law
The rate at which a body’s momentum 
changes is equal to the net force acting on 
the body.

Here momentum is the “quantity of mo-
tion,” the product of mass and velocity.

Newton’s Third Law
If object A exerts a force on object B, then 
object B exerts an oppositely directed force 
of equal magnitude on A.

Newton’s third law says that forces come 
in pairs.

Big Idea

SummaryChapter 4

Fg
S

Fg
S

T
S

T
S

1
2

3
Identify all
forces acting 
on the object.

Both forces
act on the 
dot.

Elevator and
contents reduce
to dot.

Gravity

Cable
tension

ASSESS Assess your solution to see that it makes sense. Are the numbers reasonable? Do the units work out correctly? What happens in special 
cases—for example, when a mass, a force, an acceleration, or an angle gets very small or very large?

Key Concepts and Equations
Mathematically, Newton’s second law is F

S
net = dp

!
/dt, where p

!
= mv

!
 is an object’s momentum,  

and F
S

net is the sum of all the individual forces acting on the object. When an object has constant  
mass, the second law takes the familiar form

F
S

net = ma
!
  1Newton>s second law2

Newton’s second law is a vector equation. To use it correctly, you must write the components of the 
equation in a chosen coordinate system. In one-dimensional problems the result is a single equation.

Applications
The force of gravity on an object is its weight. Since all objects at a given location experience the  
same gravitational acceleration, weight is proportional to mass:

w
!

= mg
!
  1weight on Earth2

In an accelerated reference frame, an object’s apparent weight differs from its actual weight; in  
particular, an object in free fall experiences apparent weightlessness.

Springs are convenient force-measuring devices, stretching or compressing in response to the  
applied force. For an ideal spring, the stretch or compression is directly proportional to the force:

Fs = -kx  1Hooke>s law2
where k is the spring constant, with units of N/m.

F1
S

F3
S

Fnet
S

F2
S

Fnet is the
vector sum
of F1, F2, 
and F3.

S S

S

S

Fs
S Fapplied

S

M04_WOLF8559_04_SE_C04.indd   69 11/13/18   9:06 PM



70 Chapter 4 Force and Motion

For Thought and Discussion

1. Distinguish the Aristotelian and Galilean/Newtonian views of the 
natural state of motion.

2. A ball bounces off a wall with the same speed it had before it 
hit the wall. Has its momentum changed? Has a force acted on 
the ball? Has a force acted on the wall? Relate your answers to 
Newton’s laws of motion.

3. We often use the term “inertia” to describe human sluggishness. 
How is this usage related to the meaning of “inertia” in physics?

4. Does a body necessarily move in the direction of the net force 
acting on it?

5. A truck crashes into a stalled car. A student trying to explain the 
physics of this event claims that no forces are involved; the car 
was just “in the way” so it got hit. Comment.

6. A barefoot astronaut kicks a ball, hard, across a space station. 
Does the ball’s apparent weightlessness mean the astronaut’s toes 
don’t hurt? Explain.

7. In paddling a canoe, you push water backward with your paddle. 
What force actually propels the canoe forward?

8. Is it possible for a nonzero net force to act on an object without 
the object’s speed changing? Explain.

9. As your plane accelerates down the runway, you take your keys 
from your pocket and suspend them by a thread. Do they hang 
vertically? Explain.

10. A driver tells passengers to buckle their seatbelts, invoking the 
law of inertia. What’s that got to do with seatbelts?

Exercises and Problems

Exercises

Section 4.2 Newton’s First and Second Laws
11. A subway train’s mass is 3.86 * 105 kg. What force is required to 

accelerate the train at 2.45 m/s2?
12. A 148-Mg railroad locomotive can exert a 191 kN force. At what 

rate can it accelerate (a) by itself and (b) when pulling a 14.3-Gg 
train?

13. A small plane accelerates down the runway at 7.2 m/s2. If its pro-
peller provides an 11-kN force, what’s the plane’s mass?

14. A car leaves the road traveling at 110 km/h and hits a tree, coming 
to a stop in 0.14 s. What average force does a seatbelt exert on a 
60-kg passenger during this collision?

15. Kinesin is a “motor protein” responsible for moving materials 
within living cells. If it exerts a 6.0-pN force, what acceleration 
will it give a molecular complex with mass 3.0 * 10-18 kg?

16. Starting from rest and undergoing constant acceleration, a 940-kg 
racing car covers 400 m in 4.95 s. Find the force on the car.

17. In an egg-dropping contest, a student encases an 85-g egg in a 
large Styrofoam block. If the force on the egg can’t exceed 28 
N, and if the block hits the ground at 12 m/s, by how much must 
the Styrofoam compress on impact? Note: The acceleration as-
sociated with stopping the egg is so great that you can neglect 
gravity while the Styrofoam block is slowing due to contact with 
the ground.

18. In a front-end collision, a 1300-kg car with shock-absorbing 
bumpers can withstand a maximum force of 65 kN before dam-
age occurs. If the maximum speed for a nondamaging collision is 
10 km/h, by how much must the bumper be able to move relative 
to the car?

Section 4.4 The Force of Gravity
19. Show that the units of acceleration can be written as N/kg. Why 

does it make sense to give g as 9.8 N/kg when talking about mass 
and weight?

20. Your spaceship crashes on one of the Sun’s planets. Fortunately, 
the ship’s scales are intact and show that your weight is 532 N. If 
your mass is 60 kg, where are you? (Hint: Consult Appendix E.)

21. Your friend can barely lift a 35-kg concrete block on Earth. How 
massive a block could she lift on the Moon?

22. A cereal box says “net weight 340 grams.” What’s the actual 
weight (a) in SI units and (b) in ounces?

23. You’re a safety engineer for a bridge spanning the U.S.–Canadian 
border. U.S. specifications permit a maximum load of 10 tons. 
What load limit should you specify on the Canadian side, where 
“weight” is given in kilograms?
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LO 4.1 Articulate the Newtonian paradigm that it’s about change in 
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Problems 4.44, 4.52, 4.57, 4.65, 4.66, 4.72
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4.67, 4.68, 4.69, 4.70, 4.71, 4.72, 4.73, 4.75

LO 4.4 Name the fundamental forces of nature.
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Exercises 4.19, 4.20, 4.21, 4.22, 4.23, 4.24
LO 4.6 Distinguish apparent weight from actual weight.

Problems 4.45, 4.47
LO 4.7 Identify Newton’s third-law force pairs and find their values.
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M04_WOLF8559_04_SE_C04.indd   70 11/13/18   9:06 PM

www.masteringphysics.com


Exercises and Problems 71

39. Example 4.1: A hockey player whacks a 162-g puck with her 
stick, applying a 212-N force that accelerates it to 78.3 m/s.  
(a) If the puck was initially at rest, for how much time did the ac-
celeration last? (b) The puck then hits the curved corner boards, 
which exert a 151-N force on the puck to keep it in its circular 
path. What’s the radius of the curve?

40. Example 4.3: A 975-kg elevator accelerates upward at 0.754 m>s2,  
pulled by a cable of negligible mass. Find the tension force in 
the cable.

41. Example 4.3: A 975-kg elevator is suspended by a cable of neg-
ligible mass. If the tension in the cable is 8.85 kN, what are the 
magnitude and direction of the elevator’s acceleration?

42. Example 4.3: In the 2015 film The Martian, actor Matt Damon 
(mass 84.0 kg) plays an astronaut who’s stranded on Mars. He 
eventually escapes in a rocket. If the rocket accelerates verti-
cally upward from the Martian surface at 10.8 m>s2, what’s the 
force that Damon’s seat exerts on him? You’ll need to consult 
Appendix E.

43. Example 4.3: In 2017 the company SpaceX became the first pri-
vate company to send supplies to the International Space Station 
with a reusable rocket. At launch, the total mass of the rocket was 
552 Mg, and the thrust force exerted by the rocket engines was 
7.61 MN. What was the rocket’s initial acceleration?

Problems
44. A 166-g hockey puck is gliding across the ice at 44.3 m/s. A 

player whacks it with her stick, sending it moving at 82.1 m/s 
at 45.0° to its initial direction of motion. If stick and puck are in 
contact for 112 ms, what are the magnitude and direction of the 
average force that was exerted on the puck?

45. An airplane encounters sudden turbulence, and you feel momen-
tarily lighter. If your apparent weight seems to be about 70% of 
your normal weight, what are the magnitude and direction of the 
plane’s acceleration?

46. A 74-kg tree surgeon rides a “cherry picker” lift to reach the 
upper branches of a tree. What force does the lift exert on the 
surgeon when it’s (a) at rest; (b) moving upward at a steady 2.4 
m/s; (c) moving downward at a steady 2.4 m/s; (d) accelerating 
upward at 1.7 m/s2; (e) accelerating downward at 1.7 m/s2?

47. A dancer executes a vertical jump during which the floor pushes 
up on his feet with a force 50% greater than his weight. What’s 
his upward acceleration?

48. Find expressions for the force needed to bring an object of mass 
m from rest to speed v (a) in time ∆t and (b) over distance ∆x.

49. An elevator moves upward at 5.2 m/s. What’s its minimum stop-
ping time if the passengers are to remain on the floor?

50. A 2.50-kg object is moving along the x-axis at 1.60 m/s. As 
it passes the origin, two forces F

S
1 and F

S
2 are applied, both 

in the y-direction (plus or minus). The forces are applied for 
3.00 s, after which the object is at x = 4.80 m, y = 10.8 m. If 
F
S

1 = 15.0 jnN, what’s F
S

2?
51. Blocks of 1.0, 2.0, and 3.0 kg are lined up on a frictionless table, 

as shown in Fig. 4.21, with a 12-N force applied to the leftmost 
block. What’s the magnitude of the force that the rightmost block 
exerts on the middle one?

24. The gravitational acceleration at the International Space Station’s 
altitude is about 89% of its surface value. What’s the weight of a 
68-kg astronaut at this altitude?

Section 4.5 Using Newton’s Second Law
25. A 50-kg parachutist descends at a steady 40 km/h. What force 

does air exert on the parachute?
26. A 930-kg motorboat accelerates away from a dock at 2.3 m/s2. 

Its propeller provides a 3.9-kN thrust force. What drag force does 
the water exert on the boat?

27. An elevator accelerates downward at 2.4 m/s2. What force does 
the elevator’s floor exert on a 52-kg passenger?

28. At 560 metric tons, the Airbus A-380 is the world’s largest air-
liner. What’s the upward force on an A-380 when the plane is 
(a) f lying at constant altitude and (b) accelerating upward at 
1.1 m/s2?

29. Find an expression for the thrust (force) of a model rocket’s en-
gine required to accelerate a spacecraft of total mass M from rest 
on the ground to speed v while rising a vertical distance h.

30. You step into an elevator, and it accelerates to a downward speed 
of 9.2 m/s in 2.1 s. Quantitatively compare your apparent weight 
during this time with your actual weight.

Section 4.6 Newton’s Third Law
31. What upward gravitational force does a 5600-kg elephant exert 

on Earth?
32. Your friend’s mass is 65 kg. If she jumps off a 120-cm-high ta-

ble, how far does Earth move toward her as she falls?
33. What force is necessary to stretch a spring 48 cm, if its spring 

constant is 270 N/m?
34. A 35-N force is applied to a spring with spring constant 

k = 220 N/m. How much does the spring stretch?
35. A spring with spring constant k = 340 N/m is used to weigh a 

6.7-kg fish. How far does the spring stretch?

Example Variations
The following problems are based on two examples from the text. Each 
set of four problems is designed to help you make connections that 
enhance your understanding of physics and to build your confidence 
in solving problems that differ from ones you’ve seen before. The first 
problem in each set is essentially the example problem but with differ-
ent numbers. The second problem presents the same scenario as the 
example but asks a different question. The third and fourth problems 
repeat this pattern but with entirely different scenarios.

36. Example 4.1: A 2280-kg car accelerates from rest to 31.2 m/s 
in 9.48 s, moving in a straight line with constant acceleration. (a) 
Find the net force acting on the car. (b) If the car then rounds a 
bend 166 m in radius, what net force acts on it?

37. Example 4.1: A 2280-kg car is subject to an 8.75-kN force that 
accelerates it in a straight line. (a) Starting from rest, how much 
time will it take the car to reach a speed of 22.8 m/s? (b) The 
car then enters a circular turn, where the road exerts an 8.65-kN 
force to keep the car on its circular path. What’s the radius of the 
turn?

38. Example 4.1: A hockey player whacks a 162-g puck with her 
stick, applying a constant force that accelerates the puck to 86.8 
m/s in 51.4 ms. (a) Find the force the stick exerts on the puck. 
(b) Still moving at 86.8 m/s, the puck hits the corner boards and 
slides around the corner of the rink. If the corner radius is 8.50 m, 
what force do the corner boards exert on the puck?

1 kg

12 N
2 kg 3 kg

FIGURE 4.21 Problem 51
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72 Chapter 4 Force and Motion

63. With its fuel tanks half full, an F-35A jet fighter has mass 18 Mg 
and engine thrust 191 kN. An Airbus A-380 has mass 560 Mg 
and total engine thrust 1.5 MN. Could either aircraft climb verti-
cally with no lift from its wings? If so, what vertical acceleration 
could it achieve?

64. Two springs have the same unstretched length but different spring 
constants, k1 and k2. (a) If they’re connected side by side and 
stretched a distance x, as shown in Fig. 4.24a, show that the force 
exerted by the combination is 1k1 + k22x. (b) If they’re con-
nected end to end (Fig. 4.24b) and the combination is stretched a 
distance x, show that they exert a force k1k2x/1k1 + k22.

52. A child pulls an 11-kg wagon with a horizontal handle whose mass 
is 1.8 kg, accelerating the wagon and handle at 2.3 m/s2. Find the 
tension forces at each end of the handle. Why are they different?

53. Biophysicists use an arrangement of laser beams called optical twee-
zers to manipulate microscopic objects. In a particular experiment, op-
tical tweezers exerting a force of 0.373 pN were used to stretch a DNA 
molecule by 2.30 μm. What was the spring constant of the DNA?

54. A force F is applied to a spring of spring constant k0, stretching it a 
distance x. Consider the spring to be made up of two smaller springs 
of equal length, with the same force F still applied. Use F = -kx 
to find the spring constant k1 of each of the smaller springs.

55. A 2200-kg airplane pulls two gliders, the first of mass 310 kg and 
the second of mass 260 kg, down the runway with acceleration 
1.9 m/s2 (Fig. 4.22). Neglecting the mass of the two ropes and 
any frictional forces, determine the magnitudes of (a) the hori-
zontal thrust of the plane’s propeller, (b) the tension force in the 
first rope, (c) the tension force in the second rope, and (d) the net 
force on the first glider.

BIO

a
u

FIGURE 4.22 Problem 56

56. A biologist is studying the growth of rats on the Space Station. 
To determine a rat’s mass, she puts it in a 320-g cage, attaches a 
spring scale, and pulls so that the scale reads 0.46 N. If rat and 
cage accelerate at 0.40 m/s2, what’s the rat’s mass?

57. A small car, with mass 945 kg, is stuck on frictionless ice. A tow 
truck hooks a 122-kg chain to the car and begins to accelerate at 
0.368 m>s2. What’s the tension in the chain (a) where it connects 
to the truck and (b) where it connects to the car?

58. A 2.0-kg mass and a 3.0-kg mass are on a horizontal friction-
less surface, connected by a massless spring with spring con-
stant k = 140 N/m. A 15-N force is applied to the larger mass, 
as shown in Fig. 4.23. 
How much does the 
spring stretch from its 
equilibrium length?

59. You’re an automotive 
engineer designing the 
“crumple zone” of a new car—the region that compresses as the car 
comes to a stop in a head-on collision. If the maximum allowable 
force on a passenger in a 70-km/h collision is 20 times the passen-
ger’s weight, what do you specify for the amount of compression in 
the crumple zone?

60. Frogs’ tongues dart out to catch insects, with maximum tongue 
accelerations of about 250 m/s2. What force is needed to give a 
500-mg tongue such an acceleration?

61. Two large crates, with masses 640 kg and 490 kg, are connected 
by a stiff, massless spring 1k = 8.1 kN/m2 and propelled along 
an essentially frictionless factory floor by a horizontal force ap-
plied to the more massive crate. If the spring compresses 5.1 cm, 
what’s the applied force?

62. Your engineering firm is asked to specify the maximum load for 
the elevators in a new building. Each elevator has mass 490 kg 
when empty and maximum acceleration 2.24 m/s2. The eleva-
tor cables can withstand a maximum tension of 19.5 kN before 
breaking. For safety, you need to ensure that the tension never 
exceeds two-thirds of that value. What do you specify for the 
maximum load? How many 70-kg people is that?

BIO

BIO

F
S

2 kg 3 kg
15 N

FIGURE 4.23 Problem 59

(a) (b)

FIGURE 4.24 Problem 65

65. Although we usually write Newton’s second law for one- dimensional 
motion in the form F = ma, which holds when mass is constant, 

a more fundamental version is F =
d1mv2

dt
. Consider an object 

whose mass is changing, and use the product rule for derivatives to 

show that Newton’s law then takes the form F = ma + v 
dm
dt

.

66. A railroad car is being pulled beneath a grain elevator that dumps 
grain at the rate of 450 kg/s. Use the result of Problem 65 to find 
the force needed to keep the car moving at a constant 2.0 m/s.

67. A block 20% more massive than you hangs from a rope that goes 
over a frictionless, massless pulley. With what acceleration must 
you climb the other end of the rope to keep the block from falling?

68. Figure 4.25 shows vertical accelerometer data from an iPhone that 
was dropped onto a pillow. The phone’s accelerometer, like all 
accelerometers, can’t distinguish gravity from acceleration, so it 
reads 1g when it’s not accelerating and 0g when it’s in free fall. 
Interpret the graph to determine (a) how long the phone was in free 
fall and therefore how far it fell; (b) how many times it bounced; 
(c) the maximum force the phone experienced, expressed in terms 
of its weight w; and (d) when it finally came completely to rest. 
(Note: The phone was held flat when dropped, with the screen up 
for protection. In that orientation, it recorded negative values for 
acceleration; the graph shows the corresponding positive values 
that would have been recorded had it fallen screen side down.)
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FIGURE 4.25 Accelerometer data for Problem 68.
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Answers to Chapter Questions 73

74. A mass M hangs from a uniform rope of length L and mass m. 
Find an expression for the rope tension as a function of the dis-
tance y measured downward from the top of the rope.

75. “Jerk” is the rate of change of acceleration, and it’s what can 
make you sick on an amusement park ride. In a particular ride, a 
car and passengers with total mass M are subject to a force given 
by F = F0 sin vt, where F0 and v are constants. Find an expres-
sion for the maximum jerk.CH

Passage Problems
Laptop computers are equipped with accelerometers that sense when 
the device is dropped and then put the hard drive into a protective mode. 
Your computer geek friend has written a program that reads the accel-
erometer and calculates the laptop’s apparent weight. You’re amusing 
yourself with this program on a long plane flight. Your laptop weighs 
just 5 pounds, and for a long time that’s what the program reports. But 
then the “Fasten Seatbelt” light comes on as the plane encounters turbu-
lence. Figure 4.27 shows the readings for the laptop’s apparent weight 
over a 12-second interval that includes the start of the turbulence.
76. At the first sign of turbulence, 

the plane’s acceleration
a. is upward.
b. is downward.
c. is impossible to tell from 

the graph.
77. The plane’s vertical ac-

celeration has its greatest 
magnitude
a. during interval B.
b. during interval C.
c. during interval D.

78. During interval C, you can 
conclude for certain that the 
plane is
a. at rest.
b. accelerating upward.
c. accelerating downward.
d. moving with constant vertical velocity.

79. The magnitude of the greatest vertical acceleration the plane un-
dergoes during the time shown on the graph is approximately
a. 0.5 m/s2. b. 1 m/s2.
c. 5 m/s2. d. 10 m/s2.

Answers to Chapter Questions

Answer to Chapter Opening Question
The engineers needed to consider Martian gravity, the upward thrust 
of the sky crane’s rockets, and the tension in the cables used to lower 
the rover from the sky crane.

Answers to GOT IT? Questions
4.1 (b)
4.2 (b) (Look at Fig. 4.3.)
4.3 (c) All would move in straight lines.
4.4 (1) (a); (2) (b); (3) (b); (4) (a); (5) (c)
4.5 (c) less than 2 N
4.6  (1) No, because acceleration is still zero; (2) No, because the  

direction of the velocity is irrelevant to the acceleration

CH

69. A hockey stick is in contact with a 165-g puck for 22.4 ms; 
during this time, the force on the puck is given approximately by 
F1t2 = a + bt + ct2, where a = -25.0 N, b = 1.25 * 105 N/s, 
and c = -5.58 * 106 N/s2. Determine (a) the speed of the puck 
after it leaves the stick and (b) how far the puck travels while it’s 
in contact with the stick.

70. After parachuting through the Martian atmosphere, the Mars 
Science Laboratory executed a complex series of maneuvers that 
successfully placed the rover Curiosity on the surface of Mars in 
2012. The final ∼22 s of the landing involved, in this order, firing 
rockets (1) to maintain a constant downward velocity of 32 m/s, 
(2) to achieve a constant deceleration that brought the downward 
speed to 0.75 m/s, and (3) to hold that constant velocity while 
the rover was lowered on cables from the rest of the spacecraft 
(see this chapter’s opening image). The rover’s touchdown was 
indicated by a sudden decrease in the rocket thrust needed to 
maintain constant velocity. Figure 4.26 shows the rocket thrust 
(upward force) as a function of time during these final 22 s of the 
flight and the first few seconds after touchdown. (a) Identify the 
two constant-velocity phases, the constant-deceleration phase, 
and the post-touchdown phase. (b) Find the magnitude of the 
spacecraft’s acceleration during the constant-deceleration phase. 
Finally, determine (c) the mass of the so-called powered descent 
vehicle (PDV), meaning the spacecraft with the rover attached, 
and (d) the mass of the rover alone. Remember that all this hap-
pened at Mars, so you’ll need to consult Appendix E.
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FIGURE 4.26 Rocket thrust (upward force of rocket engines) during 
the final descent of the Mars rover Curiosity (Problem 70).
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FIGURE 4.27 The laptop’s 
 apparent weight (Passage 
Problems 76–79).

71. Your airplane is caught in a brief, violent downdraft. To your 
amazement, pretzels rise vertically off your seatback tray, and 
you estimate their upward acceleration relative to the plane at 
2 m/s2. What’s the plane’s downward acceleration?

72. A hot-air balloon and its basket are accelerating upward at 
0.265 m>s2, propelled by a net upward force of 688 N. A rope 
of negligible mass connects the balloon and basket. The rope 
tension exceeds the basket’s weight by 72.8 N. Find, separately, 
the mass of the balloon and the basket. (Incidentally, most of the 
balloon’s mass is air.)

73. Two masses are joined by a massless string. A 30-N force applied 
vertically to the upper mass gives the system a constant upward 
acceleration of 3.2 m/s2. If the string tension is 18 N, what are the 
two masses?
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Using Newton’s Laws

Skills & Knowledge You’ll Need
■■ Newton’s second law of motion 

(Sections 4.2)

■■ The concept of force and the force of 
gravity (Sections 4.3–4.4)

■■ How to solve problems  involving 
Newton’s second law in one 
 dimension (Section 4.5)

Learning Outcomes
After finishing this chapter you should be able to:

LO 5.1 Use a strategic approach to solve problems involving 
Newton’s second law in two dimensions.

LO 5.2 Solve Newton’s law problems involving two connected objects.

LO 5.3 Solve problems involving circular motion with one or more 
forces.

LO 5.4 Describe the difference between static and kinetic friction.

LO 5.5 Incorporate the frictional force into problems involving 
other forces.

LO 5.6 Describe drag forces.

Why does an airplane tip when it’s turning?

Chapter 4 introduced Newton’s three laws of motion and used them 
in one-dimensional situations. Now we apply Newton’s laws in two 

 dimensions. This material is at the heart of Newtonian physics, from 
textbook problems to systems that guide spacecraft to distant plan-
ets. The chapter consists largely of examples, to help you learn to apply 
Newton’s laws and also to appreciate their wide range of applicability. We 
also  introduce frictional forces and elaborate on circular motion. As you 
study the diverse examples, keep in mind that they all follow from the 
 underlying principles embodied in Newton’s laws.

5.1 Using Newton’s Second Law
LO 5.1 Use a strategic approach to solve problems involving 

Newton's second law in two dimensions.

Newton’s second law, F
S

net = ma
!
, is the cornerstone of mechanics. We can use 

it to develop faster skis, engineer skyscrapers, design safer roads, compute a 
rocket’s thrust, and solve myriad other practical problems.

We’ll work Example 5.1 in great detail, applying Problem-Solving Strategy 
4.1. Follow this example closely, and try to understand how our strategy is 
grounded in Newton’s basic statement that the net force on an object deter-
mines that object’s acceleration.

7
Conservation of 

Energy

6
Energy, Work, and 

Power54
Force and Motion

3
Motion in Two and  
Three Dimensions

74
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5.1 Using Newton’s Second Law 75

A skier of mass m = 65 kg glides down a slope at angle u = 32°, as 
shown in Fig. 5.1. Find (a) the skier’s acceleration and (b) the force the snow 
exerts on the skier. The snow is so slippery that you can neglect friction.

INTERPRET This problem is about the skier’s motion, so we iden-
tify the skier as the object of interest. Next, we identify the forces 
acting on the object. In this case there are just two: the downward 
force of gravity and the normal force the ground exerts on the 
skier. As always, the normal force is perpendicular to the surfaces 
in contact—in this case, perpendicular to the slope.

DEVELOP Our strategy for using Newton’s second law calls for draw-
ing a free-body diagram that shows only the object and the forces 
acting on it; that’s Fig. 5.2. Determining the relevant equation is 
straightforward here: It’s Newton’s second law, F

S
net = ma

!
. We write 

Newton’s law explicitly for the forces we’ve identified:

F
S

net = n
!

+ F
S

g = ma
!

To apply Newton’s law in two dimensions, we need to choose a coor-
dinate system so that we can write this vector equation in components. 
Since the coordinate system is just a mathematical construct, you’re 
free to choose any coordinate system you like—but a smart choice can 
make the problem a lot easier. In this example, the normal force is per-
pendicular to the slope, and the skier’s acceleration is along the slope. If 
you choose a coordinate system with axes perpendicular and parallel to 
the slope, then these two vectors will lie along the coordinate axes, and 
you’ll have only one vector—the gravitational force—that you’ll need to 
break into components. So a tilted coordinate system makes this prob-
lem easier, and we’ve sketched this system on the free-body diagram in  
Fig. 5.2. But, again, any coordinate system will do. In Problem 38, you 
can rework this example in a horizontal/vertical coordinate system— 
getting the same answer at the expense of a lot more algebra.

EVALUATE The rest is math. First, we write the components of Newton’s 
law in our coordinate system. That means writing a version of the equa-
tion for each coordinate direction by removing the arrows indicating 
 vector quantities and adding subscripts for the coordinate directions:

 x@component:   nx + Fgx = max

 y@component:   ny + Fgy = may

Don’t worry about signs until the next step, when we actually evaluate 
the individual terms in these equations. Let’s begin with the x equation. 
With the x-axis parallel and the y-axis perpendicular to the slope, the 
normal force has only a y-component, so nx = 0. Meanwhile, the accel-
eration points downslope—that’s the positive x-direction—so ax = a, 

the magnitude of the acceleration. Only gravity has two nonzero compo-
nents, and, as Fig. 5.2 shows, trigonometry gives Fgx = Fg sin u. But Fg, 
the magnitude of the gravitational force, is just mg, so Fgx = mg sin u. 
This component has a positive sign because our x-axis slopes down-
ward. Then, with nx = 0, the x equation becomes

x@component: mg sin u = ma

On to the y equation. The normal force points in the positive  
y- direction, so ny = n, the magnitude of the normal force. The ac-
celeration has no component perpendicular to the slope, so ay = 0. 
Figure 5.2 shows that Fgy = -Fg cos u = -mg cos u,  so the y 
 equation is

y@component: n - mg cos u = 0

Now we can evaluate to get the answers. The x equation solves 
 directly to give

a = g sin u = 19.8 m/s221sin 32°2 = 5.2 m/s2

which is the acceleration we were asked to find in (a). Next, we solve the 
y equation to get n = mg cos u. Putting in the numbers gives n = 540 N. 
This is the answer to (b), the force the snow exerts on the skier.

ASSESS A look at two special cases shows that these results make 
sense. First, suppose u = 0°, so the surface is horizontal. Then the 
x equation gives a = 0, as expected. The y equation gives n = mg, 
showing that a horizontal surface exerts a force that just balances the 
skier’s weight. At the other extreme, consider u = 90°, so the slope 
is a vertical cliff. Then the skier falls freely with acceleration g, as 
expected. In this case n = 0 because there’s no contact between skier 
and slope. At intermediate angles, the slope’s normal force lessens 
the effect of gravity, resulting in a lower acceleration. As the x equa-
tion shows, that acceleration is independent of the skier’s mass—just 
as in the case of a vertical fall. The force exerted by the snow—
here mg cos u, or 540 N—is less than the skier’s weight mg because 
the slope has to balance only the perpendicular component of the 
 gravitational force.

If you understand this example, you should be able to apply 
 Newton’s second law confidently in other problems involving motion 
with forces in two dimensions.

Newton’s Law in Two Dimensions: SkiingEXAMPLE 5.1

u = 32°

FIGURE 5.1 What’s the skier’s acceleration?

A coordinate system
with axes parallel 
and perpendicular 
to the slope is most
convenient here.

These angles are
the same.

These are the
x- and y-components
of the gravitational 
force, Fg.

S

FIGURE 5.2 Our free-body diagram for the skier.
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76 Chapter 5 Using Newton’s Laws

To protect her 17-kg pack from bears, a camper hangs it from ropes 
between two trees (Fig. 5.3). What’s the tension in each rope?

INTERPRET Here the pack is the object of interest. The only forces 
acting on it are gravity and tension forces in the two halves of the 
rope. To keep the pack from accelerating, they must sum to zero 
net force.

DEVELOP Figure 5.4 is our free-body diagram for the pack. The rel-
evant equation is again Newton’s second law, F

S
net = ma

!
 —this time 

with a
!

= 0
S

. For the three forces acting on the pack, Newton’s law 
is then T

S
1 + T

S
2 + F

S
g = 0

S
. Next, we need a coordinate system. The 

two rope tensions point in different directions that  aren’t perpendicu-
lar, so it doesn’t make sense to align a coordinate axis with either of 
them. Instead, a horizontal/vertical system is simplest.

EVALUATE First we need to write Newton’s law in components. 
Formally, we have T1x + T2x + Fgx = 0 and T1y + T2y + Fgy = 0 
for the component equations. Figure 5.4 shows the components of the 
tension forces, and we see that Fgx = 0 and Fgy = -Fg = -mg. So 
our component equations become

 x@component:  T1 cos u - T2 cos u = 0
 y@component:  T1 sin u + T2 sin u - mg = 0

The x equation tells us something that’s apparent from the symme-
try of the situation: Since the angle u is the same for both halves of 

the rope, the magnitudes T1 and T2 of the tension forces are the same. 
Let’s just call the magnitude T: T1 = T2 = T. Then the terms T1  sin u 
and T2  sin u in the y equation are equal, and the equation becomes 
2T sin u -  mg = 0, which gives

T =
mg

2 sin u
=

117 kg2 19.8 m/s22
2 sin 22°

= 220 N

ASSESS Make sense? Let’s look at some special cases. With 
u = 90°, the rope hangs vertically, sin u = 1, and the tension in 
each half of the rope is 1

2 mg. That makes sense, because each piece 
of the rope supports half the pack’s weight. But as u gets smaller, 
the ropes become more horizontal, and the tension increases. That’s 
because the vertical tension components together still have to sup-
port the pack’s weight—but now there’s a horizontal component as 
well, increasing the overall tension. Ropes break if the tension be-
comes too great, and in this example that means the rope’s so-called 
breaking tension must be considerably greater than the pack’s 
weight. If u = 0, in fact, the tension would become infinite—
demonstrating that it’s impossible to support a weight with a purely 
horizontal rope.

EXAMPLE 5.2 Objects at Rest: Bear Precautions

u = 22° u = 22°

FIGURE 5.3 Bear precautions.

The y-components
of the two tension
forces are equal.

These are the x- and
y-components of the
tension T1.

S

T2 has the same magnitude
as T1, but its x-component
is opposite.

S

S

FIGURE 5.4 Our free-body diagram for the pack.

Sometimes we’re interested in finding the conditions under which an object won’t ac-
celerate. Examples are engineering problems, such as ensuring that bridges and buildings 
don’t fall down, and physiology problems involving muscles and bones. Next we give a 
wilder example.
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EXAMPLE 5.3 Objects at Rest: Restraining a Ski Racer

A starting gate acts horizontally to restrain a 62-kg ski racer on a fric-
tionless 30° slope (Fig. 5.5). What horizontal force does the starting 
gate apply to the skier?

INTERPRET Again, we want the skier to remain unaccelerated. 
The skier is the object of interest, and we identify three forces act-
ing: gravity, the normal force from the slope, and a horizontal re-
straining force F

S
h that we’re asked to find.

DEVELOP Figure 5.6 is our free-body diagram. The applicable equa-
tion is Newton’s second law. Again, we want a

!
= 0

S
, so with the forces 

we identified, F
S

net = ma
!
 becomes F

S
h + n

!
+ F

S
g = 0

S
. Developing 

our solution strategy, we choose a coordinate system. With two forces 
now either horizontal or vertical, a horizontal/vertical system makes the 
most sense; we’ve shown this coordinate system in Fig. 5.6.

EVALUATE As usual, the component equations follow directly 
from the vector form of Newton’s law: Fhx + nx + Fgx = 0 and 
Fhy + ny + Fgy = 0. Figure 5.6 gives the components of the nor-
mal force and shows that Fhx = -Fh, Fgy = -Fg = -mg, and 
Fgx = Fhy = 0. Then the component equations become

x: -Fh + n sin u = 0  y: n cos u - mg = 0

There are two unknowns here—namely, the horizontal force Fh that 
we’re looking for and the normal force n. We can solve the y equation 
to get n = mg/cos u. Using this expression in the x equation and solv-
ing for Fh then give the answer:

Fh =
mg

cos u
 sin u = mg tan u = 162 kg219.8 m/s221tan 30°2 = 350 N

ASSESS Again, let’s look at the extreme cases. With u = 0, we have 
Fh = 0, showing that it doesn’t take any force to restrain a skier on 
flat ground. But as the slope becomes more vertical, tan u S ∞ , and 
in the vertical limit, it becomes impossible to restrain the skier with a 
purely horizontal force.

Horizontal/vertical
axes are best here.

Trig gives the
components of
the normal force.

FIGURE 5.6 Our free-body diagram for the restrained skier.

u = 30°

FIGURE 5.5 Restraining a skier.

5.1 A roofer’s toolbox rests on an essentially frictionless 
metal roof with a 45° slope, secured by a horizontal rope 
as shown. Is the rope tension (a) greater than, (b) less 
than, or (c) equal to the box’s weight?G

O
T 

IT
? How does the

rope tension compare
with the toolbox
weight?

45°

5.2 Multiple Objects
LO 5.2 Solve Newton's law problems involving two connected objects.

In the preceding examples there was a single object of interest. But often we have several 
objects whose motion is linked. Our Newton’s law strategy still applies, with extensions to 
handle multiple objects.

INTERPRET Interpret the problem to be sure that you know what it’s asking and that Newton’s 
second law is the relevant concept. Identify the multiple objects of interest and all the individ-
ual interaction forces acting on each object. Finally, identify connections between the objects 
and the resulting constraints on their motions.

PROBLEM-SOLVING STRATEGY 5.1 Newton’s Second Law and 
Multiple Objects

(continued)
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78 Chapter 5 Using Newton’s Laws

DEVELOP Draw a separate free-body diagram showing all the forces acting on each object. 

Develop your solution plan by writing Newton’s law, F
S

net = ma
!
, separately for each object, 

with F
S

net expressed as the sum of the forces acting on that object. Then choose a coordinate 
system appropriate to each object, so you can express each Newton’s law equation in compo-
nents. The coordinate systems for different objects don’t need to have the same orientation.

EVALUATE At this point the physics is done, and you’re ready to execute your plan by solving 
the equations and evaluating the numerical answer(s), if called for. Write the components of 
Newton’s law for each object in the coordinate system you chose for each. You can then solve 
the resulting equations for the quantity(ies) you’re interested in, using the connections you 
identified to relate the quantities that appear in the equations for the different objects.

ASSESS Assess your solution to see whether it makes sense. Are the numbers reasonable? Do 
the units work out correctly? What happens in special cases—for example, when a mass, a 
force, an acceleration, or an angle gets very small or very large?

A 73-kg climber finds himself dangling over the edge of an ice cliff, 
as shown in Fig. 5.7. Fortunately, he’s roped to a 940-kg rock located 
51 m from the edge of the cliff. Unfortunately, the ice is frictionless, 
so the climber accelerates downward. What’s his acceleration, and 
how much time does he have before the rock goes over the edge? 
Neglect the rope’s mass.

INTERPRET We need to find the climber’s acceleration, and from 
that we can get the time before the rock goes over the edge. We 
identify two objects of interest, the climber and the rock, and we 
note that the rope connects them. There are two forces on the 
climber: gravity and the upward rope tension. There are three 
forces on the rock: gravity, the normal force from the surface, and 
the rightward-pointing rope tension.

DEVELOP Figure 5.8 shows a free-body diagram for each object. 
Newton’s law applies to each, so we write two vector equations:

climber:  T
S

c + F
S

gc = mc a
u

c

 rock:  T
S

r + F
S

gr + n
u = mr a

u

r

where the subscripts c and r stand for climber and rock, respectively. 
All forces are either horizontal or vertical, so we can use the same hori-
zontal/vertical coordinate system for both objects, as shown in Fig. 5.8.

EVALUATE Again, the component equations follow directly from the 
vector forms. There are no horizontal forces on the climber, so only the y 
equation is significant. We’re skilled enough now to skip the intermediate 

step of writing the components without their actual expressions, and we 
see from Fig. 5.8a that the y-component of Newton’s law for the climber 
becomes Tc - mc g = mcac. For the rock, the only horizontal force is 
the tension, pointing to the right or positive x-direction, so the rock’s x 
equation is Tr = mr ar. Since it’s on a horizontal surface, the rock has no 
vertical acceleration, so its y equation is n - mr g = 0. In writing these 
equations, we haven’t added the subscripts x and y because each vector 
has only a single nonzero component. Now we need to consider the con-
nection between rock and climber. That’s the rope, and its presence means 
that the magnitude of both accelerations is the same. Calling that magni-
tude a, we can see from Fig. 5.8 that ar = a and ac = -a. The value for 

EXAMPLE 5.4 Multiple Objects: Rescuing a Climber
Worked Example with Variation Problems

The rope connects
climber and rock,
so they have the
same acceleration.

51 m

FIGURE 5.7 A climber in trouble.

The rope tension
and gravity are
the only forces
acting on the 
climber.

There are three
forces on the
rock.

FIGURE 5.8 Our free-body diagrams for (a) the climber and (b) the rock.
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the rock is positive because T
S

r points to the right, which we defined as 
the positive x-direction; the value for the climber is negative because he’s 
accelerating downward, which we defined as the negative  y-direction. The 
rope, furthermore, has negligible mass, so the tension throughout it must 
be the same (more on this point just after the example). Therefore, the ten-
sion forces on rock and climber have equal magnitude T, so Tc = Tr = T. 
Putting this all together gives us three equations:

cli mber, y:   T - mc g = -mc a 
 rock, x:  T = mr a  
 rock, y:  n - mr g = 0

The rock’s x equation gives the tension, which we can substitute into 
the climber’s equation to get mr a - mc g = -mc a. Solving for a then 
gives the answer:

a =
mc g

mc + mr
=

173 kg219.8 m/s22
173 kg + 940 kg2 = 0.71 m/s2

We didn’t need the rock’s y equation, which just says that the normal 
force supports the rock’s weight.

ASSESS Again, let’s look at special cases. Suppose the rock’s mass 
is zero; then our expression gives a = g. In this case there’s no rope 
tension and the climber plummets in free fall. Also, acceleration de-
creases as the rock’s mass increases, so with an infinitely massive 
rock, the climber would dangle without accelerating. You can see 
physically why our expression for acceleration makes sense. The 
gravitational force mc g acting on the climber has to accelerate both 
rock and climber—whose combined mass is mc + mr. The result is an 
acceleration of mc g/1mc + mr2.

We’re not quite done because we were also asked for the time until 
the rock goes over the cliff, putting the climber in real trouble. We 
interpret this as a problem in one-dimensional motion from Chapter 2, 
and we determine that Equation 2.10, x = x0 + v0 t + 1

2 at2, applies. 
With x0 = 0 and v0 = 0, we have x = 1

2 at2. We evaluate by solving 
for t and using the acceleration we found along with x = 51 m for the 
distance from the rock to the cliff edge:

t = A2x
a

= A (2)(51 m)

0.71 m/s2 = 12 s

ROPES AND TENSION FORCES Tension forces can be confusing. In Example 5.4, the rock 
pulls on one end of the rope and the climber pulls on the other. So why isn’t the rope 
tension the sum of these forces? And why is it important to neglect the rope’s mass? The 
answers lie in the meaning of tension.

Figure 5.9 shows a situation similar to Example 5.4, with two people pulling on opposite 
ends of a rope with forces of 1 N each. You might think the rope tension is then 2 N, but 

it’s not. To see why, consider the part of the rope that’s highlighted in Fig. 5.9b. To the left is the 
hand pulling leftward with 1 N. The rope isn’t accelerating, so there must be a 1-N force pulling to 
the right on the highlighted piece. The remainder of the rope provides that force. We could have 
divided the rope anywhere, so we conclude that every part of the rope exerts a 1-N force on the 
adjacent rope. That 1-N force is what we mean by the rope tension.

As long as the rope isn’t accelerating, the net force on it must be zero, so the forces at the two ends 
have the same magnitude. That conclusion would hold even if the rope were accelerating—provided it 
had negligible mass. That’s often a good approximation in situations involving tension forces. But if a 
rope, cable, or chain has significant mass and is accelerating, then the tension force differs at the two 
ends. That difference, according to Newton’s second law, is the net force that accelerates the rope.

The hand pulls the
highlighted section
of the rope with a
1-N force to the left.

The dividing point could be anywhere,
so there’s a 1-N tension force
throughout the rope.

The net force on the
highlighted section is
zero, so the rest of the
rope must exert a 1-N
force to the right.

1 N 1 N

1 N 1 N1 N

(b)

(a)

FIGURE 5.9 Understanding tension forces.5.2 In the figure below we’ve replaced one of the hands from Fig. 5.9 with a hook 
attaching the rope to a wall. On the right, the hand still pulls with a 1-N force. How 
do the forces now differ from what they were in Fig. 5.9? (a) there’s no difference; 
(b) the force exerted by the hook is zero; (c) the rope tension is now 0.5 N

1 N
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5.3 Circular Motion
LO 5.3 Solve problems involving circular motion with one or more forces.

A car rounds a curve. A satellite circles Earth. A proton whirls around a giant particle ac-
celerator. Since they’re not going in straight lines, Newton tells us that a force acts on each 
(Fig. 5.10). We know from Section 3.6 that the acceleration of an object moving with con-
stant speed v in a circular path of radius r has magnitude v2/r and points toward the center 

F
S
F
S

A net force is necessary to
change the direction of motion.
The force points toward the
center of the curve.

FIGURE 5.10 When a car rounds a curve a 
force acts toward the center of the curve.
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80 Chapter 5 Using Newton’s Laws

of the circle. Newton’s second law then tells us that the magnitude of the net force on an 
object of mass m in circular motion is

 Fnet = ma =
mv2

r
  1uniform circular motion2 (5.1)

The force is in the same direction as the acceleration—toward the center of the circular 
path. For that reason it’s sometimes called the centripetal force, meaning center-seeking 
(from the Latin centrum, “center,” and petere, “to seek”).

Newton’s second law describes circular motion exactly as it does any other motion: by 
relating net force, mass, and acceleration. Therefore, we can analyze circular motion with 
the same strategy we’ve used in other Newton’s law problems.

LOOK FOR REAL 
FORCES Centripetal force is not 
some new kind of force. It’s just 
the name for any forces that keep 
an object in circular motion—
which are always real, physical 

forces. Common examples of forces involved 
in circular motion include the gravitational 
force on a satellite, friction between tires 
and road, magnetic forces, tension forces, 
normal forces, and combinations of these 
and other forces.

A ball of mass m whirls around in a horizontal circle at the end of a 
massless string of length L (Fig. 5.11). The string makes an angle u 
with the horizontal. Find the ball’s speed and the string tension.

EXAMPLE 5.5 Circular Motion: Whirling a Ball on a String

u

u

The radius is L cosu.

r = L cosu

L

FIGURE 5.11 A ball whirling on 
a string.

is purely horizontal, so ay = 0, and since the ball is in circular 
motion, ax = v2/r. But what’s r? It’s the radius of the circular 
path and, as Fig. 5.11 shows, that’s not the string length L but 
L cos u. With all these expressions, the components of Newton’s 
law become

x: T cos u =
mv2

L cos u
  y: T sin u - mg = 0

We can get the tension directly from the y equation: T = mg/sin u. 
Using this result in the x equation lets us solve for the speed v:

v = ATL cos2 u

m
= A1mg/sin u2L cos2 u 

m
= AgL cos2 u

sin u

ASSESS In the special case u = 90°, the string hangs vertically; 
here cos u = 0, so v = 0. There’s no motion, and the string ten-
sion equals the ball’s weight. But as the string becomes increas-
ingly horizontal, both speed and tension increase. And, just as 
in Example 5.2, the tension becomes very great as the string ap-
proaches horizontal. Here the string tension has two jobs to do: 
Its vertical component supports the ball against gravity, while 
its horizontal component keeps the ball in its circular path. The  
vertical component is always equal to mg, but as the string 
 approaches horizontal, that becomes an insignificant part of the 
overall tension—and thus the tension and speed grow very large.

INTERPRET This problem is similar to other Newton’s law problems 
we’ve worked involving force and acceleration. The object of interest 
is the ball, and only two forces are acting on it: gravity and the string 
tension.

DEVELOP Figure 5.12 is our free-body diagram showing the two 
forces we’ve identified. The relevant equation is Newton’s second law, 
which becomes

T
S

+ F
S

g = ma
!

The ball’s path is in a horizontal plane, so its acceleration is horizon-
tal. Then two of the three vectors in our problem—F

S
g and a

!
 —are 

horizontal or vertical, so in developing our strategy, we choose a hori-
zontal/vertical coordinate system.

REAL FORCES ONLY! Were you tempted to draw a third 
force in Fig. 5.12, perhaps pointing outward to balance the 
other two? Don’t! Because the ball is accelerating, the net 
force is nonzero and the individual forces do not balance. Or 
maybe you were tempted to draw an inward-pointing force, 
mv2/r. Don’t! The quantity mv2/r is not another force; it’s just 

the product of mass and acceleration that appears in Newton’s law 
(recall Fig. 4.3 and the associated tip). Students often complicate 
problems by introducing forces that aren’t there. That makes physics 
seem harder than it is!

EVALUATE We now need the x- and y-components of Newton’s 
law. Figure 5.12 shows that Fgy = -Fg = -mg and also gives 
tension components in terms of trig functions. The acceleration 

FIGURE 5.12 Our free-body diagram for the whirling ball.
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5.3 Circular Motion 81

Roads designed for high-speed travel have banked curves to give the 
normal force a component toward the center of the curve. That lets 
cars turn without relying on friction between tires and road. At what 
angle should a road with 350-m curvature radius be banked for travel 
at 90 km/h (25 m/s)?

INTERPRET This is another example involving circular motion and 
Newton’s second law. Although we’re asked about the road, a car on 
the road is the object we’re interested in, and we need to design the 
road so the car can round the curve without needing a frictional force. 
That means the only forces on the car are gravity and the normal force.

DEVELOP Figure 5.13 shows the physical situation, and Fig. 5.14 is 
our free-body diagram for the car. Newton’s second law is the applica-
ble equation, and here it becomes n

!
+ F

S
g = ma

!
. Unlike the skier of 

Example 5.1, the car isn’t accelerating down the slope, so a horizon-
tal/vertical coordinate system makes the most sense.

EVALUATE First we write Newton’s law in components. Gravity has 
only a vertical component, Fgy = -mg in our coordinate system, and 
Fig. 5.14 shows the two components of the normal force. The accel-
eration is purely horizontal and points toward the center of the curve; 
in our coordinate system that’s the positive x-direction. Since the car 
is in circular motion, the magnitude of the acceleration is v2/r. So the 
components of Newton’s law become

x: n sin u =
mv2

r
  y:  n cos u - mg = 0

where the 0 on the right-hand side of the y equation reflects the fact that 
we don’t want the car to accelerate in the vertical direction. Solving the 
y equation gives n = mg/cos u. Then using this result in the x equation 
gives mg sin u/cos u = mv2/r, or g tan u = v2/r. The mass canceled, 
which is good news because it means our banked road will work for a 
vehicle of any mass. Now we can solve for the banking angle:

u = tan-1 av2

gr
b = tan-1 a 125 m/s22

19.8 m/s221350 m2 b = 10°

ASSESS Make sense? At low speed v or large radius r, the car’s mo-
tion changes gently and it doesn’t take a large force to keep it on its 
circular path. But as v increases or r decreases, the required force in-
creases and so does the banking angle. That’s because the horizontal 
component of the normal force is what keeps the car in circular mo-
tion, and the steeper the angle, the greater that component. A simi-
lar thing happens when an airplane banks to turn; then the force of 
the air perpendicular to the wings acquires a horizontal component, 
and that’s what turns the plane (see this chapter’s opening photo and 
Problem 47).

EXAMPLE 5.6 Circular Motion: Engineering a Road

r
(to center of circle)

uu

FIGURE 5.13 Car on a 
banked curve.

The horizontal component
of the normal force holds
the car in its circular
path.

The center of the
curve is this way.

The vertical
component of the
normal force
balances gravity.

FIGURE 5.14 Our free-body diagram for the car on a banked curve.

The “Great American Revolution” roller coaster at Valencia, 
California, includes a loop-the-loop section whose radius is 6.3 m at 
the top. What’s the minimum speed for a roller-coaster car at the top 
of the loop if it’s to stay on the track?

INTERPRET Again, we have circular motion described by 
Newton’s second law. We’re asked about the minimum speed for 
the car to stay on the track. What does it mean to stay on the track? 
It means there must be a normal force between car and track; oth-
erwise, the two aren’t in contact. So we can identify two forces 
acting on the car: gravity and the normal force from the track.

DEVELOP Figure 5.15 shows the physical situation. Things are es-
pecially simple at the top of the track, where both forces point in the 
same direction. We show this in our free-body diagram, Fig. 5.16 (next 
page). Since that common direction is downward, it makes sense to 

EXAMPLE 5.7 Circular Motion: Looping the Loop
Worked Example with Variation Problems

n
u

n
uFg

S

Fg
S

At the top, both forces
point downward and the
car is momentarily in
uniform circular 
motion. Gravity is always downward,

but at this point the normal
force is horizontal.  The net
force isn’t toward the center,
and the car is slowing as well
as changing direction.

FIGURE 5.15 Forces on the roller-coaster car.

(continued)
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82 Chapter 5 Using Newton’s Laws

choose a coordinate system with the positive y-axis downward. The 
applicable equation is Newton’s second law, and with the two forces 
we’ve identified, that becomes n

!
+ F

S
g = ma

!
.

EVALUATE With both forces in the same direction, we need only the 
y-component of Newton’s law. With the downward direction positive, 
ny = n and Fgy = mg. At the top of the loop, the car is in circular motion, 
so its acceleration is toward the center—downward—and has magnitude 
v2/r. So ay = v2/r, and the y-component of Newton’s law becomes

n + mg =
mv2

r

Solving for the speed gives v = 11nr/m2 + gr. Now, the minimum 
possible speed for contact with the track occurs when n gets arbitrarily 
small right at the top of the track, so we find this minimum limit by 
setting n = 0. Then the answer is

vmin = 1gr = 219.8 m/s2216.3 m2 = 7.9 m/s

ASSESS Do you see what’s happening here? With the minimum speed, 
the normal force vanishes at the top of the loop, and gravity alone pro-
vides the force that keeps the object in its circular path. Since the mo-
tion is circular, that force must have magnitude mv2/r. But the force of 
gravity alone is mg, and vmin = 1gr follows directly from equating 
those two quantities. A car moving any slower than vmin would lose 
contact with the track and go into the parabolic trajectory of a projec-
tile. For a car moving faster, there would be a nonzero normal force 
contributing to the downward acceleration at the top of the loop. In 
the “Great American Revolution,” the actual speed at the loop’s top is 
9.7 m/s to provide a margin of safety. As with most problems involving 
gravity, the mass cancels. That’s a good thing because it means the safe 
speed doesn’t depend on the number or mass of the riders.

Although real roller coasters have a definite curvature radius at the 
top, the overall shape of the loop is more teardrop-like than circular. This 
gives a larger curvature radius near the bottom, and minimizes what would 
 otherwise be a very large acceleration experienced by riders at the bottom 
of the loop.

FIGURE 5.16 Our free-body diagram at the top of the loop.

FORCE AND MOTION We’ve said this before, but it’s worth noting again: Force doesn’t 
cause motion but rather change in motion. The direction of an object’s motion need not be 
the direction of the force on the object. That’s true in Example 5.7, where the car is moving 
horizontally at the top of the loop while subject to a downward force. What is in the same 
direction as the force is the change in motion, here embodied in the center-directed 
acceleration of circular motion.

CONCEPTUAL EXAMPLE 5.1 Bad Hair Day

What’s wrong with this cartoon showing riders on a loop-the-loop 
roller coaster (Fig. 5.17)?

EVALUATE Our objects of interest are the riders near the top of the 
roller coaster. We need to know the forces on them; one is obviously 
gravity. If the roller coaster is moving faster than Example 5.7’s 
minimum speed—and it better be, for safety—then there are also 
normal forces from the seats as well as internal forces acting to 
accelerate parts of the riders’ bodies.

Newton’s law relates net force and acceleration: F
S

= ma
!
. This 

equation implies that the net force and acceleration must be in the same 
direction. At the top of the loop that direction is downward. Every part 
of the riders’ bodies must therefore experience a net downward force. 
Again, Example 5.7 shows that the minimum force is that of gravity 
alone; for safety, there must be additional downward forces.

Now focus on the riders’ hair, shown hanging downward. Forces 
on an individual hair are gravity and tension, and our safety argument 
shows that they should both point in the same direction—namely, 
downward—to provide a downward force stronger than gravity alone. 
How, then, can the riders’ hair hang downward? That implies an up-
ward tension force, inconsistent with our argument. The artist should 
have drawn the hair “hanging” upward.

ASSESS Make sense? Yes: To the riders, it feels like up is down! 
They feel the normal force of the seat pushing down, and their 
hairs experience a downward-pointing tension force. Even though 

FIGURE 5.17 Conceptual Example 5.1.
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5.3 You whirl a bucket of water around in a vertical circle and the water doesn’t fall 
out. A Newtonian explanation of why the water doesn’t fall out is that (a) the cen-
tripetal force mv 2/r balances the gravitational force, (b) there’s a centrifugal force 
pushing the water upward, (c) the normal force plus the gravitational force together 
provide the downward acceleration needed to keep the water in its circular path, or 
(d) an upward normal force balances gravity.

G
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?

the riders wear seatbelts, they don’t need them: If the speed ex-
ceeds Example 5.7’s minimum, then they feel tightly bound to their 
seats. Is there some mysterious new force that pushes them against 
their seats and that pulls their hair up? No! Newton’s second  
law says the net force on the riders is in the direction of their  
acceleration—namely, downward. And for safety, that net force 
must be greater than gravity. It’s those additional downward 
forces—the normal force from the seat and the tension force in the 
hair—that make up feel like down.

MAKING THE CONNECTION Suppose the riders feel like they 
weigh 50% of what they weigh at rest on the ground. How does 
the roller coaster’s speed compare with Example 5.7’s minimum?

EVALUATE In Example 5.7, we found the speed in terms of the 
normal force n and other quantities: v = 11nr/m2 + gr . An 
apparent weight 50% of normal implies that n = mg/2. Then 
v = 11gr/22 + gr = 13/21gr. Example 5.7 shows that the mini-
mum speed is 1gr, so our result is 13/2 ≃ 1.22 times the minimum 
speed. And that 50% apparent weight the riders feel is upward!

5.4 Friction
LO 5.4 Describe the difference between static and kinetic friction.

LO 5.5 Incorporate the frictional force into problems involving other forces.

Your everyday experience of motion seems inconsistent with Newton’s first law. Slide a 
book across the table, and it stops. Take your foot off the gas, and your car coasts to a stop. 
But Newton’s law is correct, so these examples show that some force must be acting. That 
force is friction, a force that opposes the relative motion of two surfaces in contact.

On Earth, we can rarely ignore friction. Some 20% of the gasoline burned in your car 
is used to overcome friction inside the engine. Friction causes wear and tear on machinery 
and clothing. But friction is also useful; without it, you couldn’t drive or walk.

The Nature of Friction
Friction is ultimately an electrical force between molecules in different surfaces. When 
two surfaces are in contact, microscopic irregularities adhere, as shown in Fig. 5.18a. 
At the macroscopic level, the result is a force that opposes any relative movement of the 
surfaces.

Experiments show that the magnitude of the frictional force depends on the normal 
force between surfaces in contact. Figure 5.18b shows why this makes sense: As the nor-
mal forces push the surfaces together, the actual contact area increases. There’s more ad-
herence, and this increases the frictional force.

At the microscopic level, friction is complicated. The simple equations we’ll develop 
here provide approximate descriptions of frictional forces. Friction is important in every-
day life, but it’s not one of the fundamental physical interactions.

Frictional Forces
Try pushing a heavy trunk across the floor. At first nothing happens. Push harder; still 
nothing. Finally, as you push even harder, the trunk starts to slide—and you may notice 
that once it gets going, you don’t have to push quite so hard. Why is that?

With the trunk at rest, microscopic contacts between trunk and floor solidify into rela-
tively strong bonds. As you start pushing, you distort those bonds without breaking them; 

n
u

n
u

Friction results
from these 
regions where
surfaces adhere.

With increased
normal force, there’s
more contact area
and hence greater
friction.

(a)

(b)

FIGURE 5.18 Friction originates in the 
contact between two surfaces.
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As the applied force
increases, so does 
the frictional force. 
The net force remains
zero, and the object 
doesn’t move.

This is the maximum
frictional force.

Now the applied force
exceeds friction and 
the object accelerates.
The frictional force
decreases.

Now you push the trunk at constant
speed, so your applied force is equal
in magnitude to the lower force of
kinetic friction.

msn

mkn

Fr
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Time

At rest Constant speed

Accelerating

FIGURE 5.19 Behavior of frictional forces.

they respond with a force that opposes your applied force. This is the force of static 
friction, f

S
s. As you increase the applied force, static friction increases equally, as shown 

in Fig. 5.19, and the trunk remains at rest. Experimentally, we find that the maximum 
static-friction force is proportional to the normal force between surfaces, and we write

 fs … ms n  1static friction2 (5.2)

Here the proportionality constant ms (lowercase Greek mu, with the subscript s for “static”) 
is the coefficient of static friction, a quantity that depends on the two surfaces. The …  
sign indicates that the force of static friction ranges from zero up to the maximum value on 
the right-hand side.

Eventually you push hard enough to break the bonds between trunk and floor, and the 
trunk begins to move; this is the point in Fig. 5.19 where the frictional force suddenly 
drops. Now the microscopic bonds don’t have time to strengthen, so the force needed to 
overcome them isn’t so great. In Fig. 5.19 we’re assuming you then push with just enough 
force to overcome friction, so the trunk now moves with constant speed.

The weaker frictional force between surfaces in relative motion is the force of kinetic 
friction, f

S
k.  Again, it’s proportional to the normal force between the surfaces:

 fk = mk n  1kinetic friction2 (5.3)

where now the proportionality constant is mk, the coefficient of kinetic friction. Because 
kinetic friction is weaker, the coefficient of kinetic friction for a given pair of surfaces is 
less than the coefficient of static friction. Cross-country skiers exploit that fact by using 
waxes that provide a high coefficient of static friction for pushing against the snow and for 
climbing hills, while the lower kinetic friction permits effortless gliding.

Equations 5.2 and 5.3 give only the magnitudes of the frictional forces. The direction of 
the frictional force is parallel to the two surfaces, in the direction that opposes any applied 
force (Fig. 5.20a) or the surfaces’ relative motion (Fig. 5.20b).

Since they describe proportionality between the magnitudes of two forces, the coef-
ficients of friction are dimensionless. Typical values of mk range from less than 0.01 for 
smooth or lubricated surfaces to about 1.5 for very rough ones. Rubber on dry concrete—
vital in driving an automobile—has mk about 0.8, and ms can exceed 1. A waxed ski on dry 
snow has mk ≈ 0.04, while the synovial fluid that lubricates your body’s joints reduces 
mk to a low 0.003.

If you push a moving object with a force equal to the opposing force of kinetic friction, 
then the net force is zero and, according to Newton, the object moves at constant speed. 
Since friction is nearly always present, but not as obvious as the push of a hand or the 
pull of a rope, you can see why it’s so easy to believe that force is needed to make things 
move—rather than, as Newton recognized, to make them accelerate.

We emphasize that the equations describing friction are empirical expressions that 
approximate the effects of complicated but more basic interactions at the microscopic 
level. Our friction equations have neither the precision nor the fundamental character of 
Newton’s laws.

Applications of Friction
Static friction plays a vital role in everyday activities such as walking and driving. As 
you walk, your foot contacting the ground is momentarily at rest, pushing back against 
the ground. By Newton’s third law, the ground pushes forward, accelerating you forward 
(Fig. 5.21). Both forces of the third-law pair arise from static friction between foot and 
ground. On a frictionless surface, walking is impossible.

Similarly, the tires of an accelerating car push back on the road. If they aren’t slipping, 
the bottom of each tire is momentarily at rest (more on this in Chapter 10). Therefore the 
force is static friction. The third law then requires a frictional force of the road pushing 
forward on the tires; that’s what accelerates the car. Braking is the opposite: The tires push 
forward, and the road pushes back to decelerate the car (Fig. 5.22). The brakes affect only 
the wheels; it’s friction between tires and road that stops the car. You know this if you’ve 
applied your brakes on an icy road!
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With the block 
moving, kinetic 
friction opposes the 
relative motion.

With the block 
at rest, static
friction opposes
the applied force.

(b)

(a)

FIGURE 5.20 Direction of frictional forces.
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FIGURE 5.22 Friction stops the car.
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Your foot
pushes back
on the ground c

cso the
ground pushes 
forward on you.

FIGURE 5.21 Walking.
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5.4 Friction 85

A level road makes a 90° turn with radius 73 m. What’s the maximum 
speed for a car to negotiate this turn when the road is dry 1ms = 0.882 
and when the road is snow covered 1ms = 0.212?

INTERPRET This example is similar to Example 5.8, but now the 
frictional force acts perpendicular to the car’s motion, keeping it 
in a circular path. Because the car isn’t moving in the direction of 
the force, we’re dealing with static friction. The car is the object 
of interest, and again the forces are gravity, the normal force, and 
friction.

DEVELOP Figure 5.24 is our free-body diagram. Newton’s law is 
the applicable equation, and we’re dealing with the acceleration v2/r 
that occurs in circular motion. With the three forces acting on the car, 
Newton’s law is F

S
g + n

!
+ f

S
s = ma

!
. A horizontal/vertical coordi-

nate system is most appropriate, and now it’s most convenient to take 
the x-axis in the direction of the acceleration—namely, toward the 
center of the curve.

EVALUATE Again, the only horizontal force is friction, with mag-
nitude ms n. Here it points in the positive x-direction, as does the 

EXAMPLE 5.9 Frictional Forces: Steering

The frictional 
force points 
toward the
curve’s center.The dot

represents
the car,
whose direction
of motion is
out of the page.

FIGURE 5.24 Our free-body diagram for the cornering car.

The kinetic- and static-friction coefficients between a car’s tires and a 
dry road are 0.61 and 0.89, respectively. The car is initially traveling at 
90 km/h (25 m/s) on a level road. Determine (a) the minimum stopping 
distance, which occurs when the brakes are applied so that the wheels 
keep rolling as they slow and therefore static friction applies, and (b) 
the stopping distance with the wheels fully locked and the car skidding.

INTERPRET Since we’re asked about the stopping distance, this is 
ultimately a question about accelerated motion in one dimension—
the subject of Chapter 2. But here friction causes that acceleration, 
so we have a Newton’s law problem. The car is the object of interest, 
and we identify three forces: gravity, the normal force, and friction.

DEVELOP Figure 5.23 is our free-body diagram. We have a two-part 
problem here: First, we need to use Newton’s second law to find the 
acceleration, and then we can use Equation 2.11, v2 = v0

 2 + 2a ∆x, to 
relate distance and acceleration. With the three forces acting on the car, 
Newton’s law becomes F

S
g + n

!
+ f

S
f = ma

!
. A horizontal/vertical coor-

dinate system is most appropriate for the components of Newton’s law.

EVALUATE The only horizontal force is friction, which points in 
the -x -direction and has magnitude mn, where m can be either the 
 kinetic- or the static-friction coefficient. The normal force and gravity 
act in the vertical direction, so the component equations are

x: -mn = max  y: -mg + n = 0

Solving the y equation for n and substituting in the x equation gives the 
acceleration: ax = -mg. We then use this result in Equation 2.11 and 
solve for the stopping distance ∆x. With final speed v = 0, this gives

∆x =
v0

 2

-2ax
=

v0
2

2mg

Using the numbers given, we get (a) ∆x = 36 m for the minimum 
stopping distance (no skid; static friction) and (b) 52 m for the car 
skidding with its wheels locked (kinetic friction). The difference 
could well be enough to prevent an accident.

ASSESS Our result ax = -mg shows that a higher friction coeffi-
cient leads to a larger acceleration; this makes sense because friction 
is what causes the acceleration. What happened to the car’s mass? A 
more massive car requires a larger frictional stopping force for the 
same acceleration—but friction depends on the normal force, and the 
latter is greater in proportion to the car’s mass. Thus the stopping dis-
tance doesn’t depend on mass.

This example shows that stopping distance increases as the square 
of the speed. That’s one reason high speeds are dangerous: Doubling 
your speed quadruples your stopping distance!

EXAMPLE 5.8 Frictional Forces: Stopping a Car

FIGURE 5.23 Our free-body diagram for the braking car.

(continued)
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86 Chapter 5 Using Newton’s Laws

Today’s cars have computer-controlled antilock braking systems (ABS). These 
systems exploit the fact that static friction is greater than kinetic friction. Slam 
on the brakes of a non-ABS car and the wheels lock and skid without turning. 
The force between tires and road is then kinetic friction (part a in the figure). 
But if you pump the brakes to keep the wheels from skidding, then it’s the 
greater force of static friction (part b).

ABS improves on this brake-pumping strategy with a computer that inde-
pendently controls the brakes at each wheel, keeping each just on the verge of 
slipping. Drivers of ABS cars should slam the brakes hard in an emergency; the 
ensuing clatter indicates the ABS is working.

Although ABS can reduce the stopping distance, its real significance is in 
preventing vehicles from skidding out of control as can happen when you ap-
ply the brakes with some wheels on ice and others on pavement. Increasingly, 
today’s cars incorporate their computer-controlled brakes into sophisticated 
systems that enhance stability during emergency maneuvers.

APPLICATION Antilock Brakes

v
u

v
u

v
u

v
u

fk
u fs

u

When a wheel
skids, the force
is kinetic friction.

The bottom of
the rolling wheel
is momentarily at
rest, so the force
is static friction.

(a) (b)

2v
u

v = 0
u

A storm dumps new snow on a ski slope. The coefficient of static fric-
tion between the new snow and the older snow underneath is 0.46. 
What’s the maximum slope angle to which the new snow can adhere?

INTERPRET The problem asks about an angle, but it’s friction that holds 
the new snow to the old, so this is really a problem about the maximum 
possible static friction. We aren’t given an object, but we can model the 
new snow as a slab of mass m resting on a slope of unknown angle u. The 
forces on the slab are gravity, the normal force, and static friction f

S
s.

DEVELOP Figure 5.25 shows the model, and Fig. 5.26 is our free-
body diagram. Newton’s second law is the applicable equation, here 
with a

!
= 0

S
, giving F

S
g + n

!
+ f

S
s = 0

S
. We also need the maximum 

 static-friction force, given in Equation 5.2, fs max = ms n. As in Example 
5.1, a tilted coordinate system is simplest and is shown in Fig. 5.26. EVALUATE With the positive x-direction downslope, Fig. 5.26 

shows that the x-component of gravity is Fg sin u = mg sin u, while 
the frictional force acts upslope ( -x -direction) and has maxi-
mum magnitude ms n; therefore, fsx = -ms n. So the x- component 
of Newton’s law is mg sin u - ms n = 0. We can read the y- 
component from Fig. 5.26: -mg cos u + n = 0. Solving the y equa-
tion gives n = mg cos u. Using this result in the x equation then 
yields mg sin u - ms mg cos u = 0. Both m and g cancel, and we have 
sin u = ms cos u or, since tan u = sin u/cos u,

tan u = ms

EXAMPLE 5.10 Friction on a Slope: Avalanche!

FIGURE 5.26 Our free-body diagram for the snow slab.

acceleration of magnitude v2/r. So the x-component of Newton’s law 
is ms n = mv2/r. There’s no vertical acceleration, so the y-component 
is -mg + n = 0. Solving for n and using the result in the x equation 
give ms mg = mv2/r. Again the mass cancels, and we solve for v to get

v = 1ms gr

Putting in the numbers, we get v = 25 m/s (90 km/h) for the dry road 
and 12 m/s (44 km/h) for the snowy road. Exceed these speeds, and 

your car inevitably moves in a path with a larger radius—and that 
means going off the road!

ASSESS Once again, it makes sense that the car’s mass doesn’t mat-
ter. A more massive car needs a larger frictional force, and it gets 
what it needs because its larger mass results in a larger normal force. 
The safe speed increases with the curve radius r, and that, too, makes 
sense: A larger radius means a gentler turn, with less acceleration at a 
given speed. So less frictional force is needed.

u

m

FIGURE 5.25 A layer of snow, modeled as a slab on a sloping surface.
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5.4 Friction 87

You drag a trunk of mass m across a level f loor using a massless 
rope that makes an angle u with the horizontal (Fig. 5.27). Given a 
 kinetic-friction coefficient mk, what rope tension is required to move 
the trunk at constant speed?

INTERPRET Even though the trunk is moving, it isn’t accelerating, 
so here’s another problem involving Newton’s law with zero accel-
eration. The object is the trunk, and now four forces act: gravity, 
the normal force, friction, and the rope tension.

DEVELOP Figure 5.28 is our free-body diagram showing all four 
forces acting on the trunk. The relevant equation is Newton’s law. 
With no acceleration, it reads F

S
g + n

!
+ f

S
k + T

S
= 0

S
, with the 

magnitude of kinetic friction given by fk = mk n. All vectors except 
the tension force are horizontal or vertical, so the most sensible coor-
dinate system has horizontal and vertical axes.

EVALUATE From Fig. 5.28, we can write the components of Newton’s 
law: T cos u - mk n = 0 in the x-direction and T sin u - mg + n = 0 
in the y-direction. This time the unknown T appears in both equations. 
Solving the y equation for n gives n = mg - T sin u. Putting this n in 
the x equation then yields T cos u-mk1mg - T sin u2 = 0. Factoring 
terms involving T and solving, we arrive at the answer:

T =
mk mg

cos u + mk sin u

ASSESS Make sense? Without friction, we wouldn’t need any force 
to move the trunk at constant speed, and indeed our expression gives 
T = 0 in this case. On the other hand, if there is friction but u = 0, 
then sin u = 0 and we get T = mk mg. In this case the normal force 
equals the weight, so the frictional force is mk mg. Since the frictional 
force is horizontal, and with u = 0 we’re pulling horizontally, this is 
also the magnitude of the tension force. At intermediate angles, two 
effects come into play: First, the upward component of tension helps 
support the trunk’s weight, and that means less normal force is needed. 
With less normal force, there’s less friction—making the trunk easier 
to pull. But as the angle increases, less of the tension is horizontal, 
and that means a larger tension force is needed to overcome friction. 
In combination, these two effects mean there’s an optimum angle at 
which the rope tension is a minimum. Problem 72 explores this point 
further.

EXAMPLE 5.11 Friction: Dragging a Trunk

u

FIGURE 5.27 Dragging a trunk.

FIGURE 5.28 Our free-body diagram for the trunk.

5.4 The figure shows a logging vehicle pulling a redwood log. Is the frictional force 
in this case (a) less than, (b) equal to, or (c) greater than the weight multiplied by the 
coefficient of friction?

G
O

T 
IT

?

For the numbers given in this example, the result becomes 
u = tan-1 ms =  tan-110.462 = 25°.

ASSESS Make sense? Sure: The steeper the slope, the greater the fric-
tion needed to keep the snow from sliding. Two effects are at work 
here: First, as the slope steepens, so does the component of gravity 
along the slope. Second, as the slope steepens, the normal force gets 

smaller, and that reduces the frictional force for a given friction coef-
ficient. Note here that the normal force is not simply the weight mg of 
the snow; again, that’s because of the sloping surface.

The real avalanche danger comes at angles slightly smaller than 
our answer tan u = ms, where a thick snowpack can build up. Changes 
in the snow’s composition with temperature may decrease the friction 
coefficient and unleash an avalanche.
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88 Chapter 5 Using Newton’s Laws

5.5 Drag Forces
LO 5.6 Describe drag forces.

Friction isn’t the only “hidden” force that robs objects of their motion and obscures 
Newton’s first law. Objects moving through fluids like water or air experience drag forces 
that oppose the relative motion of object and fluid. Ultimately, drag results from collisions 
between fluid molecules and the object. The drag force depends on several factors, includ-
ing fluid density and the object’s cross-sectional area and speed.

Terminal Speed
When an object falls from rest, its speed is initially low and so is the velocity-dependent 
drag force. It therefore accelerates downward with nearly the gravitational acceleration g. 
But as the object gains speed, the drag force increases—until eventually the drag force and 
gravity have equal magnitudes. At that point the net force on the object is zero, and it falls 
with constant speed, called its terminal speed.

Because the drag force depends on an object’s area and the gravitational force depends 
on its mass, the terminal speed is lower for lighter objects with large areas. A parachute, 
for example, is designed specifically to have a large surface area that results, typically, in 
a terminal speed around 5 m/s. A ping-pong ball and a golf ball have about the same size 
and therefore the same area, but the ping-pong ball’s much lower mass leads to a terminal 
speed of about 10 m/s compared with the golf ball’s 50 m/s. For an irregularly shaped 
object, the drag and thus the terminal speed depend on how large a surface area the object 
presents to the air. Skydivers exploit this effect to vary their rates of fall.

Drag and Projectile Motion
In Chapter 3, we consistently neglected air resistance—the drag force of air—in projectile mo-
tion. Determining drag effects on projectiles is not trivial and usually requires computer calcula-
tions. The net effect, though, is that air resistance decreases the range of a projectile (Fig. 5.29). 
Despite the physicist’s need for computer calculations, others— especially  athletes—have a feel 
for drag forces that lets them play their sports by judging correctly the trajectory of a projectile 
under the influence of drag forces. You can explore drag forces further in Problem 73.

(a)

(b)

FIGURE 5.29 Projectile trajectories (a) 
without air resistance and (b) with 
 substantial air resistance. Note that 
(b) not only achieves less height and 
range but that the trajectory is no longer 
a symmetric parabola.

Chapter 5 Summary

Common forces include gravity, the normal force from surfaces, tension forces, and a force intro-
duced here: friction. Important examples are those where an object is accelerating, including in cir-
cular motion, and those where there’s no acceleration and therefore the net force is zero.

n
u

Fg
S

ff
u

A block sits at rest
on a slope.  The three
forces—gravity, normal
force, and friction—
sum to zero.

a
u

n
u

Fg
S

Here’s a car on
a banked turn.  
The forces on
it don’t sum to
zero because the
car is accelerating
toward the center
of the turn.

The big idea here is the same as in Chapter 4—namely, that Newton’s laws are a universal descrip-
tion of motion, in which force causes not motion itself but change in motion. Here we focus on 
Newton’s second law, extended to the richer and more complex examples of motion in two dimen-
sions. To use Newton’s law, we now sum forces that may point in different directions, but the result 
is the same: The net force determines an object’s acceleration.

Big Idea
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Key Concepts and Equations

Newton’s second law, F
S

net = ma
!
, is the key equation in this chapter. It’s crucial to remember that it’s 

a vector equation, representing a pair of scalar equations for its two components in two dimensions.

Applications

Solving Problems with Newton’s Laws
The problem-solving strategy in this chapter is exactly the same as in Chapter 4, except that in two dimensions the choice of coordinate system and 
the division of forces into components become crucial steps. You usually need both component equations to solve a problem.

A skier on a frictionless slope

n
u

Fg
S

Free-body diagram
showing the two 
forces acting

n
u

Fg
S

x

y

Coordinate system and vector components

u
u

Fgy = -mg cosu
Fgx = mg sinu

F
S

= ma
! S n

!
+ F

S
g = ma

! S enx + Fgx = max

ny + Fgy = may
S emg sin u = max

n - mg cos u = 0

When an object is in uniform circular motion, the net 
force is toward the center of the circle and has magnitude 
mv2>r. If the speed of the circular motion is changing, 
then the net force has an additional component tangent 
to the circle.

n
u

n
uFg

S

Fg
S

At the top, both forces
point downward and the
car is momentarily in
uniform circular 
motion. Gravity is always downward,

but at this point the normal
force is horizontal.  The net
force isn’t toward the center,
and the car is slowing as well
as changing direction.

n
u

v
u

Fg
S

f
u

A block moving to the right 
experiences a frictional force f
to the left.

Here the frictional
force is a little less
than the normal force,
so m is a little less than 1.

The magnitude of
the frictional force
depends on the
normal force:
f = mn.
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Mastering Physics Go to www.masteringphysics.com to access assigned homework and self-study tools such as 
Dynamic Study Modules, practice quizzes, video solutions to problems, and a whole lot more!

Learning Outcomes After finishing this chapter you should be able to:

LO 5.1 Use a strategic approach to solve problems involving Newton’s 
second law in two dimensions.
For Thought and Discussion Questions 5.8, 5.10; Exercises 
5.11, 5.12, 5.13, 5.14, 5.15, 5.16; Problems 5.38, 5.39, 5.40, 
5.41, 5.42, 5.44, 5.46, 5.75

LO 5.2  Solve Newton’s law problems involving two connected objects.
Exercises 5.17, 5.18. 5.19; Problems 5.51, 5.76

LO 5.3  Solve problems involving circular motion with one or more forces.
For Thought and Discussion Questions 5.2, 5.4, 5.5, 5.6, 5.9; 
Exercises 5.20, 5.21, 5.22, 5.23, 5.24, 5.25; Problems 5.43, 5.45, 
5.47, 5.48, 5.49, 5.54, 5.62, 5.63, 5.64, 5.65, 5.66, 5.67, 5.71

LO 5.4 Describe the difference between static and kinetic friction.
LO 5.5  Incorporate the frictional force into problems involving other 

forces.
For Thought and Discussion Questions 5.1, 5.3, 5.7, 5.9; 
Exercises 5.26, 5.27, 5.28, 5.29; Problems 5.50, 5.51, 5.52, 
5.53, 5.54, 5.55, 5.56, 5.57, 5.58, 5.59, 5.60, 5.61, 5.63, 5.66, 
5.67, 5.68, 5.70, 5.72, 5.74

LO 5.6 Describe drag forces.
Problem 5.73

Friction acts between surfaces to oppose their relative motion, and its strength 
depends on the normal force n

!
 between the surfaces. When the surfaces aren’t 

in relative motion, the force is static friction, given by fs … ms n. For surfaces in 
relative motion, the force is kinetic friction, given by fk = mk n. Here ms and mk 
are the coefficients of static and kinetic friction, respectively, where mk 6 ms.
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90 Chapter 5 Using Newton’s Laws

For Thought and Discussion

1. The force of static friction acts only between surfaces at rest. Yet 
that force is essential in walking and in accelerating or braking a 
car. Explain.

2. A jet plane flies at constant speed in a vertical circular loop. At 
what point in the loop does the seat exert the greatest force on the 
pilot? The least force?

3. In cross-country skiing, skis should easily glide forward but 
should remain at rest when the skier pushes back against the 
snow. What frictional properties should the ski wax have to 
achieve this goal?

4. Why do airplanes bank when turning?
5. Why is it easier for a child to stand nearer the inside of a rotating 

merry-go-round?
6. Gravity pulls a satellite toward Earth’s center. So why doesn’t the 

satellite actually fall to Earth?
7. Explain why a car with ABS brakes can have a shorter stopping 

distance.
8. A fishing line has a 20-lb breaking strength. Is it possible to 

break the line while reeling in a 15-lb fish? Explain.
9. You’re on a plane undergoing a banked turn, so steep that out the 

window you see the ground below. Yet your pretzels stay put on 
the seatback tray rather than sliding downward. Why?

10. A backcountry skier weighing 700 N skis down a steep slope, 
unknowingly crossing a snow bridge that spans a deep, hidden 
crevasse. If the bridge can support 580 N—meaning that’s the 
maximum normal force it can sustain without collapsing—is 
there any chance the mountaineer can cross safely? Explain.

Exercises and Problems

Exercises

Section 5.1 Using Newton’s Second Law
11. Two forces, both in the x9y plane, act on a 3.25-kg mass that ac-

celerates at 5.48 m/s2 in a direction 38.0° counterclockwise from 
the x-axis. One force has magnitude 8.63 N and points in the  
+x-direction. Find the other force.

12. Two forces act on a 3.1-kg mass that undergoes acceleration 
a
u = 0.91in - 0.27jn m/s2. If one force is -1.2in - 2.5jn N, what’s 
the other?

13. At what angle should you tilt an air table (on Earth) to simulate 
free fall at the surface of Mars, where g = 3.71 m/s2?

14. A skier starts from rest at the top of a 24° slope 1.3 km long. 
Neglecting friction, how long does it take to reach the bottom?

15. Studies of gymnasts show that their high rate of injuries to the 
Achilles tendon is due to tensions in the tendon that typically reach 
10 times body weight. That force is provided by a pair of muscles, 

25°

Achilles
tendon

25°

F2
S

F1
S

FIGURE 5.30 Exercise 5.15

FIGURE 5.31 Exercise 5.18

BIO

each exerting a force at 25° to the vertical, with their  horizontal com-
ponents opposite. For a 55-kg gymnast, find the force in each of 
these muscles.

16. Find the minimum slope angle for which the skier in Question 12 
can safely traverse the snow bridge.

Section 5.2 Multiple Objects
17. Your 12-kg baby sister pulls on the bottom of the tablecloth with 

all her weight. On the table, 60 cm from the edge, is a 6.8-kg 
roast turkey. (a) What’s the turkey’s acceleration? (b) From the 
time your sister starts pulling, how long do you have to intervene 
before the turkey goes over the edge? Neglect friction.

18. Suppose the angles shown in Fig. 5.31 are 60° and 20°. If the 
left-hand mass is 2.1 kg, what should the right-hand mass be so 
that it accelerates (a) downslope at 0.64 m/s2 and (b) upslope at 
0.76 m/s2?

19. Two unfortunate climbers, roped together, are sliding freely 
down an icy mountainside. The upper climber (mass 75 kg)  
is on a slope at 12° to the horizontal, but the lower climber 
(mass 63 kg) has gone over the edge to a steeper slope at 38°.  
(a) Assuming frictionless ice and a massless rope, what’s the ac-
celeration of the pair? (b) The upper climber manages to stop the 
slide with an ice ax. After the climbers have come to a complete 
stop, what force must the ax exert against the ice?

Section 5.3 Circular Motion
20. Suppose the Moon were held in its orbit not by gravity but by 

tension in a massless cable. Estimate the magnitude of the cable 
tension. (Hint: See Appendix E.)

21. Show that the force needed to keep a mass m in a circular path of 
radius r with period T is 4p2mr/T2.

22. A 940-g rock is whirled in a horizontal circle at the end of a 
1.30-m-long string. (a) If the breaking strength of the string is 
120 N, what’s the minimum angle the string can make with the 
horizontal? (b) At this minimum angle, what’s the rock’s speed?

23. You’re investigating a subway accident in which a train derailed 
while rounding an unbanked curve of radius 150 m, and you’re 
asked to determine whether the train exceeded the 50-km/h speed 
limit for this curve. You interview a passenger who had been stand-
ing and holding a strap; she noticed that an unused strap was hang-
ing at about a 15° angle to the vertical just before the accident. 
What do you conclude?

24. A tetherball on a 1.55-m rope is struck so that it goes into circular 
motion in a horizontal plane, with the rope making a 12.0° angle 
to the horizontal. What’s the ball’s speed?

25. An airplane goes into a turn 3.6 km in radius. If the banking an-
gle required is 28° from the horizontal, what’s the plane’s speed?

Section 5.4 Friction
26. Movers slide a 73-kg file cabinet along a floor where the coefficient 

of kinetic friction is 0.81. What’s the frictional force on the cabinet?
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37. Example 5.7: The bucket in the preceding problem can toler-
ate a maximum force of 65 N from water in the bucket; beyond 
that, the bucket will break. You fill the bucket with 3.96 kg of 
water and whirl it around in a vertical circle where the speed of 
the bucket at the top of the circle is 6.17 m/s. Does the bucket 
survive?

Problems
38. Repeat Example 5.1, this time using a horizontal/vertical coordi-

nate system.
39. A block is launched with initial speed 2.2 m/s up a 35° friction-

less ramp. How far up the ramp does it slide?
40. In the process of mitosis (cell division), two motor proteins pull 

on a spindle pole, each with a 7.3-pN force. The two force vec-
tors make a 65° angle. What’s the magnitude of the force the two 
motor proteins exert on the spindle pole?

41. A 14.6-kg monkey hangs from the middle of a massless rope, 
each half of which makes an 11.0° angle with the horizontal. 
What’s the rope tension? Compare with the monkey’s weight.

42. A camper hangs a 26-kg pack between two trees using separate 
ropes of different lengths, as shown in Fig. 5.32. Find the tension 
in each rope.

BIO

27. A hockey puck is given an initial speed of 14 m/s. If it comes to 
rest in 56 m, what’s the coefficient of kinetic friction?

28. Starting from rest, a skier slides 100 m down a 28° slope. How 
much longer does the run take if the coefficient of kinetic friction 
is 0.17 instead of 0?

29. A curve on a flat road has curvature radius 115 m, and a cau-
tion sign urges drivers to slow to 60 km/h before negotiating the 
curve. Is that speed sufficiently slow if the road is covered with 
snow, reducing the frictional coefficient to 0.20?

Example Variations
The following problems are based on two examples from the text. 
Each set of four problems is designed to help you make connections 
that enhance your understanding of physics and to build your confi-
dence in solving problems that differ from ones you’ve seen before. 
The first problem in each set is essentially the example problem 
but with different numbers. The second problem presents the same 
scenario as the example but asks a different question. The third 
and fourth problems repeat this pattern but with entirely different 
scenarios.

30. Example 5.4: A 63.2-kg climber finds herself dangling over 
the edge of a cliff (see Fig. 5.7). Fortunately, she’s connected 
by a rope of negligible mass to a 1220-kg rock located 48.6 m 
from the edge of the cliff. Unfortunately, the ice is frictionless, 
so the climber accelerates downward. What’s her acceleration, 
and how much time does she have before the rock goes over 
the edge?

31. Example 5.4: A 63.2-kg climber finds herself dangling over the 
edge of a cliff (see Fig. 5.7). Fortunately, she’s connected by a 
rope of negligible mass to a rock located 48.6 m from the edge of 
the cliff, and help is on the way. Unfortunately, it will be 36.5 s 
before help arrives, and the ice is frictionless. How massive must 
the rock be if she’s to be saved?

32. Example 5.4: In an experimental setup like that shown in 
Fig. 5.39 (with Problem 76), the masses are m1 = 14.9 g and 
m2 = 326 g and the distance between m2 and the end of the air 
track is 67.2 cm. Mass m1 is initially 1 m above the floor, so it 
won’t hit the floor before m2 reaches the end of the track. If both 
masses are initially at rest, how long will it take for m2 to reach 
the end of the track?

33. Example 5.4: Using an experimental setup like that shown in  
Fig. 5.39 (Problem 76), you want to simulate the acceleration of 
gravity on Jupiter’s moon Callisto. If m2 = 326 g, what should 
m1 be so that m1 accelerates downward at the same rate as if it 
were dropped just above the surface of Callisto? You’ll need to 
consult Appendix E.

34. Example 5.7: The “Full Throttle” roller coaster in California in-
cludes a loop-the-loop whose radius is 19.5 m at the top. What’s 
the minimum speed for a roller-coaster car at the top of the loop 
if it’s to stay on the track?

35. Example 5.7: A roller-coaster car is going at 17.7 m/s as it 
passes through the top of the loop-the-loop section of the 
“Full Throttle” roller coaster, where the curvature radius is 
19.5 m. What are the magnitude and direction normal force 
that the car’s seat exerts on a 72.1-kg passenger at the top of 
the loop?

36. Example 5.7: You whirl a bucket of water around in a vertical 
circle of radius 1.22 m. What minimum speed at the top of the 
circle will keep the water in the bucket?

71°
28°

FIGURE 5.32 Problem 42

m2

R m1

FIGURE 5.33 Problem 43

43. A mass m1 undergoes circular 
motion of radius R on a hori-
zontal frictionless table, con-
nected by a massless string 
through a hole in the table to 
a second mass m2 (Fig. 5.33). 
If m2 is stationary, find expres-
sions for (a) the string tension 
and (b) the period of the circu-
lar motion.

u1 = 70°

u2 = 20°

m

FIGURE 5.34 Problem 44

44. Patients with severe leg breaks 
are often placed in traction, with 
an external force countering mus-
cles that would pull too hard on 
the broken bones. In the arrange-
ment shown in Fig. 5.34, the 
mass m is 4.8 kg, and the pulleys 
can be considered massless and 
frictionless. Find the horizontal 
traction force applied to the leg.

BIO
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92 Chapter 5 Using Newton’s Laws

60. You try to move a heavy trunk, pushing down and forward at an 
angle of 50° below the horizontal. Show that, no matter how hard 
you push, it’s impossible to budge the trunk if the coefficient of 
static friction exceeds 0.84.

61. A block is shoved up a 22° slope with an initial speed of 1.4 m/s. 
The coefficient of kinetic friction is 0.70. (a) How far up the slope 
will the block get? (b) Once stopped, will it slide back down?

62. A ball at the end of a string of length L is being whirled around 
in a horizontal circle. The string makes an angle p>6 with the 
vertical. Find an expression for the ball’s speed.

63. You’re in traffic court, arguing against a speeding citation. You 
entered a 210-m-radius banked turn designed for 80 km/h, which 
was also the posted speed limit. The road was icy, yet you stayed 
in your lane, so you argue that you must have been going at the 
design speed. But police measurements show there was a fric-
tional coefficient m = 0.15 between tires and road. Is it possible 
you were speeding, and if so by how much?

45. Riders on the “Great American Revolution” loop-the-loop roller 
coaster of Example 5.7 wear seatbelts as the roller coaster ne-
gotiates its 6.3-m-radius loop at 9.7 m/s. At the top of the loop, 
what are the magnitude and direction of the force exerted on a 
60-kg rider (a) by the roller-coaster seat and (b) by the seatbelt? 
(c) What would happen if the rider unbuckled at this point?

46. A 45-kg skater rounds a 5.0-m-radius turn at 6.3 m/s. (a) What are 
the horizontal and vertical components of the force the ice exerts on 
her skate blades? (b) At what angle can she lean without falling over?

47. When a plane turns, it 
banks as shown in Fig. 5.35 
to give the wings’ lifting 
force F

S
w a horizontal com-

ponent that turns the plane. 
If a plane is flying level at 
950 km/h and the banking 
angle u is not to exceed 
40°, what’s the minimum 
curvature radius for the turn?

Fw
S

Fg
S

u

FIGURE 5.35 Problem 47

48. You whirl a bucket of water in a vertical circle of radius 85 cm. 
What’s the minimum speed that will keep the water from falling out?

49. A child sleds down an 8.5° slope at constant speed. What’s the fric-
tional coefficient between slope and sled?

50. The handle of a 22-kg lawnmower makes a 35° angle with the 
horizontal. If the coefficient of friction between lawnmower and 
ground is 0.68, what magnitude of force, applied in the direction 
of the handle, is required to push the mower at constant velocity? 
Compare with the mower’s weight.

51. Repeat Example 5.4, now assuming that the coefficient of kinetic 
friction between rock and ice is 0.057.

52. A bat crashes into the vertical front of an accelerating subway 
train. If the frictional coefficient between bat and train is 0.86, 
what’s the minimum acceleration of the train that will allow the 
bat to remain in place?

53. The coefficient of static friction between steel train wheels and 
steel rails is 0.58. The engineer of a train moving at 140 km/h 
spots a stalled car on the tracks 150 m ahead. If he applies the 
brakes so the wheels don’t slip, will the train stop in time?

54. A bug crawls outward from the center of a CD spinning at 200 
revolutions per minute. The coefficient of static friction between 
the bug’s sticky feet and the disc surface is 1.2. How far does the 
bug get from the center before slipping?

55. A 310-g paperback book rests on a 1.2-kg textbook. A force is ap-
plied to the textbook, and the two books accelerate together from rest 
to 96 cm/s in 0.42 s. The textbook is then brought to a stop in 0.33 s, 
during which time the paperback slides off. Within what range does 
the coefficient of static friction between the two books lie?

56. Children sled down a 41-m-long hill inclined at 25°. At the bot-
tom, the slope levels out. If the coefficient of friction is 0.12, how 
far do the children slide on the level ground?

57. In a typical front-wheel-drive car, 70% of the car’s weight rides 
on the front wheels. If the coefficient of friction between tires 
and road is 0.61, what’s the car’s maximum acceleration?

58. A police officer investigating an accident estimates that a moving 
car hit a stationary car at 25 km/h. Before the collision, the car 
left 47-m-long skid marks as it braked. The officer determines 
that the coefficient of kinetic friction was 0.71. What was the ini-
tial speed of the moving car?

59. A slide inclined at 35° takes bathers into a swimming pool. With 
water sprayed onto the slide to make it essentially frictionless, a 
bather spends only one-third as much time on the slide as when 
it’s dry. What’s the coefficient of friction on the dry slide?

CH

450 m

FIGURE 5.36 Problem 64

65. In a loop-the-loop roller coaster, show that a car moving too 
slowly would leave the track at an angle f given by cos f = v2/rg,  
where f is the angle made by a vertical line through the center of 
the circular track and a line from the center to the point where the 
car leaves the track.

66. Find an expression for the minimum frictional coefficient needed to 
keep a car with speed v on a banked turn of radius R designed for 
speed v0.

67. An astronaut is training in an earthbound centrifuge that con-
sists of a small chamber whirled horizontally at the end of a 
5.1-m-long shaft. The astronaut places a notebook on the vertical 
wall of the chamber and it stays in place. If the coefficient of 
static friction is 0.62, what’s the minimum rate, expressed in rev-
olutions per minute, at which the centrifuge must be revolving?

68. Disc brakes are becoming increasingly popular on bicycles of all 
types, in part because the brake disc can tolerate large forces that 
would damage the wheel rim in a rim-brake system. In a typical disc 
brake, the force of the brake pads against the brake disc is 3.5 kN. 
(a) If the coefficient of friction is 0.51, what’s the frictional force on 
the disc? (b) Compare with the frictional force associated with rim 
brakes, where the force of the brakes against the rim is 870 N and 
the frictional coefficient is 0.39. (This isn’t the whole story, though, 
as you’ll learn when you study torque in Chapter 10.)

CH

64. A space station is in the shape of 
a hollow ring, 450 m in diameter 
(Fig. 5.36). At how many revo-
lutions per minute should it ro-
tate in order to simulate Earth’s 
gravity—that is, so the normal 
force on an astronaut at the outer 
edge would equal the astronaut’s 
weight on Earth?

FIGURE 5.37 Problem 69

69. Driving in thick fog on a horizon-
tal road, you spot a  tractor-trailer 
truck jackknifed across the road. 
To avert a collision, you could 
brake to a stop or swerve in a 
circular arc, as suggested in  
Fig. 5.37. Which option offers the 
greater margin of safety? Assume 
that there is the same coefficient 
of static friction in both cases, 
and that you maintain constant 
speed if you swerve.
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m1

m2

FIGURE 5.39 Problem 32, 33, 
and 76

68.0°54.0°

13.9°

3.85 kg

9.28 kg

FIGURE 5.38 Problem 75
FIGURE 5.40 Passage 
Problems 77–80

70. A block is projected up an incline at angle u. It returns to its initial 
position with half its initial speed. Show that the coefficient of ki-
netic friction is mk = 3

5  tan u.
71. A 2.1-kg mass is connected to a spring with spring constant 

k = 150 N/m and unstretched length 18 cm. The two are 
mounted on a frictionless air table, with the free end of the spring 
attached to a frictionless pivot. The mass is set into circular mo-
tion at 1.4 m/s. Find the radius of its path.

72. A car moving at 77 km/h negotiates a 95-m-radius banked turn 
designed for 45 km/h. What’s the minimum coefficient of friction 
needed if the car is to stay on the road?

73. Moving through a liquid, an object of mass m experiences a resis-
tive drag force proportional to its velocity, Fdrag = -bv, where b is 
a constant. (a) Find an expression for the object’s speed as a function 
of time, when it starts from rest and falls vertically through the liquid. 
(b) Show that it reaches a terminal velocity mg/b.

74. A block is launched with speed v0 up a slope making an an-
gle u with the horizontal; the coefficient of kinetic friction is 
mk. (a) Find an expression for the distance d the block travels 
along the slope. (b) Use calculus to determine the angle that 
minimizes d.

CH

CH

CH

CH

m1 (g) m2 (g) a (m/s2) 

10.0 370 0.274

20.0 170 1.06

20.0 270 0.652

20.0 370 0.534

Passage Problems
A spiral is an ice-skating position in which the skater glides on one 
foot with the other foot held above hip level. It’s a required element 
in women’s singles figure-skating competition and is related to the 
arabesque performed in ballet. Figure 5.40 shows Canadian skater 
Kaetlyn Osmond executing a spiral during her medal- winning perfor-
mance at the 2018 Winter Olympics in Gangneung, South Korea.

77. From the photo, you can conclude 
that the skater is
a. executing a turn to her left.
b. executing a turn to her right.
c. moving in a straight line out of 

the page.
78. The net force on the skater

a. points to her left.
b. points to her right.
c. is zero.

79. If the skater were to execute the same 
maneuver but at higher speed, the tilt 
evident in the photo would be
a. less.
b. greater.
c. unchanged.

80. The tilt angle u that the skater’s body 
makes with the vertical is given ap-
proximately by u = tan-1(0.5). From this you can conclude that 
the skater’s centripetal acceleration has approximate magnitude
a. 0.
b. 0.5 m/s2.
c. 5 m/s2.
d. can’t be determined without knowing the skater’s speed.

Answers to Chapter Questions

Answer to Chapter Opening Question
The airplane tips, or banks, so there’s a horizontal component of the 
aerodynamic force on the wings. That component provides the mv2/r 
force that keeps the plane in its circular path. The vertical component 
of the aerodynamic force is what balances the gravitational force, 
keeping the plane aloft.

Answers to GOT IT? Questions
5.1  (c) Equal—but only because of the 45° slope. At larger angles, the 

tension would be greater than the weight; at smaller angles, less.
5.2  (a) The left hand in Fig. 5.9 and the hook in this figure play exactly 

the same role, balancing the 1-N tension force in the rope.
5.3 (c)
5.4  (c) Greater because the chain is pulling downward, making the 

normal force greater than the log’s weight.

76. Figure 5.39 shows an apparatus 
used to verify Newton’s second 
law. A “pulling mass” m1 hangs 
vertically from a string of neg-
ligible mass that passes over a 
pulley, also of negligible mass 
and with nearly frictionless 
bearings. The other end of the 
string is attached to a glider of 
mass m2 riding on an essen-
tially frictionless, horizontal 
air track. Both m1 and m2 may be varied by placing additional 
masses on the pulling mass and glider. The experiment consists 
of starting the glider from rest and letting the pulling mass ac-
celerate it down the track. Three photogates are used to time 
the glider over two distance intervals, and an experimental 
value for its acceleration is determined from these data, using 
constant- acceleration equations from Chapter 2. The table in 
the next column lists the measured acceleration for a number of 
mass combinations. (a) Determine a quantity that, when plotted 
on the horizontal axis of a graph, should result in a straight line 
of slope g when acceleration is plotted on the vertical axis. (b) 
Make your plot, fit a line to the plotted data, and report the ex-
perimentally determined value of g.

m1 (g) m2 (g) a (m/s2) 

10.0 170 0.521

10.0 270 0.376

DATA

75. A florist asks you to make 
a window display with two 
hanging pots as shown in 
Fig. 5.38. The florist is ad-
amant that the strings be as 
invisible as possible, so you 
decide to use fishing line 
but want to use the thinnest 
line you can. Will fishing 
line that can withstand 100 
N of tension work?
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Figure 6.1a shows a skier starting from rest at the top of a uniform slope. 
What’s the skier’s speed at the bottom? You can solve this problem by ap-

plying Newton’s second law to find the skier’s constant acceleration and then 
the speed. But what about the skier in Fig. 6.1b? Here the slope is contin-
uously changing and so is the acceleration. Constant-acceleration equations 
don’t apply, so solving for the details of the skier’s motion would be difficult.

There are many cases where motion involves changing forces and  
accelerations. In this chapter, we introduce the important physical concepts of 
work and energy. These powerful concepts enable us to “shortcut” the de-
tailed application of Newton’s law to analyze these more complex situations. 
But these new concepts have significance far beyond their practical applica-
tions in problem solving. Energy, in particular, is a fundamental aspect of the 
 universe—a “substance” akin to, and every bit as real as, matter itself. In fact, as 
you’ll see when you explore relativity in Chapter 33, energy and matter are re-
ally both aspects of a single “substance,” linked by Einstein’s equation E = mc 2.

6.1 Energy
LO 6.1 Explain the terms energy and work in the context of physics.

“Energy” is a word you hear every day. You buy energy when you fill your 
car’s gas tank. You use energy to heat your home and cook your food. You 
experience the awesome energy of a hurricane, a tornado, or an explosion. You 
sense the energy inherent in a truck barreling down the highway, or the energy 
generated by an airplane’s engines as it surges down the runway. A power line 
crosses the countryside and, even though you can’t see anything but the wires, 
you know that the line is carrying energy to a distant city. Your cell phone 
dies, its battery discharged, and you know that it needs to be replenished with 
energy. Your own body produces energy, which you sense as you climb a 

Skills & Knowledge You’ll Need
■■ Newton’s second law of motion 

(Section 4.2)

■■ The forces due to gravity and springs 
(Sections 4.4 and 4.6)

■■ The calculus operation of integration 
(we’ll introduce this if you  
haven’t yet seen it in your calculus 
course)

Learning Outcomes
After finishing this chapter you should be able to:

LO 6.1 Explain the terms energy and work in the context of physics.

LO 6.2 Find the work done by a force that doesn’t vary with  
position.

LO 6.3 Calculate the dot product of two vectors.

LO 6.4 Find the work done by a force that varies with position.

LO 6.5 Define kinetic energy and find its value given an object’s mass 
and speed.

LO 6.6 State the work–kinetic energy theorem.

LO 6.7 Distinguish energy from power.

Energy, Work, and Power

8
Gravity

7
Conservation of 

Energy65
Using Newton’s 

Laws

4
Force and Motion

Climbing a mountain, these cyclists do work 
against gravity. Does that work depend on the 
route chosen?
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6.1 Energy 95

mountain, cycle, walk, or even think. You may have helped insulate or weatherize a home 
to reduce its energy loss. And the colossal rate at which humankind consumes energy is 
much on our minds as we become increasingly aware of the impact energy consumption 
has on our planet.

Actually, words like “consume,” “generate,” “produce,” and “loss,” although widely 
used in the context of energy, are misleading. That’s because energy is conserved—mean-
ing that it can change forms but cannot be created or destroyed. Much of your study of 
energy will involve ways to transform energy from one form to another or transfer it from 
place to place—all the while conserving the total amount of energy. Conservation of en-
ergy is a profound idea in physics, one whose richness we’ll explore throughout the rest 
of this book.

Here in Part 1, we’ll focus on mechanical energy, associated with of macroscopic 
objects such as cars, planets, baseballs, people, and springs. This chapter introduces 
kinetic energy, the energy of motion, as applied to such macroscopic objects. You’ll see 
how the act of doing work is one way to transfer energy to an object. Chapter 7 will 
add the idea of potential energy and will develop a statement of energy conservation as 
it applies to mechanical energy. We’ll also need to consider so-called internal energy, 
associated with random motions and configuration changes at the molecular level. In  
Part 3 (thermodynamics), we’ll explore internal energy and show how it’s incorporated 
into a broader statement of energy conservation. In Part 3, you’ll also see how heat  
describes another way of transferring energy. In Part 4, on electricity and magnetism, 
we’ll introduce forms of electromagnetic energy and associated energy-transfer pro-
cesses. In Part 6, you’ll see that energy concepts survive even into the realm of quan-
tum physics—no mean feat given that many other ideas from classical physics become 
meaningless in the quantum realm.

Energy and Systems
What’s got energy? A moving car does. So does a whole highway full of cars. A warm 
house has energy. So does a stretched spring. A hurricane has energy, and so does our 
whole planet. When we’re accounting for energy and studying energy flows and transfor-
mations, we need to have in mind a system whose energy we’re interested in. Typically 
the system contains one or more objects, and it’s defined by a closed boundary. Everything 
within the boundary is part of the system, whereas everything outside comprises the en-
vironment that surrounds the system. Like coordinate axes, a system is something you 
define for your convenience. Once you’ve defined a system, then you can talk about the 
system’s energy and what forms it takes; about energy transformations within the system; 
and about any transfers of energy into or out of the system. Figure 6.2 shows conceptually 
how to think about energy in the context of a system, while the Application shows how the 
idea behind Fig. 6.2 is applied in the important case of climate modeling.

Energy in Energy out

System

K U

Eint EEM

The boundary separates the system from its surroundings.

Energy can flow into and out of the system, as mechanical energy, as heat, or as electromagnetic energy.

Energy flows within the system and 
transforms from one form to another. Absent 
inflows and outflows, the total energy in the 
system wouldn’t change.

FIGURE 6.2 Diagram showing energy flows both within a system and across its boundaries, as 
well as transformations between different types of energy within the system. We show four 
common forms of energy: kinetic energy (K) and potential energy (U), subjects of this chapter 
and the next; internal or thermal energy (Eint), a subject of Part 3; and electromagnetic energy, 
covered in Part 4.

This skier’s acceleration
is constant.

This skier’s acceleration
varies as the slope changes.

(a)

(b)

FIGURE 6.1 Two skiers.
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96 Chapter 6 Energy, Work, and Power

In this chapter, we’ll often choose our system to coincide with a single object, and in 
that case we’ll use the term “object” interchangeably with “system.” But in Chapter 7, 
we’ll need to consider systems comprising at least two interacting objects, and when we 
get to Chapter 9, we’ll be dealing with systems of many particles. In these more complex 
situations we’ll have to decide carefully what’s in our system and what’s outside it, and 
we’ll need to make more use of systems terminology.

6.2 Work
LO 6.2 Find the work done by a force that doesn’t vary with position.

LO 6.3 Calculate the dot product of two vectors.

One way to transfer energy to a system is to act on the system with an external force—a 
force applied by an entity that isn’t part of the system. In this case we say that the force 
does work on the system. Doing work is an inherently mechanical process, involving the 
concept of force that you’re already familiar with from Newtonian mechanics.

Imagine carrying a box upstairs. You have to apply an upward force on the box as you 
climb the stairs. Define the box as your system, and the force you apply is an external 
force that does work on the system. Thus you transfer energy from your body to the box 
by doing mechanical work.

You’ve already got an intuitive sense of work and how it’s quantified. Make that box 
heavier, or the stairs higher, and you do more work. Or try pushing a stalled car: The 
harder you push, or the farther you push, the more work you do. The precise definition of 
work reflects your intuition:

For an object moving in one dimension, the work W done on the object by constant ap-
plied force F

S
 is

 W = Fx ∆x (6.1)

where Fx is the component of the force in the direction of the object’s motion and ∆x is 
the object’s displacement.

Figure 6.2 isn’t just a pedagogical aid to understand-
ing energy and systems concepts; it’s a framework for 
realistic models used to characterize energy-related 
systems ranging from biological organisms to nuclear 
power plants to Earth’s climate. The figure here shows 
the energy–systems concept as climate scientists use it. 
The system comprises Earth and its atmosphere. Many 
of the arrows represent energy flows and transforma-
tions between Earth and atmosphere—that is, within  
the system. These involve electromagnetic energy emit-
ted in the form of infrared radiation, as well as energy 
associated with warm air and water vapor rising into the 
atmosphere. The three arrows at the top show energy  
exchanges with the planet’s surroundings—that is, en-
ergy crossing the system boundary. As you’ll see in 
Chapter 16, the incoming and outgoing f lows must  
balance for climate to remain stable.

APPLICATION  Climate Modeling

Reflected 
sunlight

Incoming 
sunlight

Outgoing 
infrared

Emitted by
atmosphere

Convection and
evaporation

Greenhouse
gases
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The force F
S

 need not be the net force. If you’re interested, for example, in how much 
work you must do to drag a heavy box across the floor, then F

S
 is the force you apply and 

W is the work you do.
Equation 6.1 shows that the SI unit of work is the newton-meter 1N #  m2. One 

 newton-meter is given the name joule, in honor of the 19th-century British physicist and 
brewer James Joule.

Our definition of work involves an object’s displacement. What that means is clear in 
the case of a rigid object like a block or a ball. But what about a spring, which can stretch 
or compress in response to an applied force? Or your own body, whose configuration al-
ters as you lift, run, jump, dance, or swim? Or a complex system of many parts, with 
a force applied to just one part? In all these cases our definition of work still applies, 
provided we interpret “displacement” to mean the displacement of the point at which the 
force is applied. For a system consisting of a rigid object, that’s the same as the object’s 
displacement. For a system consisting of a flexible object or many independent particles, 
it’s not necessarily the same as the system’s overall displacement.

Figure 6.3 considers several cases of work done on rigid objects. According to Equation 
6.1, the person pushing the car in Fig. 6.3a does work equal to the force he applies times 
the distance the car moves. But the person pulling her luggage in Fig. 6.3b does work 
equal to only the horizontal component of the force she applies times the distance the lug-
gage moves. Furthermore, by our definition, the waiter of Fig. 6.3c does no work on the 
tray as he carries it at constant velocity. Why not? Because the force on the tray is vertical 
while the tray’s displacement is horizontal; there’s no component of force in the direction 
of the tray’s motion.

Work can be positive or negative (Fig. 6.4). When a force acts in the same general di-
rection as the motion, it does positive work. A force acting at 90° to the motion does no 
work. And when a force acts to oppose motion, it does negative work.

F
S

F
S

F
S

Force and displacement
are in the same direction,
so work W = F∆x.

Force and displacement 
are not in the same direction;
here W = Fx∆x.

Force and displacement 
are perpendicular;
no work is done.

Fx

Fy
∆x ∆x

∆x

(a) (b) (c)

FIGURE 6.3 Work depends on the orientation of force and displacement.

F
S

F
S

F
S

F
S

A force acting in the same direction as an
object’s motion does positive work.

A force acting at right angles to the motion
does no work. A force acting opposite the motion does

negative work.

A force acting with a component in the 
same direction as the object’s motion does
positive work.

(a)

(c) (d)

(b)

W 7 0 W 7 0

W = 0 W 6 0

∆r ∆r

∆r ∆r

uu

u u

FIGURE 6.4 The sign of the work depends 
on the relative directions of force and 
motion. We use ∆r

!
 here to indicate that 

the displacement can be any vector.
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98 Chapter 6 Energy, Work, and Power

Work and the Scalar Product
Work is a scalar quantity; it’s specified completely by a single number and has no direction. 
But Fig. 6.3 shows that work involves a relation between two vectors: the force F

S
and the 

displacement, designated more generally by ∆r
!
. If u is the angle between these two vectors, 

then the component of the force along the direction of motion is F cos u, and the work is

 W = 1F cos u21∆r2 = F ∆r cos u (6.2)

This equation is a generalization of our definition 6.1. If we choose the x-axis along ∆r
!
, 

then ∆r = ∆x and F cos u = Fx, so we recover Equation 6.1.
Equation 6.2 shows that work is the product of the magnitudes of the vectors F

S
 and ∆r

!
 

and the cosine of the angle between them. This combination occurs so often that it’s given 
a special name: the scalar product of two vectors.

The scalar product of any two vectors A
S

 and B
S

 is defined as

 A
S # B

S
= AB cos u (6.3)

where A and B are the magnitudes of the vectors and u is the angle between them.

The term scalar product should remind you that A
S # B

S
 is itself a scalar, even though it’s 

formed from two vectors. A centered dot designates the scalar product; for this reason, it’s 
also called the dot product. Figure 6.6 gives a geometric interpretation.

The scalar product is commutative: A
S # B

S
= B

S # A
S

, and it’s also distributive:
A
S # 1B

S
+ C

S2 = A
S # B

S
+ A

S # C
S

.  With vectors expressed in unit vector notation, 
Problem 52 shows how the distributive law gives a simple form for the scalar product. If 
A
S

= Ax in + Ay jn + Az kn  and B
S

= Bx in + By jn + Bz kn, then

The person in Fig. 6.3a pushes with a force of 650 N, moving the 
car a distance of 4.3 m. How much work does he do?

INTERPRET This problem is about work. We identify the car as 
the object on which the work is done and the person as the agent 
doing the work.

DEVELOP Figure 6.3a is our drawing. Equation 6.1, W = Fx ∆x, 
is the relevant equation, so our plan is to apply that equation. The 

force is in the same direction as the displacement, so 650 N is the 
component we need.

EVALUATE We apply Equation 6.1 to get

W = Fx ∆x = 1650 N214.3 m2 = 2.8 kJ

ASSESS Make sense? The units work out, with newtons times me-
ters giving joules—here expressed in kilojoules for convenience.

EXAMPLE 6.1 Calculating Work: Pushing a Car

A
S

B
S

u

The component of B in the
direction of A is B cosu.

The scalar product is the 
magnitude of A multiplied by
the component of B in the 
direction of A.

B cosu

A

A # B = AB cosu
S S

S

S

S

S

S

FIGURE 6.6 Geometric interpre-
tation of the scalar product.

The airline passenger in Fig. 6.3b exerts a 60-N force on her lug-
gage, pulling at 35° to the horizontal. How much work does she do 
in pulling the luggage 45 m on a level floor?

INTERPRET Again, this example is about work—here done by 
the passenger on the luggage.

DEVELOP Equation 6.1, W = Fx ∆x, applies here, but because the 
displacement is horizontal while the force isn’t, we need to find  
the horizontal force component. We’ve redrawn the force vector in 
Fig. 6.5 to determine Fx.

EVALUATE Applying Equation 6.1 to the x-component from  
Fig. 6.5, we get

W = Fx ∆x = 3160 N21cos 35°24145 m2 = 2.2 kJ

ASSESS The answer of 2.2 kJ is less than the product of 60 N and 
45 m, and that makes sense because only the x-component of that 
60-N force contributes to the work.

EXAMPLE 6.2 Calculating Work: Pulling Luggage

FIGURE 6.5 Our sketch for Example 6.2.
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6.3 Forces That Vary 99

 A
S # B

S
= A xB x + A yB y + A zB z (6.4)

Comparing Equation 6.2 with Equation 6.3 shows that the work done by a constant 
force F

S
 moving an object through a straight-line displacement ∆r

!
 can be expressed using 

the dot product:

 W = F
S # ∆r

!
 (6.5)

As the examples below show, either Equation 6.3 or Equation 6.4 can be used in evaluat-
ing the dot product in this expression for work.

W is the work done by a force 
that doesn’t vary with position 
and that acts on an object as it 
moves in a straight line.

F
S

 is the force.
∆ru is the displacement the 
object undergoes while the 
force F

S
 acts on it.

The dot product means to multiply the mag-
nitudes of the two vectors and the sine of the 
angle between them: F

S # ∆rS = F∆ r sin u.

A tugboat pushes a cruise ship with force F
S

= 1.2 in + 2.3 jn MN, 
moving the ship along a straight path with displacement 
∆r

!
= 380in + 460jn m. Find (a) the work done by the tugboat and 

(b) the angle between the force and displacement.

INTERPRET Part (a) is about calculating work given force and dis-
placement in unit vector notation. Part (b) is less obvious, but know-
ing that work involves the angle between force and displacement 
provides a clue, suggesting that the answer to (a) may lead us to (b).

DEVELOP Figure 6.7 is a sketch of the two vectors, which will serve 
as a check on our final answer. For (a), we want to use Equation 6.5, 
W = F

S # ∆r
!
, with the scalar product in unit vector notation given  

by Equation 6.4. That will give us the work W. We also have the vec-
tors F

S
 and ∆r

!
, so we can find their magnitudes. That suggests a strategy  

for (b): Given the work and the vector magnitudes, we can write 
Equation 6.3 with a single unknown, the angle u that we’re asked to find.

EVALUATE For (a), we use Equations 6.5 and 6.4, respectively, to write

W = F
S # ∆r

!
= Fx ∆x + Fy ∆y

 = 11.2 MN21380 m2 + 12.3 MN21460 m2 = 1510 MJ

The first equality is from Equation 6.5; the second gives the sca-
lar product in unit vector form from Equation 6.4. ∆x and ∆y are 
the components of the displacement ∆r

!
. Now that we have the 

work, we can get the angle. The magnitude of a vector comes from  

the Pythagorean theorem, as expressed in Equation 3.1. So we  

have F = 2Fx
2 + Fy

2 = 2(1.2 MN)2 + (2.3 MN)2 = 2.59 MN; 

a similar calculation gives ∆r = 597 m. Now we solve Equation 6.3 
for u:

u = cos-1 a W
F ∆r

b = cos-1 a 1510 MJ
12.59 MN21597 m2 b = 12°

ASSESS This small angle is consistent with our sketch in Fig. 6.7. 
And it makes good physical sense: A tugboat is most efficient when 
pushing in the direction the ship is supposed to go. Note how the 
units work out in that last calculation: MJ in the numerator and 
MN #  m in the denominator. But 1 N #  m is 1 J, so that’s MJ in the 
denominator, too, giving the dimensionless cosine.

EXAMPLE 6.3 Work and the Scalar Product: A Tugboat

In the drawing of
F, each space on
the graph paper 
represents 1 MN;  
for ∆r, it’s 100 m.

u

S

FIGURE 6.7 Our sketch of the vectors in Example 6.3.

6.1 Two objects are each displaced the same distance, one by a force F pushing in 
the direction of motion and the other by a force 2F pushing at 45° to the direction of 
motion. Which force does more work? (a) F; (b) 2F; (c) they do equal work

G
O
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?

6.3 Forces That Vary
LO 6.4 Find the work done by a force that varies with position.

Often the force applied to an object varies with position. Important examples include elec-
tric and gravitational forces, which vary with the distance between interacting objects. The 
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The work done in moving this
distance ∆x is approximately c
cthis force
times ∆x.

Making the rectangles smaller makes the 
approximation more accurate.

The exact value for the work is the area
under the force-versus-position curve.

(a)

(b)

(c)

Position, x

Fo
rc

e,
 F

(x
)

∆x
x1 x2

Position, x

Fo
rc

e,
 F

(x
)

x1 x2

Position, x

Fo
rc

e,
 F

(x
)

∆x
x1 x2

FIGURE 6.9 Work done by a varying force.

The force F(x) varies with
position x.

Fo
rc

e,
 F

(x
)

Position, x
x2x1

FIGURE 6.8 A varying force.

force of a spring that we encountered in Chapter 4 provides another example; as the spring 
stretches, the force increases.

Figure 6.8 is a plot of a force F that varies with position x. We want to find the work done as 
an object moves from x1 to x2. We can’t simply write F1x2 - x12; since the force varies, there’s 
no single value for F. What we can do, though, is divide the region into rectangles of width ∆x, 
as shown in Fig. 6.9a. If we make ∆x small enough, the force will be nearly constant over the 
width of each rectangle (Fig. 6.9b). Then the work ∆W done in moving the width ∆x of one such 
rectangle is approximately F1x2 ∆x, where F1x2 is the force at the midpoint x of that rectangle. 
We write F1x2 to show explicitly that the force is a function of position. Note that the quantity 
F1x2 ∆x is the area of the rectangle expressed in the appropriate units (N #m, or, equivalently, J).

Suppose there are N rectangles. Let xi be the midpoint of the ith rectangle. Then the to-
tal work done in moving from x1 to x2 is given approximately by the sum of the individual 
amounts of work ∆Wi associated with each rectangle, or

 W ≃ a
N

i = 1
∆Wi = a

N

i = 1
F1xi2 ∆x (6.6)

How good is this approximation? That depends on how small we make the rectangles. 
Suppose we let them get arbitrarily small. Then the number of rectangles grows arbitrarily 
large. In the limit of infinitely many infinitesimally small rectangles, the approximation in 
Equation 6.6 becomes exact (Fig. 6.9c). Then we have

 W = lim
∆xS0

 a
i

F1xi2 ∆x (6.7)

where the sum is over all the infinitesimal rectangles between x1 and x2. The quantity on the 
right-hand side of Equation 6.7 is the definite integral of the function F1x2 over the interval 
from x1 to x2. We introduce special symbolism for the limiting process of Equation 6.7:

 W = L
x

2

x1

 F1x2 dx  awork done by a varying
force in one dimension b  (6.8)

Equation 6.8 means exactly the same thing as Equation 6.7: It tells us to divide the interval 
from x1 to x2 into many small rectangles of width ∆x, to multiply the value of the function 
F1x2 at each rectangle by the width ∆x, and to sum those products. In the limit of infinitely 
many infinitesimally small rectangles, the result of this process gives us the value of the defi-
nite integral. You can think of the symbol1 in Equation 6.8 as standing for “sum” and the sym-
bol dx as a limiting case of arbitrarily small ∆x. The definite integral has a simple geometric 
interpretation: It’s the area under the curve F1x2 between the limits x1 and x2 (Fig. 6.9c).

Computers approximate the infinite sum implied in Equation 6.8 using a large number 
of very small rectangles. But calculus often provides a better way.

Tactics 6.1 INTEGRATING

In your calculus course you’ve learned, or will soon learn, that integrals and derivatives are inverses. In 
Section 2.2, you saw that the derivative of xn is nxn-1; therefore, the integral of xn is 1xn+12/1n + 12, as you can 
verify by differentiating. We determine the value of a definite integral by evaluating this expression at upper 
and lower limits and subtracting:

 L
x

2

x1

 xn dx =
xn+1

n + 1
 2 x2

x1

=
x2

 n+1

n + 1
-

x1
 n+1

n + 1
 (6.9)

where the middle term, with the vertical bar and the upper and lower limits, is a shorthand notation for the differ-
ence given in the rightmost term. Appendix A includes a review of integration and a table of common integrals.

Stretching a Spring
A spring provides an important example of a force that varies with position. We’ve seen that 
an ideal spring exerts a force proportional to its displacement from equilibrium: F = -kx, 
where k is the spring constant and the minus sign shows that the spring force is opposite 
the direction of the displacement. It’s not just coiled springs that we’re interested in here; 
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F
S

You pull on the 
spring, stretching
it a distance x.
The spring pulls
back on you.  
Both forces have
magnitude kx.(a)

(b)

xx = 0

Fspring
S

FIGURE 6.10 Stretching a spring.

many physical systems, from molecules to skyscrapers to stars, behave as though they contain 
springs. The work and energy considerations we develop here apply to those systems as well.

The force exerted by a stretched spring is -kx, so the force exerted on the spring by the 
external stretching force is +kx. If we let x = 0 be one end of the spring at equilibrium and if 
we hold the other end fixed and pull the spring until its free end is at a new position x, as shown 
in Fig. 6.10, then Equation 6.8 shows that the work done on the spring by the external force is

 W = L
x

0
 F1x2 dx = L

x

0
 kx dx = 1

2 kx2 2 x
0

= 1
2 kx2 - 1

2 k1022 = 1
2 kx2 (6.10)

where we used Equation 6.9 to evaluate the integral. The more we stretch the spring, the 
greater the force we must apply—and that means we must do more work for a given amount 
of additional stretch. Figure 6.11 shows graphically why the work depends quadratically on 
the displacement. Although we used the word stretch in developing Equation 6.10, the result 
applies equally to compressing a spring a distance x from equilibrium. Note here that we’re 
explicitly using the displacement of the force application point—the end of the spring—which 
in this case of this flexible system isn’t the same as the displacement of the whole spring.

This is the force
when the spring
is fully stretched.

Force increases with
stretch c

kx2

kx

x0
Distance, x

Fo
rc

e,
 F

1
2

cso the work is
half of (kx)(x), or
the area of the
triangle,    kx2.1

2

FIGURE 6.11 Work done in 
stretching a spring.

An elastic cord used in bungee jumping is normally 11 m long and has 
spring constant k = 250 N/m. At the lowest point in a jump, the cord 
length has doubled. How much work has been done on the cord?

INTERPRET The bungee cord behaves like a spring—as we can tell 
because we’re given its spring constant. So this example is about 
the work done in stretching a spring. We’re told the 11-m-long 
cord length doubles in length, so it’s stretched another 11 m.

DEVELOP Equation 6.10 gives the work done in stretching the cord 
a distance x from its unstretched configuration.

EVALUATE Applying Equation 6.10 gives

W = 1
2 kx2 = 11

221250 N/m2111 m22 = 15 kN #m = 15 kJ

ASSESS As you’ll see shortly, that’s just about equal to the work 
done by gravity on a 70-kg person dropping the 22-m distance from 
the attachment point of the cord to its full stretched extent. You’ll 
see in the next chapter why this is no coincidence.

EXAMPLE 6.4 The Spring Force: Bungee Jumping
Worked Example with Variation Problems

CONCEPTUAL EXAMPLE 6.1 Bungee Details

In Example 6.4, is the work done as the cord stretches its final meter 
greater than, less than, or equal to the work done in the first meter of 
stretch?

EVALUATE We’re asked to compare the work done during the be-
ginning and end of the bungee cord’s stretch. We know that work is 
the area under the force–distance curve. We’ve sketched the force–
distance curve in Fig. 6.12, highlighting the first and last meters. 
The figure makes it clear that the area associated with the last me-
ter of stretch is much larger. Therefore, the work is greater.

The area under the
curve is much larger
on the right than on
the left, showing that
it takes much more
work for the last
meter of stretch.

FIGURE 6.12 Conceptual Example 6.1.

(continued )
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102 Chapter 6 Energy, Work, and Power

ASSESS Makes sense! Once the cord has stretched 10 m, it exerts a 
large force. That makes it much harder to stretch farther—and thus 
the final meter requires a lot of work. The first meter takes much less 
work because at first the cord exerts very little force.

MAKING THE CONNECTION Find the work involved in stretching 
during the first and last meters, and compare.

EVALUATE We can use Equation 6.10, but instead of the limits 0 and 
x, we’ll use 0 and 1 m for the first meter of stretch, and 10 and 11 m 
for the last meter. The results are 125 J and 2.6 kJ. Stretching the final 
meter takes more than 20 times the work required for the first meter!

Workers pushing a 180-kg trunk across a level f loor encounter a 
10-m-long region where the floor becomes increasingly rough. The 
coefficient of kinetic friction here is given by mk = m0 + ax2, where 
m0 = 0.17, a = 0.0062 m-2, and x is the distance from the beginning 
of the rough region. How much work does it take to push the trunk 
across the region?

INTERPRET This example asks for the work needed to push the 
trunk. To move the trunk at constant speed, the workers must apply 
a force equal in magnitude to the frictional force. That force varies 
with position, so we’re dealing with a varying force.

DEVELOP Our drawing, the force–position curve in Fig. 6.13, empha-
sizes that we have a varying force. Therefore, we have to integrate using 

Equation 6.8, W = L
x

2

x1

 F1x2 dx. And we need to know the frictional 

force, which is given by Equation 5.3: fk = mkn. On a level floor, the 
normal force is equal in magnitude to the weight, mg, so Equation 6.8 

becomes W = L
x

2

x1

 mkmg dx = L
x2

x1

 mg1m0 + ax22 dx.

EVALUATE We evaluate the integral using Equation 6.9. Actually, 
we have two integrals here: one of dx alone and the other of x2 dx. 
According to Equation 6.9, the former gives x and the latter x3/3. So 
the result is

W = L
x

2

x1

 mg1m0 + ax22  dx = mg1m0 x + 1
3 ax32 2 x2

x1

 =  mg31m0 x2 + 1
3 ax2

32 - 1m0 x1 + 1
3 ax1

324
Putting in the values given for m0, a, and m, using g = 9.8 m/s2, and 
taking x1 = 0 and x2 = 10 m for the endpoints of the rough interval, 
we get 6.6 kJ for our answer.

ASSESS Is this answer reasonable? Figure 6.13 shows that the maxi-
mum force is approximately 1.3 kN. If this force acted over the entire 
10-m interval, the work would be about 13 kJ. But it’s approximately 
half that because the coefficient of kinetic friction and therefore the 
force start out quite low. You can see that the area under the curve in 
Fig. 6.13 is about half the area of the full rectangle, so our answer of 
6.6 kJ makes sense.

EXAMPLE 6.5 A Varying Friction Force: Rough Sliding

The shaded area gives
the work done in crossing
the rough patch.

1500

1000

0 2 4 6 8 10

500Fo
rc

e,
 F

 (
N

)

Position, x (m)

0

FIGURE 6.13 Force versus position for Example 6.5.

DON’T JUST MULTIPLY! When 
force depends on position, there’s 
no single value for the force, so 
you can’t just multiply force by 
distance to get work. You need 
either to integrate, as in 

Example 6.5, or to use a result that’s been 
derived by integration, as with the equation 
W = 1

2 kx2 used in Example 6.4.

Force and Work in Two and Three Dimensions
Sometimes a force varies in both magnitude and direction or an object moves on a curved 
path; either way, the angle between force and motion may vary. Then we have to take the 
scalar products of the force F

S
with small displacements ∆r

!
, writing ∆W = F

S # ∆r
!
 for 

the work involved in one such small displacement. Adding them all gives the total work, 
which in the limit of very small displacements becomes a line integral:

 W = L
r
!
2

r
!
1

 F
S # dr

!
 (6.11)

where the integral is taken over a specific path between positions r
!
1 and r

!
2. We’ve high-

lighted Equation 6.11 because it’s the most general expression for work. Figure 6.14 shows 

W is the work done by a force that 
may vary with position as it acts 
on an object moving on an arbi-
trary path. When the force doesn’t 
vary and the path is straight, this 
reduces to Equation 6.5.

F
S

 is the force, whose magnitude and/
or direction may vary along the path.

dr
!
 is an infinitesimal vector 

along the path.

The integral sums all the work done in 
traversing the path, starting at position 
r
!
1 and ending at r

!
2.

The product F
S # dr

!
 is the infinitesimal 

work done in traversing dr
!
.

()*
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6.4 Kinetic Energy 103

6.2 Three forces have magnitudes in newtons that are numerically equal to these 
quantities: (a) x, (b) x2, and (c) 1x, where x is the position in meters. Each force 
acts on an object as it moves from x = 0 to x = 1 m. Notice that all three forces 
have the same values at the two endpoints—namely, 0 N and 1 N. Which of the 
forces (a), (b), or (c) does the most work? Which does the least?
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6.4 Kinetic Energy
LO 6.5 Define kinetic energy and find its value given an object’s mass and speed.

LO 6.6 State the work–kinetic energy theorem.

Doing work on a system by applying a force is the mechanical way to transfer energy to 
the system. How does that energy manifest itself? Under some conditions it shows up as 
kinetic energy—energy of the system’s motion. Here we develop a relation between the 
net work done by all forces acting on a system that consists of a single rigid object and 
the resulting change in the object’s kinetic energy. In the process we’ll develop a simple 
formula for kinetic energy.

We’ll start by evaluating the net work done on the object and then apply Newton’s 
second law. With our single object, the net work is the work done by the sum of all forces 
acting on the object—that is, by the net force. So we’ll use the net force in our expression 
for work. We’ll consider the simple case of one-dimensional motion, with force and dis-
placement along the same line. In that case, Equation 6.8 gives the net work:

Wnet = LFnet dx

But the net force can be written in terms of Newton’s second law: Fnet = ma, or 
Fnet = m dv/dt, so

Wnet = Lm 
dv
dt

 dx

The quantities dv, dt, and dx arose as the limits of small numbers ∆v, ∆t, and ∆x. In 
calculus, you’ve seen that the limit of a product or quotient is the product or quotient of the 
individual terms involved. For these reasons, we can rearrange the symbols dv, dt, and dx 
to rewrite our expression in the form

Wnet = Lm dv 
dx
dt

But dx/dt = v, so we have

Wnet = Lmv dv

Path begins
at position r1...

dW = F?dr 
is the work done
moving along dr.

...and ends
at r2.

F
S

dr
F
S

S

dr

S

SF
S

F
S

FIGURE 6.14 Meaning of Equation 6.11. 
We focus on a very small segment dr

!
 of  

the path, so small that it’s essentially 
straight and the force doesn't vary sig-
nificantly over the small segment.

Since gravity is vertical,
only the y-component 
contributes to the work.
That contribution is
∆W = mg ∆y.

All the y-components
add up to the total 
height h, so the total
work is mgh.

h

∆x

∆y
∆r

u

FIGURE 6.15 A car climbs a hill with varying 
slope.

the meaning of this equation—which reduces to the much simpler Equation 
6.5 when the force doesn’t vary and the path is straight. We won’t pursue line 
integrals further here, but they’ll prove useful in later chapters.

Work Done against Gravity
When an object moves upward or downward on an arbitrary path, the angle 
between its displacement and the gravitational force varies. But here we don’t 
really need the line integral of Equation 6.11 because we can consider any path 
as consisting of small horizontal and vertical steps (Fig. 6.15). Only the verti-
cal steps contribute to the work, which then becomes simply W = mgh, where 
h is the total height the object rises—a result that’s independent of the particu-
lar path taken. (As in our earlier work with gravity, this result holds only near 
Earth’s surface, where we can neglect the variation in gravity with height.)
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The integral here is like 1x dx, which we evaluate by raising the exponent and dividing by 
the new exponent. What about the limits? Suppose our object starts at some speed v1 and 
ends at v2. Then we have

 Wnet = L
v2

v1

 mv dv = 1
2 mv2 2 v2

v1

= 1
2 mv2

 2 - 1
2 mv1

2 (6.12)

Equation 6.12 shows that an object has associated with it a quantity 12 mv2 that changes when, 
and only when, net work is done on the object. This quantity is the object’s kinetic energy:

The kinetic energy K of an object of mass m moving at speed v is

 K = 1
2 mv2 (6.13)

Like velocity, kinetic energy is a relative term; its value depends on the reference frame 
in which it’s measured. But unlike velocity, kinetic energy is a scalar. And since it depends 
on the square of the velocity, kinetic energy is never negative. All moving objects possess 
kinetic energy.

Equation 6.12 equates the change in an object’s kinetic energy with the net work done 
on the object, a result known as the work–kinetic energy theorem:

Work–kinetic energy theorem: The change in an object’s kinetic energy is equal to 
the net work done on the object:

 ∆K = Wnet (6.14)

Equations 6.12 and 6.14 are equivalent statements of the work–kinetic energy theorem.
We’ve seen that work can be positive or negative; the work–kinetic energy theorem 

(Equation 6.14) therefore shows that changes in kinetic energy are correspondingly positive 
or negative. If I stop a moving object, for example, I reduce its kinetic energy from 12 mv2 to 
zero—a change ∆K = -1

2 mv2. So I do negative work by applying a force directed opposite 
to the motion. By Newton’s third law, the object exerts an equal but oppositely directed force 
on me, therefore doing positive work 12 mv2 on me. So an object of mass m moving at speed v 
can do work equal to its initial kinetic energy, 12 mv2, if it’s brought to rest.

K is kinetic energy—the energy 
associated with an object’s motion. 
No vectors signs; it’s a scalar.

m is the object’s mass.

v is the object’s speed. It’s 
squared, showing that direction 
of motion doesn’t matter.

∆K is the change in an 
object’s kinetic energy.

Wnet is the work done on the object 
by the net force—the vector sum 
of all the forces acting on it.

The equal sign shows that kinetic 
energy changes only when net 
work is done on an object.

A 1400-kg car enters a passing zone and accelerates from 70 to 
95 km/h. (a) How much work is done on the car? (b) If the car then 
brakes to a stop, how much work is done on it?

INTERPRET Here we’re asked about work, but we aren’t given any forces 
as we were in previous examples. However, we now know the work–
kinetic energy theorem. Kinetic energy depends on speed, which we’re 
given. So this is a problem involving the work–kinetic energy theorem.

DEVELOP The relevant equation is Equation 6.14 or its more explicit 
form, Equation 6.12. Since we’re given speeds, it’s easiest to work with 
Equation 6.12.

EVALUATE For (a), Equation 6.12 gives

Wnet = 1
2 mv2

2 - 1
2 mv1

2 = 1
2 m1v2

2 - v1
22

 = 11
2211400 kg23126.4 m/s22 - 119.4 m/s224 = 220 kJ

where we converted the speeds to meters per second before doing 
the calculation. The work–kinetic energy theorem applies equally 
to the braking car in (b), for which v1 = 26.4 m/s and v2 = 0. Here 
we have

Wnet = 1
2 m1v2

2 - v1
22 = 11

2211400 kg2302 - 126.4 m/s224
 = -490 kJ

EXAMPLE 6.6 Work and Kinetic Energy: Passing Zone
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6.5 Power 105

Energy Units
Since work is equal to the change in kinetic energy, the units of energy are the same as 
those of work. In SI, the unit of energy is therefore the joule, equal to 1 newton-meter. 
In science, engineering, and everyday life, though, you’ll encounter other energy units. 
Scientific units include the erg, used in the centimeter-gram-second system of units and 
equal to 10-7 J; the electronvolt, used in nuclear, atomic, and molecular physics; and 
the calorie, used in thermodynamics and to describe the energies of chemical reactions. 
English units include the foot-pound and the British thermal unit (Btu); the latter is 
commonly used in engineering of heating and cooling systems. Your electric company 
charges you for energy use in kilowatt-hours 1kW #h2; we’ll see in the next section how 
this unit relates to the SI joule. Appendix C contains an extensive table of energy units and 
conversion factors as well as the energy contents of common fuels.

6.5 Power
LO 6.7 Distinguish energy from power.

Climbing a flight of stairs requires the same amount of work no matter how fast you go. 
But it’s harder to run up the stairs than to walk. Harder in what sense? In the sense that 
you do the same work in a shorter time; the rate at which you do the work is greater. We 
define power as the rate of doing work:

If an amount of work ∆W is done in time ∆t, then the average power P is

 P =
∆W
∆t
  1average power2 (6.15)

Often the rate of doing work varies with time. Then we define the instantaneous power 
as the average power taken in the limit of an arbitrarily small time interval ∆t:

 P = lim
∆tS0

 
∆W
∆t

=
dW
dt
  1instantaneous power2 (6.16)

Equations 6.15 and 6.16 both show that the units of power are joules/second. One J/s is 
given the name watt (W) in honor of James Watt, a Scottish engineer and inventor who 
was instrumental in developing the steam engine as a practical power source. Watt himself 
defined another unit, the horsepower. One horsepower (hp) is about 746 J/s or 746 W.

When power is constant, so the average power and instantaneous power are the same, 
Equation 6.15 shows that the amount of work W done in time ∆t is

 W = P ∆t (6.17)

6.3 For each situation, tell whether the net work done on a soccer ball is (a) posi-
tive, (b) negative, or (c) 0. (1) You carry the ball out to the field, walking at constant 
speed. (2) You kick the stationary ball, starting it flying through the air. (3) The ball 
rolls along the field, gradually coming to a halt.

G
O

T 
IT

?

P is average power—the 
average rate of doing work. ∆W is the work done…

…during the time interval ∆t.

ASSESS Make sense? Yes: There’s a greater change in speed and 
thus in kinetic energy in the braking case, so the magnitude of the 
work involved is greater. Our second answer is negative because 

stopping the car means applying a force that opposes its motion—
and that means negative work is done on the car.
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106 Chapter 6 Energy, Work, and Power

EXAMPLE 6.7 Power: Climbing Mount Washington

A 55-kg hiker ascends New Hampshire’s Mount Washington, making 
the vertical rise of 1300 m in 2 h. A 1500-kg car drives up the Mount 
Washington Auto Road, taking half an hour. Neglecting energy lost to 
friction, what’s the average power output for each?

INTERPRET This example is about power, which we identify as the 
rate at which hiker and car expend energy. So we need to know the 
work done by each and the corresponding time.

DEVELOP Equation 6.15, P = ∆W/∆t, is relevant, since we want the 
average power. To use this equation we’ll need to find the work done 
in climbing the mountain. As you learned in Section 6.2, work done 
against gravity is independent of the path taken and is given by mgh, 
where h is the total height of the climb.

EVALUATE We apply Equation 6.15 in the two cases:

 Phiker =
∆W
∆t

=
155 kg219.8 m/s2211300 m2

12.0 h213600 s/h2 = 97 W

 Pcar =
∆W
∆t

=
11500 kg219.8 m/s2211300 m2

10.50 h213600 s/h2 = 11 kW

ASSESS Do these values make sense? A power of 97 W is typical of 
the sustained long-term output of the human body, as you can confirm 
by considering a typical daily diet of 2000 “calories” (actually kilocal-
ories; see Exercise 29). The car’s output amounts to 14 hp, which you 
may find low, given that the car’s engine is probably rated at several 
hundred horsepower. But cars are notoriously inefficient machines, 
with only a small fraction of the rated horsepower available to do use-
ful work. Most of the rest is lost to friction and heating.

When power isn’t constant, we can consider small amounts of work ∆W, each taken over 
so small a time interval ∆t that the power is nearly constant. Adding all these amounts of 
work and taking the limit as ∆t becomes arbitrarily small, we have

 W = lim
∆tS0

 aP ∆t = L
t2

t1

P dt (6.18)

where t1 and t2 are the beginning and end of the time interval over which we calculate the work.

EXAMPLE 6.8 Energy and Power: Yankee Stadium

Each of the 884 floodlights at Yankee Stadium uses electrical energy 
at the rate of 1650 W. How much does it cost to run these lights during 
a 5-h night game, if electricity costs 21./kW #h?

INTERPRET We’re given a single f loodlight’s power consumption 
and the cost of electricity per kilowatt-hour, a unit of energy. So 
this problem is about calculating energy given power and time, 
with a little economics thrown in.

DEVELOP Since the power is constant, we can calculate the energy 
used over time with Equation 6.17, W = P ∆t.

EVALUATE At 1.65 kW each, all 884 floodlights use energy at the 
rate 1884211.65 kW2 = 1459 kW. Then the total for a 5-h game is

W = P ∆t = 11459 kW215 h2 = 7295 kW #h

The cost is then 17295 kW #h21+0.21/kW #h2 = +1532.

ASSESS Do we have the right units here? Yes: With power in 
 kilowatts and time in hours, the energy comes out immediately in 
kilowatt-hours.

Humankind’s rate of energy consumption is a matter of concern, especially 
given our dependence on fossil fuels whose carbon dioxide emissions threaten 
global climate change. Just how rapidly are we using energy?

Example 6.7 suggests that the average power output of the human body is 
approximately 100 W. Before our species harnessed fire and domesticated ani-
mals, that was all the power available to each of us. But in today’s high-energy 
societies, we use energy at a much greater rate. For the average citizen of the 
United States in the early 21st century, for example, the rate of energy con-
sumption is about 11 kW—the equivalent of more than a hundred human bod-
ies. The rate is lower in most other industrialized countries, but it still amounts 
to many tens of human bodies’ worth.

What do we do with all that energy? And where does it come from? The 
first pie chart shows that most of the United States’s energy consumption goes 
for industry and transportation, with lesser amounts used in the residential and 
commercial sectors. The second chart is a stark reminder that our energy sup-
ply is neither diversified nor renewable, with some 81% coming from the fossil 
fuels coal, oil, and natural gas. That’s going to have to change in the coming 
decades, as a result of both limited fossil-fuel resources and the environmental 
consequences of fossil-fuel combustion—especially climate change. Much of 
what you learn in an introductory physics course has direct relevance to the 
energy challenges we face today.

APPLICATION Energy and Society

M06_WOLF8559_04_SE_C06.indd   106 13/11/18   12:20 PM



6.5 Power 107

Power and Velocity
We can derive an expression relating power, applied force, and velocity by noting that the 
work dW done by a force F

S
acting on an object that undergoes an infinitesimal displace-

ment d r
!
 follows from Equation 6.5:

dW = F
S # dr

!

Dividing both sides by the associated time interval dt gives the power:

P =
dW
dt

= F
S # dr

!

dt

But dru/dt is the velocity v
!
, so

P = F
S # v!

Transportation
28%

Residential
21%

Commercial
19%

Industrial
32%

Coal
15%

Gas
29%Oil

37%

Nuclear
8.6%

Hydro
2.5%

Biomass
4.9%

Wind, solar,
geothermal

3.0%

Riding your 9.0-kg bicycle at a steady 16 km/h 14.4 m/s2, you expe-
rience an 8.2-N force from air resistance. If your mass is 66 kg, what 
power must you supply on level ground and going up a 5° incline?

INTERPRET This example asks about power in two different situ-
ations: one with air resistance alone and the other when climbing. 
We identify the forces involved as air resistance and gravity. You 
need to exert forces of equal magnitude to overcome them.

DEVELOP Given that we have force and velocity, Equation 6.19, 
P = F

S # v
!
, applies. The force you apply to propel the bicycle is in the 

same direction as its motion, so F
S # v

!
 in that equation becomes just Fv.

EVALUATE On level ground, we have P = Fv = 18.2 N214.4 m/s2 =  
36 W. Climbing the hill, you have to exert an additional force to 

overcome the downslope component of gravity, which in Example 5.1 
we found to be mg sin u. So here we have

 P = Fv = 1Fair + mg sin u2v

 = 38.2 N + 175 kg219.8 m/s221sin 5°2414.4 m/s2 = 320 W

where we used your combined mass, body plus bicycle.

ASSESS Both numbers make sense. The values go from consider-
ably less than to a lot more than your body’s average power output 
of around 100 W, and as you’ve surely experienced, even a modest 
slope takes much more cycling effort than level ground. Top cyclists 
on mountain sections of the Tour de France can sustain power outputs 
of close to 500 W for extended periods.

EXAMPLE 6.9 Power and Velocity: Bicycling
Worked Example with Variation Problems

DON’T CONFUSE ENERGY AND 
POWER Is that 11-kW per-capita 
energy consumption per year, per 
day, or what? That question 
reflects a common confusion of 
energy and power. Power is the 

rate of energy use; it doesn’t need any “per 
time” attached to it. It’s just 11 kW, period.

6.4 A newspaper reports that a new power plant will produce “50 megawatts per 
hour.” What’s wrong with this statement?

G
O

T 
IT

?
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Chapter 6 Summary

Big Idea
Energy and work are the big ideas here. Doing work is a mechanical 
means of transferring energy. A force acting on a system does work 
when the system (here a single object) undergoes a displacement and 
the force has a component in the direction of that displacement. A 
force at right angles to the displacement does no work, and a force 
with a component opposite the displacement does negative work.

Kinetic energy is the energy associated with an object’s motion. An 
object’s kinetic energy changes only when net work is done on the 
object.

F
S

F
S

F
S

F
S

Positive work

Zero work Negative work

Positive work less than at left

W 7 0 W 7 0

W = 0 W 6 0

∆r
u

∆r
u∆r

u

∆r
u

Applications

108

Common applications of work done against everyday forces are the work mgh 
needed to raise an object of mass m a distance h against gravity, and the work 
1
2 kx2 needed to stretch or compress a spring of spring constant k a distance x 
from its equilibrium length.

1
2

m

m

x

W =   kx2

W = mgh
h

Key Concepts and Equations
Work is the product of force and displacement, but only the compo-
nent of force in the direction of displacement counts toward the work.
For a constant force and displacement in the x-direction,

W = Fx ∆x  1constant force only2
More generally, for a constant force F

S
and arbitrary displacement ∆r

!
, 

the work is

W = F
S # ∆r

!
= F ∆r cos u  1constant force only2

Here F and ∆r are the magnitudes of the force and displacement vec-
tors, and u is the angle between them. We’ve written work here using 
the shorthand notation of the scalar product, defined for any two vec-
tors A

S
 and B

S
 as the product of their magnitudes and the cosine of the 

angle between them:

A
S # B

S
= AB cos u  1scalar product2

When force varies with position, calculating the work involves 
 integrating. In one dimension:

Work is the
area under
the force-versus-
position curve.

Position, x

W = F1x2 dx

Fo
rc

e,
 F
1x2

x1 x2

L
x2

x1

Most generally, work is the line integral of a varying force over an 

arbitrary path: W = L F
S # dr

!

Kinetic energy is a scalar quantity that depends on an object’s mass and speed:

K = 1
2 mv2

The work–kinetic energy theorem states that the  
change in an object’s kinetic energy is equal to the  
net work done on it:

∆K = Wnet  1work9kinetic energy theorem2
The unit of energy and work is the joule (J), equal to 1  
newton-meter.

Power is the rate at which work is done 
or energy is used. The unit of power is 
the watt (W), equal to 1 joule/second.

P =
dW
dt

= F
S # v

!

Fnet
S

After it has
undergone 
displacement ∆x,
the block has 
kinetic energy
   mv2 = Fnet ∆x.

A block is subject
to a net force Fnet.
It starts from rest.

∆x

m m

1
2

S
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For Thought and Discussion

1. If the scalar product of two nonzero vectors is zero, what can you 
conclude about their relative directions?

2. Must you do work to whirl a ball around on the end of a string? 
Explain.

3. You want to raise a piano a given height using a ramp. With a 
fixed, nonzero coefficient of friction, will you have to do more 
work if the ramp is steeper or more gradual? Explain.

4. Does the gravitational force of the Sun do work on a planet in a 
circular orbit? On a comet in an elliptical orbit? Explain.

5. A pendulum bob swings back and forth on the end of a string, describ-
ing a circular arc. Does the tension force in the string do any work?

6. Does your car’s kinetic energy change if you drive at constant 
speed for 1 hour?

7. A watt-second is a unit of what quantity? Relate it to a more stan-
dard SI unit.

8. A truck is moving northward at 55 mi/h. Later, it’s moving east-
ward at the same speed. Has its kinetic energy changed? Has work 
been done on the truck? Has a force acted on the truck? Explain.

9. A news article reports that a new solar farm will produce 
143 kilowatt-hours of electricity. Criticize this statement. What 
did the writer probably mean?

10. Is it possible for you to do work on an object without changing 
the object’s kinetic energy? Explain.

Exercises and Problems
Exercises

Sections 6.1 and 6.2 Energy and Work
11. How much work do you do as you exert a 75-N force to push a 

shopping cart through a 12-m-long supermarket aisle?
12. If the coefficient of kinetic friction is 0.21, how much work do 

you do when you slide a 50-kg box at constant speed across a 
4.8-m-wide room?

13. A crane lifts a 650-kg beam vertically upward 23 m and then 
swings it eastward 18 m. How much work does the crane do? 
Neglect friction, and assume the beam moves with constant speed.

14. The world’s highest waterfall, the Cherun-Meru in Venezuela, 
has a total drop of 980 m. How much work does gravity do on a 
cubic meter of water dropping down the Cherun-Meru?

Mastering Physics

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems COMP Computer problems

Go to www.masteringphysics.com to access assigned homework and self-study tools such as 
Dynamic Study Modules, practice quizzes, video solutions to problems, and a whole lot more!

Learning Outcomes After finishing this chapter you should be able to:

LO 6.1 Explain the terms energy and work in the context of physics.
For Thought and Discussion Questions 6.2, 6.4, 6.5

LO 6.2 Find the work done by a force that doesn’t vary with position.
For Thought and Discussion Question 6.3; Exercises 6.11, 
6.12, 6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19; Problems 6.49, 
6.50, 6.51, 6.58, 6.60, 6.61, 6.73, 6.75, 6.91

LO 6.3 Calculate the dot product of two vectors.
For Thought and Discussion Question 6.1; Exercise 6.18; 
Problems 6.52, 6.53, 6.67

LO 6.4 Find the work done by a force that varies with position.
Exercises 6.20, 6.21, 6.22, 6.23, 6.24; Problems 6.54, 6.55, 
6.56, 6.57, 6.65, 6.66, 6.83, 6.85, 6.86, 6.87, 6.88, 6.90

LO 6.5  Define kinetic energy and find its value given an object’s 
mass and speed.
For Thought and Discussion Questions 6.6, 6.8; Exercises 
6.25, 6.26, 6.27, 6.28, 6.29, 6.30; Problem 6.59

LO 6.6 State the work–kinetic energy theorem.
For Thought and Discussion Questions 6.6, 6.8, 6.10

LO 6.7 Distinguish energy from power.
For Thought and Discussion Questions 6.7, 6.9; 
Exercises 6.31, 6.32, 6.33, 6.34, 6.35, 6.36, 6.37, 6.38, 
6.39, 6.40; Problems 6.62, 6.63, 6.64, 6.68, 6.69, 6.70, 
6.71, 6.72, 6.74, 6.75, 6.76, 6.77, 6.78, 6.79, 6.80, 6.81, 
6.82, 6.84, 6.89

15. A meteorite plunges to Earth, embedding itself 75 cm in the 
ground. If it does 140 MJ of work in the process, what average 
force does the meteorite exert on the ground?

16. An elevator of mass m rises a vertical distance h with upward ac-
celeration equal to one-tenth g. Find an expression for the work 
the elevator cable does on the elevator.

17. Show that the scalar product obeys the distributive law: 
A
S # 1B

S
+ C

S2 = A
S # B

S
+ A

S # C
S

.
18. Find the work done by a force F

S
= 1.8 in + 2.2 jn N as it acts 

on an object moving from the origin to the point 56 in + 31 jn m.
19. To push a stalled car, you apply a 470-N force at 17° to the car’s mo-

tion, doing 860 J of work in the process. How far do you push the car?

Section 6.3 Forces That Vary
20. Find the total work done by the 

force shown in Fig. 6.16 as the 
object on which it acts moves 
(a) from x = 0 to x = 3 km and 
(b) from x = 3 km to x = 4 km.

21. H ow  m u c h  w o r k  d o e s  i t 
take to stretch a spring with 
k = 200 N/m (a) 10 cm from 
equilibrium and (b) from 10 cm 
to 20 cm from equilibrium?

22. Uncompressed, the spring for an automobile suspension is 45 cm 
long. It needs to be fitted into a space 32 cm long. If the spring 
constant is 3.8 kN/m, how much work does a mechanic have to 
do to fit the spring?

23. You do 8.5 J of work to stretch a spring with k = 190 N/m, start-
ing with the spring unstretched. How far does the spring stretch?

24. Spider silk is a remarkable elastic material. A particular strand 
has spring constant 70 mN/m, and it stretches 9.6 cm when a 
fly hits it. How much work did the fly’s impact do on the silk 
strand?

Section 6.4 Kinetic Energy
25. What’s the kinetic energy of a 2.4 *  105@kg airplane cruising at 

900 km/h?
26. A cyclotron accelerates protons from rest to 21 Mm/s. How much 

work does it do on each proton?
27. At what speed must a 950-kg subcompact car be moving to have 

the same kinetic energy as a 3.2 *  104@kg truck going 20 km/h?
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FIGURE 6.16 Exercise 20
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110 Chapter 6 Energy, Work, and Power

47. Example 6.9:  A Boeing 787-9 jetliner has a mass of 245,000 kg in-
cluding passengers. Its two engines produce a combined thrust force 
of 642 kN, and the aircraft cruises at 913 km/h in level flight—in 
which case drag from the air is the only force the plane needs to 
overcome. Find the engines’ power output (a) while cruising and (b) 
when it’s climbing at a 23.0° angle at 622 km/h. Assume air resis-
tance doesn’t change—although in reality it’s greater at the higher 
speed.

48. Example 6.9:  You’re an aircraft designer charged with determin-
ing the maximum speed for a new aircraft when it’s climbing at 
a 15.4° angle. The total mass of the plane is 138,000 kg, and its 
total engine power is 105 MW. While climbing it encounters a 
force of 193 kN from air resistance. What do you report for the 
maximum speed while climbing?

Problems
49. You slide a box of books at constant speed up a 30° ramp, ap-

plying a force of 200 N directed up the slope. The coefficient of 
sliding friction is 0.18. (a) How much work have you done when 
the box has risen 1 m ver-
tically? (b) What’s the mass 
of the box?

50. Two people push a stalled 
car at its front doors, each 
applying a 280-N force at 
25° to the forward direction, 
as shown in Fig. 6.17. How 
much work does each per-
son do in pushing the car 
5.6 m?

51. You pull a box 23 m hor-
izontally, using the rope 
shown in Fig. 6.18. If the 
rope tension is 120 N, and 
if the rope does 2500 J of 
work on the box, what an-
gle u does the rope make with the horizontal?

52. (a )  F ind  the  sca la r  p roduc ts   in #  in ,   jn #  jn ,  and   kn #  kn .  
(b) Find  in #  jn,  jn #  kn, and  kn #  in. (c) Use the distributive law 
to multiply out the scalar product of two arbitrary vec-
t o r s  A

S
= Ax in + Ay jn + Az kn  a n d  B

S
= Bx in + By jn + Bz kn ,  

and use the results of (a) and (b) to verify Equation 6.4.
53. (a) Find the scalar product of the vectors ain + bjn and bin - ajn,  

where a and b are arbitrary constants. (b) What’s the angle be-
tween the two vectors?

54. A force F
S

acts in the x-direction, its magnitude given by F = ax2,  
where x is in meters and a = 5.0 N/m2. Find the work done 
by this force as it acts on a particle moving from x = 0 to 
x = 6.0 m.

55. A certain amount of work is required to stretch spring A a certain 
distance. Twice as much work is required to stretch spring B half 
that distance. Compare the spring constants of the two.

56. A force with magnitude given by F = a1x - bx2 acts in the 
x-direction, where a = 2 5 .2  N·m - 1 >2  and b =  3 .8 7  N>m 2.  
Find the work this force does on an object moving from 
(a) x =  0 to x =  2.00 m and (b) from x =  2.00 m to  
x =  3.75 m.

57. The force exerted by a rubber band is given approximately by

F = F0 c 
L0 - x

L0
-

L0
2

1L0 + x22 d

where L0 is the unstretched length, x is the stretch, and F0 is a 
constant. Find an expression for the work needed to stretch the 
rubber band a distance x.

CH

28. A 60-kg skateboarder comes over the top of a hill at 5.0 m/s and 
reaches 10 m/s at the bottom. Find the total work done on the 
skateboarder between the top and bottom of the hill.

29. After a tornado, a 0.50-g drinking straw was found embedded 4.5 
cm in a tree. Subsequent measurements showed that the tree exerted 
a stopping force of 70 N on the straw. What was the straw’s speed?

30. From what height would you have to drop a car for its impact to 
be equivalent to a 20-mi/h collision?

Section 6.5 Power
31. A typical human diet is “2000 calories” per day, where the 

“ calorie” describing food energy is actually 1 kilocalorie. 
Express 2000 kcal/day in watts.

32. A horse plows a 200-m-long furrow in 5.0 min, exerting a 750-N 
force. Find its power output, measured in watts and in horsepower.

33. A typical car battery stores about 1 kW #h of energy. What’s its power 
output if it drains completely in (a) 1 minute, (b) 1 hour, and (c) 1 day?

34. A sprinter completes a 100-m dash in 10.6 s, doing 22.4 kJ of 
work. What’s her average power output?

35. How much work can a 3.5-hp lawnmower engine do in 1 h?
36. A 75-kg long-jumper takes 3.1 s to reach a prejump speed of 

10 m/s. What’s his power output?
37. Estimate your power output as you do deep knee bends at the rate 

of one per second.
38. In midday sunshine, solar energy strikes Earth at the rate of about 

1 kW/m2. How long would it take a perfectly efficient solar col-
lector of 15@m2 area to collect 40 kW #  h of energy? (Note: This is 
roughly the energy content of a gallon of gasoline.)

39. It takes about 20 kJ to melt an ice cube. A typical microwave 
oven produces 900 W of microwave power. How long will it take 
a typical microwave to melt the ice cube?

40. Which consumes more energy, a 1.2-kW hair dryer used for 
10 min or a 7-W night-light left on for 24 h?

Example Variations
The following problems are based on two examples from the text. Each 
set of four problems is designed to help you make connections that 
enhance your understanding of physics and to build your confidence 
in solving problems that differ from ones you’ve seen before. The first 
problem in each set is essentially the example problem but with differ-
ent numbers. The second problem presents the same scenario as the 
example but asks a different question. The third and fourth problems 
repeat this pattern but with entirely different scenarios.

41. Example 6.4:  A cord used in bungee jumping is normally 9.58 m 
long and has spring constant k =  235 N>m. At the lowest point 
in a jump, the cord length has doubled. How much work has been 
done on the cord?

42. Example 6.4:  Unstretched, a cord used in bungee jumping 
is 12.2 m long. When a jumper reaches the lowest point in her 
jump, the cord has stretched to 26.3 m and she’s done 15.4 kJ of 
work on the cord. What’s the spring constant of the cord?

43. Example 6.4:  A 2.35@mm strand of DNA has an effective spring 
constant of 1.63 * 10- 7 N>m. Find the work required to com-
press the strand so its length shrinks by 1.00%.

44. Example 6.4:  Find the effective spring constant of a DNA molecule, 
given that it takes 6.92 * 10- 24 J of work to compress it 4.48 nm.

45. Example 6.9:  You and a partner are pedaling a 16.0-kg tandem 
bicycle up a 6.22° incline at 18.5 km/h. There’s a 10.8-N force 
from air resistance. If the combined mass of you and your partner 
is 132 kg, what power must the two of you supply?

46. Example 6.9:  You and your cycling partner are capable of pro-
ducing 955 W of power. What’s the fastest you can pedal up a 
4.40° slope if the combined mass of your tandem bicycle and both 
riders is 152 kg and you face a 14.5-N force from air resistance?

ENV

25°

25°

FIGURE 6.17 Problem 50

u = ?

FIGURE 6.18 Problem 51
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72. A 1400-kg car ascends a mountain road at a steady 60 km/h, against 
a 450-N force of air resistance. If the engine supplies energy to the 
drive wheels at the rate of 38 kW, what’s the slope angle of the road?

73. You do 2.2 kJ of work pushing a 78-kg trunk at constant speed 
3.1 m along a ramp inclined upward at 22°. What’s the frictional 
coefficient between trunk and ramp?

74. (a) Find the work done in lifting 1 L of blood (mass 1 kg) from 
the foot to the head of a 1.7-m-tall person. (b) If blood circulates 
through the body at the rate of 5.0 L/min, estimate the heart’s 
power output. (Your answer underestimates the power by a factor 
of about 5 because it neglects fluid friction and other factors.)

75. You push an 84.5-kg chest of drawers at 0.386 m/s, for a distance 
of 6.55 m across a level floor, where the coefficient of friction 
is 0.612. Find (a) the power needed and (b) the work you do. 
(c) Repeat for the case of a ramp sloping upward at 5.75°, with 
all other quantities unchanged.

76. You mix flour into bread dough, exerting a 45-N force on the 
spoon, which you move at 0.29 m/s. (a) What power do you sup-
ply? (b) How much work do you do if you stir for 1.0 min?

77. One machine does work at a constant rate P0. A second machine 

does work at a rate given by P1t2 = 2P0 a1 -
1t - t022

t2
0

b, where 

t0 is a constant with the units of time. Both machines start at time 
t = 0. Find expressions for (a) the peak power output of the 
 second machine and (b) the earliest time at which both machines 
have done the same amount of work.

78. A typical bumblebee has mass 0.25 mg. It beats its wings 100 
times per second, and the wings undergo an average displace-
ment of about 1.5 mm. When the bee is hovering over a flower, 
the average force between wings and air must support the bee’s 
weight. Estimate the average power the bee expends in hovering.

79. You’re trying to decide whether to buy an energy-efficient 225-W 
refrigerator for $1150 or a standard 425-W model for $850. The 
standard model will run 20% of the time, but better insulation 
means the energy-efficient model will run 11% of the time. If 
electricity costs 9.5./kW #h, how long would you have to own the 
energy-efficient model to make up the difference in cost? Neglect 
interest you might earn on your money.

80. Your friend does five reps with a barbell, on each rep lifting 
45 kg 0.50 m. She claims the work done is enough to “burn off” 
a chocolate bar with energy content 230 kcal (see Exercise 31). Is 
that true? If not, how many lifts would it take?

81. A machine delivers power at a decreasing rate P = P0 t
2
0 /1t + t022,  

where P0 and t0 are constants. The machine starts at t = 0 and 
runs forever. Show that it nevertheless does only a finite amount 
of work, equal to P0 t0.

82. A locomotive accelerates a freight train of total mass M from 
rest, applying constant power P. Determine the speed and posi-
tion of the train as functions of time, assuming all the power goes 
to increasing the train’s kinetic energy.

83. A force given by F = b/1x acts in the x-direction, where b is a 
constant with the units N #m1/2. Show that even though the force 
becomes arbitrarily large as x approaches zero, the work done in 
moving from x1 to x2 remains finite even as x1 approaches zero. 
Find an expression for that work in the limit x1 S 0.

84. You’re assisting a cardiologist in planning a stress test for a 75-
kg patient. The test involves rapid walking on an inclined tread-
mill, and the patient is to reach a peak power output of 350 W. If 
the patient’s maximum walking speed is 8.0 km/h, what should 
be the treadmill’s inclination angle?

85. You’re an engineer for a company that makes bungee-jump cords, 
and you’re asked to develop a formula for the work involved in 
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58. You put your little sister (mass m) on a swing whose chains have 
length L and pull slowly back until the swing makes an angle f 
with the vertical. Show that the work you do is mgL11 - cos f2.

59. Two unknown elementary particles pass through a detection 
chamber. If they have the same kinetic energy and their mass ra-
tio is 4:1, what’s the ratio of their speeds?

60. A tractor tows a plane from its airport gate, doing 8.7 MJ of 
work. The link from the plane to the tractor makes a 22° angle 
with the plane’s motion, and the tension in the link is 0.41 MN. 
How far does the tractor move the plane?

61. E. coli bacteria swim by means of flagella that rotate about 100 
times per second. A typical E. coli bacterium swims at 22 μm/s, 
its flagella exerting a force of 0.57 pN to overcome the resistance 
due to its liquid environment. (a) What’s the bacterium’s power 
output? (b) How much work would it do in traversing the 25-mm 
width of a microscope slide?

62. On February 15, 2013, an asteroid moving at 19 km/s entered 
Earth’s atmosphere over Chelyabinsk, Russia, and exploded at an 
altitude of more than 20 km. This was the largest object known 
to have entered the atmosphere in over a century. The asteroid’s 
kinetic energy just before entering the atmosphere was estimated 
as the energy equivalent of 500 kilotons of the explosive TNT. 
(Kilotons [kt] and megatons [Mt] are energy units used to de-
scribe the explosive yields of nuclear weapons, and you’ll find 
the energy equivalent of 1 Mt in Appendix C.) What was the 
 approximate mass of the Chelyabinsk asteroid?

63. An elevator ascends from the ground floor to the 10th floor, a 
height of 41 m, in 35 s. If the mass of the elevator and passengers 
is 840 kg, what’s the power necessary to lift the elevator? (Your an-
swer is greater than the actual power needed because elevators are 
counterweighted, thus reducing the work the motor needs to do.)

64. You’re asked to assess the reliability of a nuclear power plant, as 
measured by the capacity factor—the ratio of the energy it actu-
ally produces to what it could produce if it operated all the time. 
The plant is rated at 840 MW of electrical power output, and in 
a full year it produces 6 .8 *  1 0 9 kW #  h  of electrical energy. 
What’s its capacity factor?

65. A force pointing in the x-direction is given by F = F01x/x022, 
where F0 and x0 are constants and x is position. Find an expres-
sion for the work done by this force as it acts on an object mov-
ing from x = 0 to x = x0.

66. A force pointing in the x-direction is given by F = ax3>2, where 
a is a constant. The force does 1.86 kJ of work on an object as 
the object moves from x =  0  to x = 1 8 .5  m. Find the constant a.

67. Two vectors have equal magnitude, and their scalar product is 
half the square of their magnitude. Find the angle between them.

68. At what rate can a half-horsepower well pump deliver water to a 
tank 60 m above the water level in the well? Give your answer in 
kg/s and gal/min.

69. The United States imports about 400 million gallons of oil each 
day. Use the “Energy Content of Fuels” table in Appendix C to 
estimate the corresponding power, measured in gigawatts.

70. By measuring oxygen uptake, sports physiologists have found 
that long-distance runners’ power output is given approximately 
by P = m1bv - c2, where m and v are the runner’s mass and 
speed, and b and c are constants given by b = 4.27 J/kg #  m and 
c = 1.83 W/kg. Determine the work done by a 54-kg runner 
who runs a 10-km race at 5.2 m/s.

71. The motor in a 1590-kg Nissan Leaf electric car supplies energy 
to the wheels at the rate of 80.0 kW. (a) What’s the maximum 
speed for the Leaf when it’s ascending an 11.8° slope using only 
its electric motor? (b) What’s the motor’s power output in horse-
power? Neglect air resistance.
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112 Chapter 6 Energy, Work, and Power

Passage Problems
The energy in a batted baseball comes from the power delivered while 
the bat is in contact with the ball. The most powerful hitters can supply 
some 10 horsepower during the brief contact time, propelling the ball to 
over 100 miles per hour. Figure 6.20 shows data taken from a particular 
hit, giving the power the bat delivers to the ball as a function of time.

92. Which of the following is greatest at the peak of the curve?
a. the ball’s kinetic energy
b. the ball’s speed
c. the rate at which the bat supplies energy to the ball
d. the total work the bat has done on the ball

93. The ball has its maximum speed at about
a. 85 ms.
b. 145 ms.
c. 185 ms.
d. whenever the force is greatest.

94. As a result of being hit, the ball’s kinetic energy increases by about
a. 550 J.
b. 1.3 kJ.
c. 7.0 kJ.
d. You can’t tell because you don’t know its speed coming from 

the pitcher.
95. The force on the ball is greatest approximately

a. at 185 ms.
b. at the peak in Fig. 6.20.
c. before the peak in Fig. 6.20.
d. after the peak in Fig. 6.20 but before 185 ms.

Answers to Chapter Questions

Answer to Chapter Opening Question
No. The work done against gravity in climbing a particular height is 
independent of the path. A rider on a bicycle with a combined mass of 
80 kg does roughly 400 kJ or 100 kcal of work against gravity regard-
less of the path up a 500-m mountain. To climb such a mountain in 20 
min, the rider’s power output must exceed 300 W.

Answers to GOT IT? Questions
6.1  (b) 2F does 12 more work than F does. That’s because 2F’s  

component along the direction of motion is 2F cos 45°, or 
2F12/2 = F12.

6.2  (c) 1x does the most work. (b) x2 does the least. You can see this 
by plotting these two functions from x = 0 to x = 1 and compar-
ing the areas under each. The case of x is intermediate.

6.3  (1) (c): Kinetic energy doesn’t change, so the net work done on the 
ball is zero. (2) (a): Kinetic energy increases, so the net work is pos-
itive. (3) (b): Kinetic energy decreases, so the net work is negative.

6.4  The megawatt is a unit of power; the “per time” is already built 
in. A correct statement would be that the power plant will produce 
“energy at the rate of 50 megawatts.”

stretching cords to double their length. Your cords have force– 
distance relations described by F = -1kx + bx2 + cx3 + dx42,  
where k, b, c, and d are constants. (a) Given a cord with un-
stretched length L0, what’s your formula? (b) Evaluate the work 
done in doubling the stretch of a 10-m cord with k = 420 N/m, 
b = -86 N/m2, c = 12 N/m3, and d = -0.50 N/m4.

86. You push an object of mass m slowly partway up a loop-the-loop 
track of radius R, starting from the bottom, and ending at a height 
h 6 R above the bottom. The coefficient of friction between the 
object and the track is a constant. Show that the work you do 

against friction is mmg22hR - h2.
87. A particle moves from the origin to the point x = 3 m, y = 6 m 

along the curve y = ax2 - bx, where a = 2 m-1 and b = 4. It’s 
subject to a force cxyin + djn, where c = 10 N/m2 and d = 15 N. 
Calculate the work done by the force.

88. Repeat Problem 87 for the following cases: (a) the particle moves 
first along the x-axis from the origin to the point (3 m, 0) and 
then parallel to the y-axis until it reaches (3 m, 6 m); (b) it moves 
first along the y-axis from the origin to the point (0, 6 m) and 
then parallel to the x-axis until it reaches (3 m, 6 m).

89. The world’s fastest elevator, in Taiwan’s Taipei 101 skyscraper 
(Fig. 6.19), ascends at the rate of 1010 m/min. Counterweights bal-
ance the weight of the elevator car, so the motor doesn’t have to lift the 
car’s weight. If the motor produces 330 kW of power, what’s the max-
imum number of 67-kg people the elevator can accommodate? (Your 
answer somewhat overestimates the actual rated load of 24 people.)

90. An experimental measurement of the force required to stretch 
a slingshot is given in the table below. Plot the force–distance 
curve for this slingshot and use graphical integration to determine 
the work done in stretching the slingshot the full 40-cm distance.

Stretch (cm) Force (N)

0 0
5.00 0.885

10.0 1.89
15.0 3.05
20.0 4.48
25.0 6.44
30.0 8.22
35.0 9.95
40.0 12.7

91. You’re an expert witness in a medical malpractice lawsuit. A hos-
pital patient’s leg slipped off a stretcher, and his heel hit the floor. 
The defense attorney for the hospital claims the leg, with mass 8 
kg, hit the floor with a force equal to the weight of the leg—about 
80 N—and any damage was due to a prior injury. You argue that the 
leg and heel dropped freely for 0.7 m, then hit the floor and stopped 
in 2 cm. What do you tell the jury about the force on the heel?
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Skills & Knowledge You’ll Need
■■ The concept of work (Section 6.1)

■■ The concept of kinetic energy 
(Section 6.4)

■■ The work–kinetic energy theorem 
(Section 6.4)

Learning Outcomes
After finishing this chapter you should be able to:

LO 7.1 Distinguish conservative from nonconservative forces.

LO 7.2 Calculate potential energy, especially with gravity and  
springs.

LO 7.3 Use conservation of mechanical energy to solve problems that 
would be difficult using Newton’s second law.

LO 7.4 Evaluate situations where nonconservative forces result in loss 
of mechanical energy.

LO 7.5 Distinguish internal energy from mechanical energy.

LO 7.6 Work with potential-energy curves for a wide variety of  
systems.

Conservation of Energy

9
Systems of 

Particles

8
Gravity76

Energy, Work, 
and Power

5
Using Newton’s Laws

How many different energy conversions take place as the Yellowstone River 
plunges over Yellowstone Falls?

The rock climber of Fig. 7.1a does work as she ascends the vertical 
cliff. So does the mover of Fig. 7.1b as he pushes a heavy chest across 

the floor. But there’s a difference. If the rock climber lets go, down she 
goes, gaining kinetic energy as she falls. If the mover lets go of the chest, 
though, he and the chest stay right where they are.

This contrast highlights a distinction between two types of forces, called 
conservative and nonconservative. That distinction will help us  develop one 
of the most important principles in physics: conservation of  energy. The 
 introduction to Chapter 6 briefly mentioned three forms of energy: kinetic 
energy, potential energy, and internal energy—although there we worked 
quantitatively only with kinetic energy. Here we’ll  develop the concept of 
potential energy and show how it’s associated with conservative forces. 
Nonconservative forces, in contrast, are associated with irreversible trans-
formations of mechanical energy into internal  energy. We’ll take a brief 
look at such transformations here and formulate a broad statement of 
energy conservation. In Chapters 16–19 we’ll elaborate on internal energy 
and see how it’s related to temperature, and we’ll expand our statement 
of energy conservation to include not only work but also heat as modes of 
energy transfer.
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114 Chapter 7 Conservation of Energy

B

A

The force does work WAB
as the object moves from A to B
on this path c

cso it must do work –WAB
as the object moves back 
along the curved path—or 
any other path.

FIGURE 7.2 The work done by a conservative 
force is independent of path.

(a)

(b)

FIGURE 7.1 Both the rock climber and the 
mover do work, but only the climber can 
recover that work as kinetic energy.

7.1 Conservative and Nonconservative Forces
LO 7.1 Distinguish conservative from nonconservative forces.

Both the climber and the mover in Fig. 7.1 are doing work against forces—gravity for the 
climber and friction for the mover. The difference is this: If the climber lets go, the grav-
itational force “gives back” the energy she supplied by doing work, which then manifests 
 itself as the kinetic energy of her fall. But the frictional force doesn’t “give back” the energy 
supplied by the mover, in the sense that this energy can’t be recovered as kinetic energy.

A conservative force is a force like gravity or a spring that “gives back” energy that 
was transferred by doing work. A more precise description of what it means for a force 
to be conservative follows from considering the work involved as an object moves over 
a closed path—one that ends where it started. Suppose our rock climber ascends a cliff 
of height h and then descends to her starting point. As she climbs, the gravitational force 
is directed opposite to her motion, so gravity does negative work -mgh (recall Fig. 6.4). 
When she descends, the gravitational force is in the same direction as her motion, so the 
gravitational work is +mgh. The total work that gravity does on the climber as she tra-
verses the closed path up and down the cliff is therefore zero.

Now consider the mover in Fig. 7.1b. Suppose he pushes the chest across a room, dis-
covers it’s the wrong room, and pushes it back to the door. Like the climber, the mover 
and chest describe a closed path. But the frictional force always acts to oppose the chest’s 
motion. The mover needs to apply a force to oppose friction, so he ends up doing positive 
work as he crosses the room in both directions. Therefore, the total work he does is pos-
itive even when he moves the chest over a closed path. That’s the nature of the frictional 
force, and, in contrast to the conservative gravitational force the climber had to deal with, 
this makes friction a nonconservative force.

Our two examples clearly distinguish between conservative and nonconservative 
forces: Only for conservative forces is the work done in moving around a closed path 
equal to zero. This fact provides a precise definition of a conservative force:

When the total work done by a force F
S

 acting as an object moves over any closed path 
is zero, then the force is conservative.

This definition suggests a related property of conservative forces. Suppose a conser-
vative force acts on an object in the region shown in Fig. 7.2. Move the object along the 
straight path from point A to point B, and designate the work done by the conservative 
force as WAB. Since the work done over any closed path is zero, the work WBA done in 
moving back from B to A must be -WAB, whether we return along the straight path, the 
curved path, or any other path. So, going from A to B involves work WAB, regardless of the 
path taken. In other words:

The work done by a conservative force in moving between two points is independent of 
the path taken.

Important examples of conservative forces include gravity and the static electric force. 
The force of an ideal spring—fundamentally an electric force—is also conservative. 
Nonconservative forces include friction, drag forces, and the electric force in the presence 
of time-varying magnetic effects, which we’ll encounter in Chapter 27.

7.1 Suppose it takes the same amount of work to push a trunk straight across a 
rough floor as it does to lift a weight the same distance straight upward. If both 
trunk and weight are moved instead on identically shaped curved paths between the 
same two points as before, is the work (a) still the same for both, (b) greater for the 
weight, or (c) greater for the trunk?
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7.2 Potential Energy 115

Equation 6.11 introduced a general expression for the work done when an object moves 

along an arbitrary path, subject to a force that might vary with position: W = L
B

A
F
S # dr

!
,  

where A and B are the endpoints of the path. For a closed path, the two endpoints are the 
same, which we designate by putting a circle on the integral sign. Thus, our definition of a 
conservative force can be written mathematically as

 C F
S # dr

!
= 0  1conservative force2 (7.1)

Following Fig. 7.2, we can equally well describe a conservative force with the statement 

that L
B

A
F
S # d ru is independent of the path taken between the endpoints A and B.

7.2 Potential Energy
LO 7.2 Calculate potential energy, especially with gravity and springs.

The climber in Fig. 7.1a did work ascending the cliff, and the energy transferred as she did 
that work was somehow stored, in that she could get it back in the form of kinetic energy. 
She’s acutely aware of that stored energy, since it gives her the potential for a dangerous 
fall. Potential is an appropriate word here: The stored energy is potential energy, in the 
sense that it has the potential to be converted into kinetic energy.

We’ll give potential energy the symbol U, and we begin by defining changes in poten-
tial energy. Specifically:

The change ∆UAB in potential energy associated with a conservative force is the negative 
of the work done by that force as it acts over any path from point A to point B:

 ∆UAB = - L
B

A
F
S # dr

!
  1potential energy2 (7.2)

The annotations on Equation 7.2 explain the minus sign. But another way to think about 
this is to consider the work you would have to do in order to counter a conservative force 
like gravity. If F

S
 is the conservative force (e.g., gravity, pointing down), then you’d have 

to apply a force -F
S

 (e.g., upward), and the work you do would be L
B

A
1- F

S2 # dr
!
 or 

-L
B

A
F
S # dr

!
, which is the right-hand side of Equation 7.2. Your work represents a transfer 

of energy, which here ends up stored as potential energy. So another way of interpreting 
Equation 7.2 is to say that the change in potential energy is equal to the work an external 
agent would have to do in just countering a conservative force.

Changes in potential energy are all that ever matter physically; the actual value of po-
tential energy is meaningless. Often, though, it’s convenient to establish a reference point 

ΔU
AB

 is the change in an object’s 
 potential  energy as it moves from point 
A to point B under the influence of a 
conservative force F

S
.

F
S

is the 
conservative 
force.

dru is an 
infinitesimal 
displacement.

The minus sign arises because an 
increase in potential energy results 
when the object moves against the 
conservative force, in which case the 
force does negative work.

Equation 6.11 showed that this 
integral is the work done by the 
conservative force.

¯̆ ˙
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116 Chapter 7 Conservation of Energy

at which the potential energy is defined to be zero. When we say “the potential energy U,”  
we really mean the potential-energy difference ∆U between that reference point and what-
ever other point we’re considering. Our rock climber, for example, might find it convenient 
to take the zero of potential energy at the base of the cliff. But the choice is purely for con-
venience; only potential-energy differences really matter. We’ll often drop the subscript AB 
and write simply ∆U for a potential-energy difference. Keeping the subscript is important, 
though, when we need to be clear about whether we’re going from A to B or from B to A.

Equation 7.2 is a completely general definition of potential energy, applicable in all 
circumstances. Often, though, we can consider a path where force and displacement are 
parallel (or antiparallel). Then Equation 7.2 simplifies to

 ∆U = - L
x

2

x1

F1x2 dx (7.2a)

where x1 and x2 are the starting and ending points on the x-axis, taken to coincide with the 
path. When the force is constant, this equation simplifies further to

 ∆U = -F1x2 - x12 (7.2b)

 UNDERSTAND YOUR EQUATIONS Equation 7.2b provides a very simple expression for 
potential-energy changes, but it applies only when the force is constant. Equation 7.2b is a 
special case of Equation 7.2a that follows because a constant force can be taken outside the 
integral.

Gravitational Potential Energy
We’re frequently moving things up and down, causing changes in potential energy. 
Figure 7.3 shows two possible paths for a book that’s lifted from the floor to a shelf of 
height h. Since the gravitational force is conservative, we can use either path to calculate 
the  potential-energy change. It’s easiest to use the path consisting of straight segments. No 
work or potential-energy change occurs on the horizontal segments since the gravitational 
force is perpendicular to the motion. For the vertical lift, the force of gravity is constant 
and Equation 7.2b immediately gives ∆U = mgh, where the minus sign in Equation 7.2b 
cancels with the minus sign associated with the downward direction of gravity. This result 
is quite general: When a mass m undergoes a vertical displacement ∆y near Earth’s sur-
face, gravitational potential energy changes by

 ∆U = mg ∆y  1gravitational potential energy2 (7.3)

The quantity ∆y can be positive or negative, depending on whether the object moves up 
or down; correspondingly, the potential energy can either increase or decrease. We empha-
size that Equation 7.3 applies near Earth’s surface—that is, for distances small compared with 
Earth’s radius. That assumption allows us to treat the  gravitational force as constant over the 
path. We’ll explore the more general case in Chapter 8. 

We’ve found the change in potential energy associated with raising the book, but what 
about the potential energy itself? That depends on where we define the zero of potential 
energy. If we choose U = 0 at the floor, then U = mgh on the shelf. But we could just as 
well take U = 0 at the shelf; then potential energy when the book is on the floor would be 
-mgh. Negative potential energies arise frequently, and that’s OK because only differences 
in potential energy really matter. Figure 7.4 shows a plot of potential energy versus height 
with U = 0 taken at the floor. The linear increase in potential energy with height reflects 
the constant gravitational force.

Elastic Potential Energy
When you stretch or compress a spring or other elastic object, you do work against the 
spring force, and that work ends up stored as elastic potential energy. For an ideal spring, 
the force is F = -kx, where x is the distance the spring is stretched from equilibrium, and 

The potential-energy (PE) change
is the same along either path, but
it's calculated more easily for
the straight path.

There’s no PE change on
the horizontal segments.

The PE change
on the vertical
segment is mgh.

h

FIGURE 7.3 A good choice of path makes 
it easier to calculate the potential-energy 
change.

mgh

h

Potential energy, U

Height, y

FIGURE 7.4 Gravitational force is constant, 
so potential energy increases linearly 
with height.
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7.2 Potential Energy 117

A 55-kg engineer leaves her office on the 33rd floor of a skyscraper and takes an elevator up to the 
59th floor. Later she descends to street level. If the engineer chooses the zero of potential energy at 
her office and if the distance from one floor to the next is 3.5 m, what’s the potential energy when 
the engineer is (a) in her office, (b) on the 59th floor, and (c) at street level?

INTERPRET This is a problem about gravitational potential energy relative to a specified point 
of zero energy—namely, the engineer’s office.

DEVELOP Equation 7.3, ∆U = mg ∆y, gives the change in gravitational energy associated with a 
change ∆y in vertical position. We’re given positions in floors, not meters, so we need to convert 
using the given factor 3.5 m per floor.

EVALUATE (a) When the engineer is in her office, the potential energy is zero, since she defined it that 
way. (b) The 59th floor is 59 - 33 = 26 floors higher, so the potential energy when she’s there is

 U59 = mg ∆y = 155 kg219.8 m/s22126 floors213.5 m/floor2 = 49 kJ

Here we can write U rather than ∆U because we’re calculating the potential-energy change from the 
place where U = 0. (c) The street level is 32 floors below the engineer’s office, so

 Ustreet = mg ∆y = 155 kg219.8 m/s221-32 floors213.5 m/floor2 = -60 kJ

ASSESS Makes sense: When the engineer goes up, the potential energy relative to her office is pos-
itive; when she goes down, it’s negative. And the distance down is a bit farther, so the magnitude of 
the change is greater going down.

Gravitational Potential Energy: Riding the ElevatorEXAMPLE 7.1

APPLICATION Pumped Storage

Electricity is a wonderfully versatile form of energy, but it’s not easy to store. Large electric 
power plants are most efficient when operated continuously, yet the demand for power fluctuates. 
Renewable energy sources like wind and solar vary, not necessarily with demand. Energy storage 
can help in both cases. Today, the only practical way to store large amounts of excess electrical 
energy is to convert it to gravitational potential energy. In so-called pumped-storage facilities, sur-
plus electric power pumps water from a lower reservoir to a higher one, thereby increasing grav-
itational potential energy. When power demand is high, water runs back down, turning the pump 
motors into generators that produce electricity. The map here shows the Northfield Mountain 
Pumped Storage Project in Massachusetts, including the mountaintop reservoir, the location of 
the power station 214 m below on the Deerfield River, and the penstock, the pipe that conveys 
water in both directions between the power station and the reservoir. You can explore this facility 
quantitatively in Problem 35.

Power
station

M
ou

nta
int

op

res
erv

oir

Penstock

the minus sign shows that the force opposes the stretching or compression. Since the force 
varies with position, we use Equation 7.2a to evaluate the potential energy:

∆U = - L
x

2

x1

 F1x2 dx = - L
x

2

x1

 1-kx2 dx = 1
2 kx2

2 - 1
2 kx1

2

where x1 and x2 are the initial and final values of the stretch. If we take U = 0 when 
x = 0  (that is, when the spring is neither stretched nor compressed) then we can use this 
result to write the potential energy at an arbitrary stretch (or compression) x as

 U = 1
2 kx2  1elastic potential energy2 (7.4)

Comparison with Equation 6.10, W = 1
2 kx2, shows that this is equal to the work done in 

stretching the spring. Thus the energy transferred by doing work gets stored as potential 
energy. Figure 7.5 shows potential energy as a function of the stretch or compression of a 
spring. The parabolic shape of the potential-energy curve reflects the linear change of the 
spring force with stretch or compression.

x = 0

EquilibriumCompression Stretch

x

Potential energy, U

FIGURE 7.5 The potential-energy curve 
for a spring is a parabola.
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118 Chapter 7 Conservation of Energy

EXAMPLE 7.2 Energy Storage: Springs versus Gasoline

A car’s suspension consists of springs with an overall effective spring 
constant of 120 kN/m. How much would you have to compress the 
springs to store the same amount of energy as in 1 g of gasoline?

INTERPRET This problem is about the energy stored in a spring, as 
compared with the chemical energy of gasoline.

DEVELOP Equation 7.4, U = 1
2 kx2, gives a spring’s stored energy 

when it’s been compressed a distance x. Here we want that energy 
to equal the energy in 1 g of gasoline. We can get that value from the 
“Energy Content of Fuels” table in Appendix C, which lists 44 MJ/kg 
for gasoline.

EVALUATE At 44 MJ/kg, the energy in 1 g of gasoline is 44 kJ. Setting 
this equal to the spring energy 12 kx2 and solving for x, we get

x = A2U
k

= C122144 kJ2
120 kN/m

= 86 cm

ASSESS This answer is absurd. A car’s springs couldn’t compress 
anywhere near that far before the underside of the car hit the ground. 
And 1 g isn’t much gasoline. This example shows that springs, though 
useful energy-storage devices, can’t possibly compete with chemical 
fuels.

Ropes used in rock climbing are “springy” so that they cushion a fall. 
A particular rope exerts a force F = -kx + bx2, where k = 223 N/m, 
b =  4.10 N/m2, and x is the stretch. Find the potential energy stored 
in this rope when it’s been stretched 2.62 m, taking U = 0 at x = 0.

INTERPRET Like Example 7.2, this one is about elastic potential 
energy. But this one isn’t so easy because the rope isn’t a simple 
F = -kx spring for which we already have a potential-energy 
formula.

DEVELOP Because the rope force varies with stretch, we’ll have to 
integrate. Since force and displacement are in the same direction, we 

can use Equation 7.2a, ∆U = - L
x

2

x1

 F1x2 dx. But that’s not so much a 

formula as a strategy for deriving one.

EVALUATE Applying Equation 7.2 to this particular rope, we have

 U = - L
x

2

x1

F1x2 dx = -L
x

0
1-kx + bx22 dx = 1

2 kx2 - 1
3 bx3 2 x

0

 = 1
2  kx2 - 1

3  bx3

 = 11
221223 N/m212.62 m22 - 11

3214.1 N/m2212.62 m23

 = 741 J

ASSESS This result is about 3% less than the potential energy 
U = 1

2 kx2 of an ideal spring with the same spring constant. This 
shows the effect of the extra term +bx2, whose positive sign reduces 
the restoring force and thus the work needed to stretch the spring.

EXAMPLE 7.3 Elastic Potential Energy: A Climbing Rope
Worked Example with Variation Problems

Where’s the Stored Energy and What’s the System?
In discussing the climber of Fig. 7.1a, the book of Fig. 7.3, and the engineer of Example 7.1,  
we were careful not to use phrases like “the climber’s potential energy,” “the potential 
energy of the book,” or “the engineer’s potential energy.” After all, the climber herself 
hasn’t changed in going from the bottom to the top of the cliff; nor is the book any differ-
ent after you’ve returned it to the shelf. So it doesn’t make a lot of sense to say that po-
tential energy is somehow a property of these objects. Indeed, the idea of potential energy 
requires that two (or more) objects interact via a force. In the examples of the climber, 
the book, and the engineer, that force is gravity—and the pairs of interacting objects are, 
correspondingly, the climber and Earth, the book and Earth, and the engineer and Earth. 
So to characterize potential energy, we need in each case to consider a system consisting 
of at least two objects. In each example the configuration of that system changes, be-
cause the relative positions of the objects making up the system are altered. In each case, 
one member of the system—climber, book, or engineer—has moved relative to Earth. So 

7.2 Gravitational force actually decreases with height, but that decrease is negligi-
ble near Earth’s surface. To account for the decrease, would the exact value for the 
 potential-energy change associated with a height change h be (a) greater than, (b) less 
than, or (c) equal to mgh, where g is the gravitational acceleration at Earth’s surface?G

O
T 
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?
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7.3 Conservation of Mechanical Energy 119

potential energy is energy associated with the configuration of a system. It really makes 
no sense to talk about the potential energy of a single, structureless object. That’s in con-
trast with kinetic energy, which is associated with the motion of a system that might be as 
simple as a single object.

So where is potential energy stored? In the system of interacting objects. Potential en-
ergy is inherently a property of a system and can’t be assigned to individual objects. In 
the case of gravity, we can go further and say that the energy is stored in the gravitational 
field—a concept that we’ll introduce in the next chapter. It’s the gravitational field that 
changes, not the individual objects, when we change the configuration of a system whose 
components interact via gravity.

What about a spring? We can talk about “the potential energy of a spring” because any 
flexible object, including a spring, necessarily comprises a system of interacting parts. In 
the case of a spring, the individual molecules in the spring ultimately interact via electric 
forces, and the associated electric field is what changes as the spring stretches or com-
presses. And, as we’ll see quantitatively in Chapter 23, it’s in the electric field that the 
potential energy resides. When we talk about “elastic potential energy” we’re really de-
scribing potential energy stored in molecular electric fields.

7.3 Conservation of Mechanical Energy
LO 7.3 Use conservation of mechanical energy to solve problems that would 

be difficult using Newton’s second law.

The work–kinetic energy theorem, developed in Section 6.3, shows that the change ∆K in 
an object’s kinetic energy is equal to the net work done on it:

∆K = Wnet

Here we’ll consider the case where the only forces acting are conservative; then, as our 
interpretation of Equation 7.2 shows, the work done is the negative of the potential-energy 
change: Wnet = - ∆U. As a result, we have ∆K = - ∆U, or

∆K + ∆U = 0

What does this equation tell us? It says that any change ∆K  in kinetic energy K must 
be compensated by an opposite change ∆U in potential energy U in order that the two 
changes sum to zero. If kinetic energy goes up, then potential energy goes down by the 
same amount, and vice versa. In other words, the total mechanical energy, defined as the 
sum of kinetic and potential energy, does not change.

Remember that at this point we’re considering the case where only conservative forces 
act. For that case, we’ve just shown that mechanical energy is conserved. This principle, 
called conservation of mechanical energy, is expressed mathematically in the two equiv-
alent ways we’ve just discussed:

∆K + ∆U = 0 (7.5)

and, equivalently,          a conservation of
mechanical energyb

K + U = constant = K0 + U0 (7.6)

∆K and ∆U are changes in kinetic and potential 
energy, respectively. If one goes up, the other 
must go down so that there’s no overall change 
in mechanical energy.

The two equations are equivalent. Equation 7.5  
talks about changes in kinetic and potential 
energy, while Equation 7.6 talks about the total 
mechanical energy.

K0 and U0 are the kinetic and potential energy 
at some point. Their sum is the total mechanical 
energy.

K and U are the kinetic and potential energy at 
any other point. Their sum doesn’t change.

¯̆ ˙ ¯˘˙
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120 Chapter 7 Conservation of Energy

The work–kinetic energy theorem—which itself follows from Newton’s second law—
is what lies behind the principle of mechanical energy conservation. Although we de-
rived the work–kinetic energy theorem by considering a single object, the principle of 
mechanical energy conservation holds for any isolated system of macroscopic objects, 
no matter how complex, as long as its constituents interact only via conservative forces. 
Individual constituents of a complex system may exchange kinetic energy as, for exam-
ple, they undergo collisions. Furthermore, the system’s potential energy may change as 
the configuration of the system changes—but add all the constituents’ kinetic energies 
and the potential energy contained in the entire system, and you’ll find that the sum re-
mains unchanged.

Keep in mind that we’re considering here only isolated systems. If energy is trans-
ferred to the system from outside, by external forces doing work, then the system’s 
mechanical energy increases. And if the system does work on its environment, then its 
mechanical energy decreases. Ultimately, however, energy is always conserved, and if 
you make the system large enough to encompass all interacting objects, and if those ob-
jects interact only via conservative forces, then the system’s mechanical energy will be 
strictly conserved.

Conservation of mechanical energy is a powerful principle. Throughout phys-
ics, from the subatomic realm through practical problems in engineering and on to 
 astrophysics, the principle of energy conservation is widely used in solving problems 
that would be intractable without it. Here we consider its use in macroscopic systems 
subject only to conservative forces; later we’ll expand the principle to more general 
cases.

When you’re using energy conservation to solve problems, Equation 7.6 basically tells it all. 
Our IDEA problem-solving strategy adapts well to such problems.

INTERPRET First, interpret the problem to be sure that conservation of mechanical energy 
applies. Are all the forces conservative? If so, mechanical energy is conserved. Next, iden-
tify a point at which you know both the kinetic and the potential energy; then you know the 
total mechanical energy, which is what’s conserved. If the problem doesn’t do so and it’s not 
implicit in the equations you use, you may need to identify the zero of potential energy— 
although that’s your own arbitrary choice. You also need to identify the quantity the problem 
is asking for and the situation in which it has the value you’re after. The quantity may be the 
energy itself or a related quantity like height, speed, or spring compression. In some situations, 
you may have to deal with several types of potential energy—such as gravitational and elastic 
potential energy—appearing in the same problem.

DEVELOP Draw your object first in the situation where you know the energies and then in the 
situation that contains the unknown. It’s helpful to draw simple bar charts suggesting the rela-
tive sizes of the potential- and kinetic-energy terms; we’ll show you how in several examples. 
Then you’re ready to set up the quantitative statement of mechanical energy conservation, 
Equation 7.6: K + U = K0 + U0. Consider which of the four terms you know or can calcu-
late from the given information. You’ll probably need secondary equations like the expressions 
for kinetic energy and for various forms of potential energy. Consider how the quantity you’re 
trying to find is related to an energy.

EVALUATE Write Equation 7.6 for your specific problem, including expressions for 
 kinetic or potential energy that contain the quantity you’re after. Solving is then a matter of 
algebra.

ASSESS As usual, ask whether your answer makes physical sense. Does it have the right 
units? Are the numbers reasonable? Do the signs make sense? Is your answer consistent with 
the bar charts in your drawing?

PROBLEM-SOLVING STRATEGY 7.1 Conservation of Mechanical 
Energy
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7.3 Conservation of Mechanical Energy 121

A biologist uses a spring-loaded gun to shoot tranquilizer darts into 
an elephant. The gun’s spring has k = 940 N/m and is compressed 
a distance x0 = 25 cm before firing a 38-g dart. Assuming the gun is 
pointed horizontally, at what speed does the dart leave the gun?

INTERPRET We’re dealing with a spring, assumed ideal, so con-
servation of mechanical energy applies. We identify the initial 
state—dart at rest, spring fully compressed—as the point where 
we know both kinetic and potential energy. The state we’re then 
interested in is when the dart just leaves the gun, when potential 
energy has been converted to kinetic energy and before gravity has 
changed its vertical position.

DEVELOP In Fig. 7.6 we’ve sketched the two states, giving the potential 
and kinetic energy for each. We’ve also sketched bar graphs showing the 
relative sizes of the energies. To use the statement of energy conservation, 
Equation 7.6, we also need expressions for the kinetic energy 11

2  mv22 
and the spring potential energy (1

2 kx2; Equation 7.4). Incidentally, using 
Equation 7.4 implicitly sets the zero of elastic potential energy when 
the spring is in its equilibrium position. We might as well set the zero of 
gravitational energy at the height of the gun, since there’s no change in 
the dart’s vertical position between our initial and final states.

EVALUATE We’re now ready to write Equation 7.6, K + U = K0 + U0. 
We know three of the terms in this equation: The initial kinetic energy 
K0 is 0, since the dart is initially at rest. The initial potential energy is 
that of the compressed spring, U0 = 1

2  kx0
2. The final potential energy is 

U = 0 because the spring is now in its equilibrium position and we’ve 
taken the gravitational potential energy to be zero. What we don’t know 
is the final kinetic energy, but we do know that it’s given by K = 1

2  mv2. 
So Equation 7.6 becomes 12 mv2 + 0 = 0 + 1

2  kx0
2, which solves to give

v = A k
m

 x0 = aA940 N/m
0.038 kg

b10.25 m2 = 39 m/s

ASSESS Take a look at the answer in algebraic form; it says that a 
stiffer spring or a greater compression will give a higher dart speed. 
Increasing the dart mass, on the other hand, will decrease the speed. 
All this makes good physical sense. And the outcome shows quantita-
tively what our bar charts suggest—that the dart’s energy starts out all 
potential and ends up all kinetic.

EXAMPLE 7.4 Energy Conservation: Tranquilizing an Elephant

Initially
all energy
is in the
spring;
U0 =   kx2.

Now all
the energy 
is kinetic;
K =   mv2.1

2

1
2

There’s no
energy in the
spring;
U = 0.

Initially there’s
no kinetic energy;
K0 = 0.

FIGURE 7.6 Our sketches for Example 7.4, showing bar charts for the 
initial and final states.

The spring in Fig. 7.7 has k = 140 N/m. A 50-g block is placed 
against the spring, which is compressed 11 cm. When the block is re-
leased, how high up the slope does it rise? Neglect friction.

INTERPRET This example is similar to Example 7.4, but now we 
have changes in both elastic and gravitational potential energy. 
Since friction is negligible, we can consider that only conservative 
forces act, in which case we can apply conservation of mechanical 
energy. We identify the initial state as the block at rest against the 
compressed spring; the final state is the block momentarily at rest 

at its topmost point on the slope. We’ll take the zero of gravita-
tional potential energy at the bottom.

DEVELOP Figure 7.7 shows the initial and final states, along with 
bar charts for each. We’ve drawn separate bars for the spring and 
gravitational potential energies, Us and Ug. Now apply Equation 7.6, 
K + U = K0 + U0.

EVALUATE In both states the block is at rest, so kinetic energy is zero. 
In the initial state we know the potential energy U0: It’s the spring 

(continued )

EXAMPLE 7.5 Conservation of Energy: A Spring and Gravity
Worked Example with Variation Problems

Example 7.4 shows the power of the conservation-of-energy principle. If you had tried 
to find the answer using Newton’s law, you would have been stymied by the fact that the 
spring force and thus the acceleration of the dart vary continuously. But you don’t need to 
worry about those details; all you want is the final speed, and energy conservation gets you 
there, shortcutting the detailed application of F

S
= ma

!
.
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122 Chapter 7 Conservation of Energy

7.4 Nonconservative Forces
LO 7.4 Evaluate situations where nonconservative forces result in loss of 

 mechanical energy.

In the examples in Section 7.3, we assumed that mechanical energy was strictly conserved. 
In the everyday world of friction and other nonconservative forces, however, conserva-
tion of mechanical energy is sometimes a reasonable approximation and sometimes not. 
When it’s not, we have to consider energy transformations associated with nonconserva-
tive forces.

energy 1
2  kx0

2. We don’t know the final-state potential energy, but we 
do know that it’s gravitational energy—and with the zero of potential 
energy at the bottom, it’s U = mgh. With K = K0 = 0, U0 = 1

2 kx0
2, 

and U = mgh, Equation 7.6 reads 0 + mgh = 0 + 1
2 kx0

2. We then 
solve for the unknown h to get

h =
kx0

2

2mg
=

1140 N/m210.11 m22

12210.050 kg219.8 m/s22 = 1.7 m

ASSESS Again, the answer in algebraic form makes sense; the stiffer 
the spring or the more it’s compressed, the higher the block will go. 
But if the block is more massive or gravity is stronger, then the block 
won’t get as far.

 SAVE STEPS You might be tempted to solve first for the 
block’s speed when it leaves the spring and then equate 
1
2 mv2 to mgh to find the height. You could—but conservation 
of mechanical energy shortcuts all the details, getting you 
right from the initial to the final state. As long as energy is 
conserved, you don’t need to worry about what happens in 
between.

FIGURE 7.7 Our sketches for Example 7.5.

7.3 A bowling ball is tied to the end of a long rope and suspended from the ceiling. 
A student stands at one side of the room and holds the ball to her nose, then releases 
it from rest. Should she duck as it swings back? Explain.
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7.4 Nonconservative Forces 123

Friction is a nonconservative force. Recall from Chapter 5 that friction is actually a 
complex phenomenon, involving the making and breaking of microscopic bonds between 
two surfaces in contact (review Fig. 5.18). Associated with these bonds are myriad force 
application points, and different points may undergo different displacements depending on 
the strengths of the temporary bonds. For these reasons it’s difficult to calculate, or even to 
define unambiguously, the work done by friction.

What friction and other nonconservative forces do, however, is unambiguous: They 
convert the kinetic energy of macroscopic objects into kinetic energy associated with the 
random motions of individual molecules. Although we’re still talking about kinetic energy, 
there’s a huge difference between the kinetic energy of a macroscopic object like a mov-
ing car, with all its parts participating in a common motion, versus the random motions 
of molecules going helter-skelter in every direction with a range of speeds. We’ll explore 
that difference in Chapter 19, where we’ll find that, among other profound implications, it 
places serious constraints on our ability to extract useful energy from fuels.

You’ll also see, in Chapter 18, that molecular energy may include potential energy as-
sociated with stretching of spring-like molecular bonds. The combination of molecular ki-
netic and potential energy is called internal energy or thermal energy, and we give it the 
symbol E

int
. Here “internal” implies that this energy is contained within an object and that 

it isn’t as obvious as the kinetic energy associated with overall motion of the entire object. 
The alternative term “thermal” hints that internal energy is associated with temperature, 
heat, and related phenomena. We’ll see in Chapters 16–19 that temperature is a measure of 
the internal energy per molecule, and that what you probably think of as “heat” is actually 
internal energy. In physics, “heat” has a very specific meaning: It designates another way 
of transferring energy to a system, in addition to the mechanical work we’ve considered in 
Chapters 6 and 7.

So friction and other nonconservative forces convert mechanical energy into internal 
energy. How much internal energy? Both theory and experiment give a simple answer: 
The amount of mechanical energy converted to internal energy is given by the product of 
the nonconservative force with the distance over which it acts. With friction, that means 
∆Eint = fkd, where d is the distance over which the frictional force acts. (Here we write 
kinetic friction fk explicitly because static friction fs does not convert mechanical energy 
to internal energy because there’s no relative motion involved.) Since the increase in inter-
nal energy comes at the expense of mechanical energy K + U, we can write

 ∆K + ∆U = - ∆Eint = - fk d (7.7)

Example 7.6 describes a system in which friction converts mechanical energy to internal 
energy.

A block of mass m is launched from a spring of constant k that’s ini-
tially compressed a distance x0. After leaving the spring, the block 
slides on a horizontal surface with frictional coefficient m. Find an ex-
pression for the distance the block slides before coming to rest.

INTERPRET The presence of friction means that mechanical 
energy isn’t conserved. But we can still identify the kinetic and 

potential energy in the initial state: The kinetic energy is zero and 
the potential energy is that of the spring. In the final state, there’s 
no mechanical energy at all. The nonconservative frictional force 
converts the block’s mechanical energy into internal energy of the 
block and the surface it’s sliding on. The block comes to rest when 
all its mechanical energy has been converted.

(continued )

EXAMPLE 7.6 Nonconservative Forces: A Sliding Block

7.4 For which of the following systems is (1) mechanical energy conserved and 
(2) total energy conserved? (a) the system is isolated, and all forces among its con-
stituents are conservative; (b) the system is not isolated, and work is done on it by 
external forces; (c) the system is isolated, and some forces among its constituents 
are not conservative
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124 Chapter 7 Conservation of Energy

7.5 Conservation of Energy
LO 7.5 Distinguish internal energy from mechanical energy.

We often speak of energy being “lost” due to friction, or to air resistance, or to electrical 
resistance in power transmission. But that energy isn’t really lost; instead, as we’ve just 
seen for friction, it’s converted to internal energy. Physically, the internal energy manifests 
itself by warming the system. So the energy really is still there; it’s just that we can’t get it 
back as the kinetic energy of macroscopic objects.

Accounting for internal energy leads to a broader statement of energy conservation. 
Rearranging the first equality of Equation 7.7 lets us write

∆K + ∆U + ∆Eint = 0

This equation shows that the sum of the kinetic, potential, and internal energy of an iso-
lated system doesn’t change even though energy may be converted among these three dif-
ferent forms. You can see this conservation of energy graphically in Fig. 7.8, which plots 
all three forms of energy for the situation of Example 7.6.

So far we’ve considered only isolated systems, in which all forces are internal to the system. 
For Example 7.6 to be about an isolated system, for instance, that system had to include the 
spring, the block, and the surface on which the block slides. What if a system isn’t isolated? 
Then external forces may do work on it, increasing its energy. Or the system may do work on 
its environment, decreasing its energy. In that case we can generalize Equation 7.7 to read

 ∆K + ∆U + ∆Eint = Wext (7.8)

where Wext is the work done on the system by forces acting from outside. If Wext is pos-
itive, then this external work adds energy to the system; if it’s negative, then the system 
does work on its surroundings, and its total energy decreases. Recall that doing work is 
the mechanical means of transferring energy; in Chapters 16–18 we’ll introduce heat as 
a nonmechanical energy-transfer mechanism, and we’ll develop a statement like Equation 
7.8 that includes energy transfers by both work and heat.

Energy Conservation: The Big Picture
So far we’ve considered kinetic energy, potential energy, and internal energy, and we’ve 
explored energy transfer by mechanical work and by dissipative forces like friction. 

DEVELOP Figure 7.8 shows the situation. With K0 = 0, we 
 determine the total initial energy from Equation 7.4, U0 = 1

2 kx0
2. 

As the block slides a distance d, Equation 7.7 shows that the 
frictional force converts mechanical energy equal to fkd into in-
ternal energy. All the mechanical energy will be gone, there-
fore, when fkd = 1

2 kx 2
0 . Here the frictional force has magnitude 

fk = mn = mmg, where in this case of a horizontal surface the 
normal force n has the same magnitude as the weight mg. So our 
statement that all the mechanical energy gets converted to internal 
energy becomes 12 kx 2

0 = mmgd.

EVALUATE We solve this equation for the unknown distance d to 
get d = kx0

2/2mmg. Since we weren’t given numbers, there’s noth-
ing further to evaluate.

ASSESS Make sense? The stiffer the spring or the more it’s com-
pressed, the farther the block goes. The greater the friction or the 
normal force mg, the sooner the block stops. If m = 0, mechanical 
energy is once again conserved; then our result shows that the block 
would slide forever.
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uFrictional

surface

Frictional force acts
to oppose the motion.

End of spring
when uncompressed

m m m

Initially there’s 
potential energy
in the compressed
spring.

Eventually the block
stops, its mechanical
energy gone.
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FIGURE 7.8 Intermediate bar charts show gradual conversion of 
 mechanical energy into internal energy.
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We’ve also hinted at energy transfer by heat, to be defined in Chapter 16. But there are 
other forms of energy, and other energy-transfer mechanisms. In Part 3, you’ll explore 
electromagnetism, and you’ll see how energy can be stored in both electric and mag-
netic fields; their combination into electromagnetic waves results in energy transfer by 
electromagnetic radiation—the process that delivers life-sustaining energy from Sun 
to Earth and that also carries your cell phone conversations and data. Electromagnetic 
fields interact with matter, so energy transfers among electromagnetic, mechanical, and 
internal energy are important processes in the everyday physics of both natural and 
technological systems. But again, for any isolated system, such transfers only inter-
change types of energy and don’t change the total amount of energy. Energy, it seems, 
is strictly conserved.

In Newtonian physics, conservation of energy stands alongside the equally fundamen-
tal principle of conservation of mass (the statement that the total mass of an isolated sys-
tem can’t change). A closer look, however, shows that neither principle stands by itself. 
If you measure precisely enough the mass of a system before it emits energy, and again 
afterward, you’ll find that the mass has decreased. Einstein’s equation E = mc2 describes 
this effect, which ultimately shows that mass and energy are interchangeable. So Einstein 
replaces the separate conservation laws for mass and energy with a single statement: con-
servation of mass–energy. You’ll see how mass–energy interchangeability arises when 
we study relativity in Chapter 33. Until then, we’ll be dealing in the realm of Newtonian 
physics, where it’s an excellent approximation to assume that energy and mass are sepa-
rately conserved.

7.5 Consider Earth and its atmosphere as a system. Which of the following pro-
cesses conserves the total energy of this system? (a) a volcano erupts, spewing 
hot gases and particulate matter high into the atmosphere; (b) a small asteroid 
plunges into Earth’s atmosphere, heating and exploding high over the planet; (c) 
over geologic time, two continents collide, and the one that is subducted under 
the other heats up and undergoes melting; (d) a solar f lare delivers high-energy 
particles to Earth’s upper atmosphere, lighting the atmosphere with colorful 
auroras; (e) a hurricane revs up its winds, extracting energy from water vapor 
evaporated from warm tropical seas; (f) coal burns in numerous power plants, 
and uranium fissions in  nuclear reactors, with both processes sending electri-
cal energy into the world’s power grids and dumping warmed water into the 
environment
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7.6 Potential-Energy Curves
LO 7.6 Work with potential-energy curves for a wide variety of systems.

Figure 7.9 shows a frictionless roller-coaster track. How fast must a car be coasting at point 
A if it’s to reach point D? Conservation of mechanical energy provides the answer. To get 
to D, the car must clear peak C. Clearing C requires that the total energy exceed the poten-
tial energy at C; that is, 12 mvA

2 + mghA 7 mghC, where we’ve taken the zero of potential 
energy with the car at the bottom of the track. Solving for vA gives vA 7 22g1hC - hA2. 
If vA satisfies this inequality, the car will reach C with some kinetic energy remaining and 
will coast over the peak.

Figure 7.9 is a drawing of the actual roller-coaster track. But because gravita-
tional potential energy is directly proportional to height, it’s also a plot of potential 
energy versus position: a potential-energy curve. Conceptual Example 7.1 shows 
how we can study the car’s motion by plotting total energy on the same graph as the 
 potential-energy curve.

hA hB

hC

A B C D

FIGURE 7.9 A roller-coaster track.
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126 Chapter 7 Conservation of Energy

Even though the car in Figs. 7.10b and c can’t get to D, the total energy still exceeds the 
potential energy at D. But the car is blocked from reaching D by the potential barrier of 
peak C. We say that it’s trapped in a potential well between its turning points.

Potential-energy curves are useful even with nongravitational forces where there’s no direct 
correspondence with hills and valleys. The terminology used here—potential barriers, wells, 
and trapping—remains appropriate in such cases and indeed is widely used throughout physics.

Figure 7.11 shows the potential energy of a system comprising a pair of hydrogen at-
oms, as a function of their separation. This energy is associated with attractive and re-
pulsive electrical forces involving the electrons and the nuclei of the two atoms. The 
potential-energy curve exhibits a potential well, showing that the atoms can form a bound 
system in which they’re unable to separate fully. That bound system is a hydrogen mol-
ecule 1H22. The minimum energy, -7.6 *10-19 J, corresponds to the molecule’s equilib-
rium separation of 0.074 nm. It’s convenient to define the zero of potential energy when 
the atoms are infinitely far apart; Fig. 7.11 then shows that any total energy less than zero 
results in a bound system. But if the total energy is greater than zero, the atoms are free to 
move arbitrarily far apart, so they don’t form a molecule.

CONCEPTUAL EXAMPLE 7.1 Potential-Energy Curves

Figure 7.10 plots potential energy for our roller-coaster system, along 
with three possible values for the total mechanical energy. Since 
mechanical energy is conserved in the absence of nonconservative 
forces, the total-energy curve is a horizontal line. Use these graphs 
to describe the motion of a roller-coaster car, initially at point A and 
moving to the right.

EVALUATE We’re assuming there are no nonconservative forces 
(an approximation for a real roller coaster), so mechanical energy 

is conserved. In each figure, the sum of kinetic and potential en-
ergy therefore remains equal to the value set by the line indicating 
the total energy. When the roller-coaster car rises, potential energy 
increases and kinetic energy consequently decreases. But as long 
as potential energy remains below the total energy, the car still 
has kinetic energy and is still moving. Anywhere potential energy 
equals the total energy, the car has no kinetic energy and is mo-
mentarily at rest.

In Fig. 7.10a the car’s total energy exceeds the maximum potential 
energy. Therefore, it can move anywhere from its initial position at A. 
Since it’s initially moving to the right, it will clear peaks B and C and 
will end up at D still moving to the right—and, since D is lower than 
A, it will be moving faster than it was at A.

In Fig. 7.10b the highest peak in the potential-energy curve ex-
ceeds the total energy; so does the very leftmost portion of the curve. 
Therefore, the car will move rightward from A, clearing peak B, but 
will come to a stop just before peak C, a so-called turning point 
where potential energy equals the total energy. Then it will roll back 
down to the left, again clearing peak B and climbing to another turn-
ing point where the potential-energy curve and total-energy line again 
intersect. Absent friction, it will run back and forth between the two 
turning points.

In Fig. 7.10c the total energy is lower, and the car can’t clear 
peak B. So now it will run back and forth between the two turning 
points we’ve marked.

ASSESS Make sense? Yes: The higher the total energy, the larger the 
extent of the car’s allowed motion. That’s because, for a given poten-
tial energy, the car it has more energy available in the form of kinetic 
energy.

MAKING THE CONNECTION Find a condition on the speed at A 
that will allow the car to move beyond peak B.

EVALUATE With total energy equal to UB, the car could just barely 
clear peak B. The initial energy is 1

2 mv 2
A + mghA, where vA and hA 

are the car’s speed and height at A, and where we’ve taken the zero 
of  potential energy at the bottom of the curve. Requiring that this 
 quantity exceed UB = mghB then gives vA 7 22g1hB - hA2.

Total energy is high enough
that the car can move anywhere.

With lower total energy, the car is
confined between these points.

Now the car is confined 
to this region.

(a)

(b)

(c)
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FIGURE 7.10 Potential and total energy for a roller coaster.
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The zero of energy
corresponds to a 
large atomic separation.

At total energies less
than zero, the atoms
are bound into a 
molecule.

The minimum potential
energy gives the 
equilibrium separation
of the molecule. 
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FIGURE 7.11 Potential-energy curve for two hydrogen atoms.

Force and Potential Energy
The roller-coaster track in Fig. 7.9 traces the potential-energy curve for a car on the track. 
But it also shows the force acting to accelerate the car: Where the graph is steep—that is, 
where the potential energy is changing rapidly—the force is greatest. At the peaks and 
valleys, the force is zero. So it’s the slope of the potential-energy curve that tells us about 
the force (Fig. 7.13).

EXAMPLE 7.7 Molecular Energy: Finding Atomic Separation

Very near the bottom of the potential well in Fig. 7.11, the po-
tential energy of the two-atom system is given approximately by 
U = U0 + a1x - x022, where U0 = -0.760 aJ, a = 286 aJ/nm2, and 
x0 = 0.0741 nm is the equilibrium separation. What range of atomic 
separations is allowed if the total energy is -0.717 aJ?

INTERPRET This problem sounds complicated, with strange units 
and talk of molecular energies. But it’s about just what’s shown 
in Figs. 7.10 and 7.11. Specifically, we’re given the total energy 
and asked to find the turning points—the points where the line rep-
resenting total energy intersects the potential-energy curve. If the 
units look strange, remember the SI prefixes (there’s a table inside 
the front cover), which we use to avoid writing large powers of 10. 
Here 1 aJ = 10-18 J and 1 nm = 10-9 m.

DEVELOP Figure 7.12 is a plot of the potential-energy curve from the 
function we’ve been given. The straight line represents the total energy 
E. The turning points are the values of atomic separation where the two 
curves intersect. We could read them off the graph, or we can solve 
algebraically by setting the total energy equal to the potential energy.

EVALUATE With the potential energy given by U = U0 + a1x - x022 
and the total energy E, the two turning points occur when E = U0 +  
a1x - x022. We could solve directly for x, but then we’d have to use 
the quadratic formula. Solving for x - x0 is easier:

 x - x0 = {BE - U0

a
= {B-0.717 aJ - 1-0.760 aJ2

286 aJ/nm2

 = {0.0123 nm

Then the turning points are at x0 { 0.0123 nm—namely, 0.0864 nm 
and 0.0618 nm.

ASSESS Make sense? A look at Fig. 7.12 shows that we’ve correctly 
located the turning points. The fact that its potential-energy curve is 
parabolic (like a spring’s U = 1

2 kx2) shows that the molecule can be 
modeled approximately as two atoms joined by a spring. Chemists 
frequently use such models and even talk of the “spring constant” of 
the bond joining atoms into a molecule.

Zero total energy is that way.

Here’s the equilibrium separation.

With total energy E, the atoms
are trapped between these points.

A parabolic curve
shows the molecule
acts like two H
atoms connected
by a spring.
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FIGURE 7.12 Analyzing the hydrogen molecule.
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128 Chapter 7 Conservation of Energy

Just how strong is this force? Consider a small change ∆x, so small that the force 
is essentially constant over this distance. Then we can use Equation 7.2b to write 
∆U = -Fx ∆x, or Fx = - ∆U/∆x. In the limit ∆x S 0, ∆U/∆x becomes the derivative, 
and we have

 Fx = -
dU
dx

 (7.9)

This equation makes mathematical as well as physical sense. We’ve already written poten-
tial energy as the integral of force over distance, so it’s no surprise that force is the deriv-
ative of potential energy. Equation 7.9 gives the force component in the x-direction only. 
In a three-dimensional situation, we’d have to take derivatives of potential energy with 
respect to y and z to find the full force vector.

Why the minus sign in Equation 7.9? You can see the answer in the molecular energy 
curve of Fig. 7.11, where pushing the atoms too close together—moving to the left of 
 equilibrium—results in a repulsive force to the right, and pulling them apart—moving to the 
right—gives an attractive force to the left. You can see the same thing for the roller coaster 
in Fig. 7.13. In both cases the forces tend to drive the system back toward a minimum- 
energy state. We’ll explore such minimum-energy equilibrium states further in Chapter 12.

At peaks and valleys,
there’s no force.

Force is greater
where the curve
is steeper.

When the curve is
rising to the right,
force is to the left.
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FIGURE 7.13 Force depends on the slope 
of the potential-energy curve.

7.6 The figure shows the potential energy associated with 
an electron in a microelectronic device. From among  
the labeled points, find (1) the point where the force on the 
electron is greatest, (2) the rightmost position possible if the 
electron has total energy E1, (3) the leftmost position pos-
sible if the electron has total energy E2 and starts out to the 
right of D, (4) a point where the force on the electron is zero, 
and (5) a point where the force on the electron points to the 
left. In some cases there may be more than one answer.
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Chapter 7 Summary

Big Ideas
The big idea here is conservation of energy. This chapter emphasizes the special case of systems subject only to conservative forces, in which case 
the total mechanical energy—the sum of kinetic and potential energy—cannot change. Energy may change from kinetic to potential, and vice versa, 
but the total remains constant. Applying conservation of mechanical energy requires the concept of potential energy—energy stored in a system as 
a result of work done against conservative forces.
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is all potential.
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If nonconservative forces act in a system, then mechanical energy isn’t conserved; instead, mechanical energy gets converted to internal energy.
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Key Concepts and Equations
The important new concept here is 
potential energy, defined as the neg-
ative of the work done by a conser-
vative force. Only the change ∆U has 
physical significance. Expressions 
for potential energy include:

This one is the most general, but it’s
mathematically involved.  The force
can vary over an arbitrary path
between points A and B.

This is a special case, when force
and displacement are in the same
direction and force may vary with
position.

This is the most specialized case,
where the force is constant.

L
x2

x1

∆U = - F1x2dx ∆U = -F 1x2 - x12L
B

A
∆UAB = - F # dr

uS

Given the concept of potential energy, the principle of conservation of 
mechanical energy follows from the work–kinetic energy theorem of 
Chapter 6. Here’s the mathematical statement of mechanical energy 
conservation:

K and U are the
kinetic and potential
energy at some point
where we don’t know
one of these
quantities.

The total mechanical
energy is conserved, 
as indicated by the
equal sign.

K0 and U0 are 
the kinetic and
potential energy
at some point 
where both are 
known. K0 + U0
is the total 
mechanical energy.

K + U = K0 + U0

We can describe a wide range of systems—from molecules to roller 
coasters to planets—in terms of potential-energy curves. Knowing 
the total energy then lets us find turning points that determine the 
range of motion available to the system.

Position, x

Total 
energy
E

Po
te

nt
ia

l e
ne

rg
y,

 U

With a little more
energy, the ball could
clear this potential
barrier.

A ball with
total energy E
is trapped between
two turning points.

Applications
Two important cases of potential energy 
are the elastic potential energy of a spring, 
U = 1

2 kx2, and the gravitational potential 
energy change, ∆U = mgh, associated 
with lifting an object of mass m through 
a height h.

The former is limited to ideal springs for 
which F = -kx, the latter to the proxim-
ity of Earth’s surface, where the variation 
of gravity with height is negligible.

1
2

x

x

m

m

h

Unstretched spring defines U = 0.

Lifting an object
a height h increases
potential energy
by ∆U = mgh.

Compression or stretch by a
distance x gives the spring
potential energy U =   kx2.
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LO 7.1 Distinguish conservative from nonconservative forces.
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Exercises 7.9, 7.10

LO 7.2 Calculate potential energy, especially with gravity and springs.
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LO 7.3  Use conservation of mechanical energy to solve problems 
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7.18, 7.19, 7.20, 7.21; Problems 7.40, 7.41, 7.42, 7.43, 7.45, 

7.46, 7.47, 7.48, 7.49, 7.55, 7.59, 7.62, 7.63, 7.65, 7.66, 7.67, 
7.69

LO 7.4  Evaluate situations where nonconservative forces result in 
loss of mechanical energy.
Exercises 7.22, 7.23; Problems 7.53, 7.56, 7.57, 7.61, 7.64

LO 7.5 Distinguish internal energy from mechanical energy.
LO 7.6  Work with potential-energy curves for a wide variety of 
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Exercises 7.24, 7.25, 7.26; Problems 7.50, 7.52, 7.60
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130 Chapter 7 Conservation of Energy

14. How much energy can be stored in a spring with k = 320 N/m if 
the maximum allowed stretch is 18 cm?

15. How far would you have to stretch a spring with k = 1.4 kN/m 
for it to store 210 J of energy?

16. A biophysicist grabs the ends of a DNA strand with optical twee-
zers and stretches it 26 µm. How much energy is stored in the 
stretched molecule if its spring constant is 0.046 pN/µm?

Section 7.3 Conservation of Mechanical Energy
17. A skier starts down a frictionless 32° slope. After a vertical drop 

of 25 m, the slope temporarily levels out and then slopes down 
at 20°, dropping an additional 38 m vertically before leveling out 
again. Find the skier’s speed on the two level stretches.

18. A 10,000-kg Navy jet lands on an aircraft carrier and snags a 
cable to slow it down. The cable is attached to a spring with 
k = 40 kN/m. If the spring stretches 25 m to stop the plane, what 
was its landing speed?

19. A 120-g arrow is shot vertically from a bow whose effective 
spring constant is 430 N/m. If the bow is drawn 71 cm before 
shooting, to what height does the arrow rise?

20. In a railroad yard, a 35,000-kg boxcar moving at 7.5 m/s is 
stopped by a spring-loaded bumper mounted at the end of the 
level track. If k = 2.8 MN/m, how far does the spring compress 
in stopping the boxcar?

21. You work for a toy company, and you’re designing a spring-
launched model rocket. The launching apparatus has room for a 
spring that can be compressed 14 cm, and the rocket’s mass is 65 g.  
If the rocket is to reach an altitude of 35 m, what should you 
specify for the spring constant?

Section 7.4 Nonconservative Forces
22. A 54-kg ice skater pushes off the wall of the rink, giving herself 

an initial speed of 3.2 m/s. She then coasts with no further effort. 
If the frictional coefficient between skates and ice is 0.023, how 
far does she go?

23. You push a 33-kg table across a 6.2-m-wide room. In the process, 
1.5 kJ of mechanical energy gets converted to internal energy of 
the table/floor system. What’s the coefficient of kinetic friction 
between table and floor?

Section 7.6 Potential-Energy Curves
24. A particle slides along the frictionless track shown in Fig. 7.16, 

starting at rest from point A. Find (a) its speed at B, (b) its speed at 
C, and (c) the approximate location of its right-hand turning point.

25. A particle slides back and forth on a frictionless track whose 
height as a function of horizontal position x is y = ax2, where 
a = 0.92 m-1. If the particle’s maximum speed is 8.5 m/s, find 
its turning points.

26. A particle is trapped in a potential well described by 
U1x2 = 16x2 - b, with U in joules, x in meters, and b = 4.0 J. 
Find the force on the particle when it’s at (a) x = 2.1 m, (b) 
x = 0, and (c) x = -1.4 m.

BIO

For Thought and Discussion

1. Figure 7.14 shows force vectors at different points in space for 
two forces. Which is conservative and which nonconservative? 
Explain.

2. Is the conservation-of-mechanical-energy principle related to 
Newton’s laws, or is it an entirely separate physical principle? 
Discuss.

3. Why can’t we define a potential energy associated with friction?
4. Can potential energy be negative? Can kinetic energy? Can total 

mechanical energy? Explain.
5. If the potential energy is zero at a given point, must the force also 

be zero at that point? Give an example.
6. If the force is zero at a given point, must the potential energy also 

be zero at that point? Give an example.
7. If the difference in potential energy between two points is zero, 

does that necessarily mean that an object moving between those 
points experiences no force?

8. If conservation of energy is a law of nature, why do we have 
programs—like mileage requirements for cars or insulation stan-
dards for buildings—designed to encourage energy conservation?

Exercises and Problems

Exercises

Section 7.1 Conservative and Nonconservative Forces
9. Determine the work you would have 

to do to move a block of mass m from 
point 1 to point 2 at constant speed 
over the two paths shown in Fig. 7.15. 
The coefficient of friction has the con-
stant value m over the surface. Note: 
The diagram lies in a horizontal plane.

10. Now take Fig. 7.15 to lie in a verti-
cal plane, and find the work done by 
the gravitational force as an object 
moves from point 1 to point 2 over 
each of the paths shown.

Section 7.2 Potential Energy
11. Rework Example 7.1, now taking the zero of potential energy at 

street level.
12. Find the potential energy associated with a 70-kg hiker (a) atop 

New Hampshire’s Mount Washington, 1900 m above sea level, 
and (b) in Death Valley, California, 86 m below sea level. Take 
the zero of potential energy at sea level.

13. You fly from Boston’s Logan Airport, at sea level, to Denver, al-
titude 1.6 km. Taking your mass as 65 kg and the zero of poten-
tial energy at Boston, what’s the gravitational potential energy 
when you’re (a) at the plane’s 11-km cruising altitude and (b) in 
Denver?

(b)

(a)
2

L

L

1

FIGURE 7.15 Exercises 9 
and 10

0 1 2 3 4 5 6 7 8 9 10 11 12
Position, x (m)

3.8 m
2.6 m

1.3 m

A

B

C

FIGURE 7.16 Exercise 24

(a) (b)

FIGURE 7.14 For Thought and Discussion 1
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37. A more accurate expression for the force law of the rope in 
Example 7.3 is F = -kx + bx2 - cx3, where k and b have the 
values given in Example 7.3 and c = 3.1 N/m3. Find the energy 
stored in stretching the rope 2.62 m. By what percentage does 
your result differ from that of Example 7.3?

38. For small stretches, the Achilles tendon can be modeled as an 
ideal spring. Experiments using a particular tendon showed that 
it stretched 2.66 mm when a 125-kg mass was hung from it. (a) 
Find the spring constant of this tendon. (b) How much would it 
have to stretch to store 50.0 J of energy?

39. A particle moves along the x-axis under the influence of a force 
F = ax2 + b, where a and b are constants. Find the potential en-
ergy as a function of position, taking U = 0 at x = 0.

40. As a highway engineer, you’re asked to design a runaway truck 
lane on a mountain road. The lane will head uphill at 30° and 
should be able to accommodate a 16,000-kg truck with failed 
brakes entering the lane at 110 km/h. How long should you make 
the lane? Neglect friction.

41. A spring of constant k, compressed a distance x, is used to launch 
a mass m up a frictionless slope at angle u. Find an expression for 
the maximum distance along the slope that the mass moves after 
leaving the spring.

42. A child is on a swing whose 3.2-m-long chains make a maxi-
mum angle of 50° with the vertical. What’s the child’s maximum 
speed?

43. With x - x0 = h and a = g, Equation 2.11 gives the speed of an 
object thrown downward with initial speed v0 after it’s dropped 
a distance h: v = 2v2

0 + 2gh. Use conservation of mechanical 
energy to derive the same result.

44. The nuchal ligament  is  a 
cord-like structure that runs 
along the back of the neck 
and supports much of the 
head’s weight in animals like 
horses and cows. The liga-
ment is extremely stiff for 
small stretches, but loosens as 
it stretches further, thus func-
tioning as a biological shock 
absorber. Figure 7.17 shows 
the force–distance curve for a particular nuchal ligament; 
the curve can be modeled approximately by the expression 
F1x2 = 0.43x - 0.033x2 + 0.00086x3, with F  in kN and x 
in cm. Find the energy stored in the ligament when it’s been 
stretched (a) 7.5 cm and (b) 15 cm.

45. A 200-g block slides back and forth on a frictionless surface be-
tween two springs, as shown in Fig. 7.18. The left-hand spring 
has k = 130 N/m and its maximum compression is 16 cm. 
The right-hand spring has 
k = 280 N/m. Find (a) the 
maximum compression of 
the right-hand spring and 
(b) the speed of the block 
as it moves between the 
springs.

46. Automotive standards call for bumpers that sustain essentially 
no damage in a 4-km/h collision with a stationary object. As an 
automotive engineer, you’d like to improve on that. You’ve devel-
oped a spring-mounted bumper with effective spring constant 1.3 
MN/m. The springs can compress up to 5.0 cm before damage 
occurs. For a 1400-kg car, what do you claim as the maximum 
collision speed?

BIO

BIO

Example Variations
The following problems are based on two examples from the text. Each 
set of four problems is designed to help you make connections that 
enhance your understanding of physics and to build your confidence 
in solving problems that differ from ones you’ve seen before. The first 
problem in each set is essentially the example problem but with differ-
ent numbers. The second problem presents the same scenario as the 
example but asks a different question. The third and fourth problems 
repeat this pattern but with entirely different scenarios.

27. Example 7.3: A climbing rope is designed to exert a force given 
by F = - kx + bx3, where k = 244 N/m, b = 3.24 N/m3, and 
x is the stretch in meters. Find the potential energy stored in the 
rope when it’s been stretched 4.68 m. Take U = 0 when the rope 
isn’t stretched—that is, when x = 0. Is this more or less than if 
the rope were an ideal spring with the same spring constant k?

28. Example 7.3: A climbing rope exerts a force given by 
F = - kx - cx2. Find an expression for c such that when the 
rope is stretched a distance d its potential energy is twice what it 
would be if the rope were an ideal spring with F = - kx.

29. Example 7.3: The force on an electron in an experimental na-
noscale electronic device is given by F = - kx + bx3, where 
k = 0.113 nN/nm, b = 0.00185 nN/nm3, and x is measured in 
nanometers from the electron’s equilibrium position at x = 0. 
Find the potential energy when the electron is 2.14 nm from its 
equilibrium position.

30. Example 7.3: The potential energy of an electron in an experimen-
tal nanoscale electronic device is given by U = 1.27x2 - 0.260x4,  
where U is in aJ11 aJ = 10- 18J2 and x is the electron’s position 
in nanometers. Find the x-component of the force on the electron 
when it’s at x =  1.47 nm.

31. Example 7.5: In Fig. 7.7, take the spring to have k = 87.5 N/m 
and consider the track to be frictionless. A 50.2-g mass is initially 
pushed against the spring, compressing it 7.88 cm. When the mass 
is released, to what vertical height up the track does it rise?

32. Example 7.5: In Fig. 7.7, take the spring to have k = 107 N/m. 
You’re using the spring to launch a 75.0-g mass, and you want it 
to rise to a vertical height of 96.8 cm. How far should you com-
press the spring?

33. Example 7.5: In a railroad switchyard, a rail car of mass 28,600 
kg starts from rest and rolls down an incline and onto a level 
stretch of track. It then hits a spring bumper at the end of the 
track. If the spring constant is 1.88 MN/m and if the spring com-
presses a maximum of 1.03 m, what’s the height at which the car 
started? Neglect friction.

34. Example 7.5: In a railroad switchyard, a rail car of mass 41,700 
kg starts from rest and rolls down a 2.65-m-high incline and onto 
a level stretch of track. It then hits a spring bumper, whose spring 
compresses 89.4 cm. Find the spring constant.

Problems
35. The reservoir at Northfield Mountain Pumped Storage Project 

is 214 m above the pump/generators and holds 2.1 * 1010 kg of 
water (see Application on p. 117). The generators can produce 
electrical energy at the rate of 1.08 GW. Find (a) the gravitational 
potential energy stored, taking zero potential energy at the gen-
erators, and (b) the length of time the station can generate power 
before the reservoir is drained.

36. A carbon monoxide molecule can be modeled as a carbon atom 
and an oxygen atom connected by a spring. If a displacement of 
the carbon by 1.46 pm from its equilibrium position relative to 
the oxygen increases the molecule’s potential energy by 0.0125 
eV, what’s the spring constant?
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132 Chapter 7 Conservation of Energy

57. A 190-g block is launched by compressing a spring of constant 
k = 200 N/m by 15 cm. The spring is mounted horizontally, 
and the surface directly under it is frictionless. But beyond the 
equilibrium position of the spring end, the surface has frictional 
coefficient m = 0.27.. This frictional surface extends 85 cm, fol-
lowed by a frictionless curved rise, as shown in Fig. 7.21. After 
it’s launched, where does the block finally come to rest? Measure 
from the left end of the frictional zone.

58. In 2017 Hurricane Maria dumped nearly 20" of rain on Puerto 
Rico. Give an order-of-magnitude estimate for the change in po-
tential energy of all this rain as it fell from the hurricane.

59. An 840-kg roller-coaster car is launched from a giant spring with 
k = 31 kN/m into a frictionless loop-the-loop track of radius 6.2 
m, as shown in Fig. 7.22. What’s the minimum spring compres-
sion that will ensure the car stays on the track?

60. A particle slides back and forth on a frictionless parabolic track 
whose height is given by h = ax2, where x is the horizontal coor-
dinate. Find an expression for the position x of the turning points 
of an object sliding on this track, if its speed at the bottom is v.

61. A child sleds down a frictionless hill whose vertical drop is 7.2 
m. At the bottom is a level but rough stretch where the coefficient 
of kinetic friction is 0.51. How far does she slide across the level 
stretch?

62. A bug lands on top of the frictionless, spherical head of a bald 
man. It begins to slide down his head (Fig. 7.23). Show that the 
bug leaves the head when it has dropped a vertical distance one-
third of the head’s radius.

63. A particle of mass m is subject to a force F
S

= 1a1x2 in, where 
a is a constant. The particle is initially at rest at the origin and is 
given a slight nudge in the positive x-direction. Find an expres-
sion for its speed as a function of position x.

64. A block of weight 4.5 N is launched up a 30° inclined plane 
2.0 m long by a spring with k = 2.0 kN/m and maximum com-
pression 10 cm. The coefficient of kinetic friction is 0.50. Does 

CH
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CH
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47. A block slides on the frictionless loop-the-loop track shown in 
Fig. 7.19. Find the minimum height h at which it can start from 
rest and still make it around the loop.

48. The maximum speed of the pendulum bob in a grandfather clock 
is 0.55 m/s. If the pendulum makes a maximum angle of 8.0° 
with the vertical, what’s the pendulum’s length?

49. A mass m is dropped from height h above the top of a 
spring of constant k  mounted vertically on the f loor. 
Show that the spring’s maximum compression is given by 
1mg/k211 + 11 + 2kh/mg2.

50. A particle with total energy 3.5 J is trapped in a potential well 
described by U = 7.0 - 8.0x + 1.7x2, where U is in joules and 
x in meters. Find its turning points.

51. (a) Derive an expression for the potential energy of an object 
subject to a force Fx = ax2 + bx3 where a = - 26.5 N/m2, 
b = 12.2 N/m3, and x is in meters. Take U = 0 at x = 0. (b) 
Plot the potential energy as a function of position on the interval 
0 6 x 6 3 m, and (c) determine graphically the locations of the 
turning points for an object whose total energy is –10.0 J.

52. In ionic solids such as NaCl (salt), the potential energy of a pair 
of ions takes the form U = b/rn - a/r, where r is the separation 
of the ions. For NaCl, a and b have the SI values 4.04 *10-28 and 
5.52 * 10-98, respectively, and n = 8.22. Find the equilibrium 
separation in NaCl.

53. Repeat Exercise 17 for the case when the coefficient of kinetic 
friction on both slopes is 0.11, while the level stretches remain 
frictionless.

54. As an energy-efficiency consultant, you’re asked to assess a 
pumped-storage facility. Its reservoir sits 140 m above its gen-
erating station and holds 8.5*109 kg of water. The power plant 
generates 330 MW of electric power while draining the reser-
voir over an 8.0-h period. Its efficiency is the percentage of the 
stored potential energy that gets converted to electricity. What 
efficiency do you report?

55. A spring of constant k = 340 N/m is used to launch a 1.5-kg 
block along a horizontal surface whose coefficient of sliding fric-
tion is 0.27. If the spring is compressed 18 cm, how far does the 
block slide?

56. A bug slides back and forth in a bowl 15 cm deep, starting from 
rest at the top, as shown in Fig. 7.20. The bowl is frictionless 
except for a 1.4-cm-wide sticky patch on its flat bottom, where 
the coefficient of friction is 0.89. How many times does the bug 
cross the sticky region?
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FIGURE 7.19 Problem 47

Frictionless Frictionlessm = 0.27

FIGURE 7.21 Problem 57

1.4 cm

15 cm

FIGURE 7.20 Problem 56

FIGURE 7.22 Problem 59

FIGURE 7.23 Problem 62
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(MeV), a unit commonly used in nuclear physics, and the separation is 
in femtometers 11 fm = 10-15 m2.
70. The force between the deuterons is zero at approximately

a. 3 fm.
b. 4 fm.
c. 5 fm.
d. the force is never zero.

71. In order for initially two widely separated deuterons to get close 
enough to fuse, their kinetic energy must be about
a. 0.1 MeV.
b. 3 MeV.
c. -3 MeV.
d. 0.3 MeV.

72. The energy available in fusion is the energy difference between 
that of widely separated deuterons and the bound deutrons after 
they’ve “fallen” into the deep potential well shown in the figure. 
That energy is about
a. 0.3 MeV.
b. 1 MeV.
c. 3.3 MeV.
d. 3.6 MeV.

73. When two deuterons are 4 fm apart, the force acting on them
a. is repulsive.
b. is attractive.
c. is zero.
d. can’t be determined from the graph.

Answers to Chapter Questions

Answer to Chapter Opening Question
Potential energy turns into kinetic energy, sound, and internal energy.

Answers to GOT IT? Questions
7.1  (c) On the curved paths, the work is greater for the trunk. The 

gravitational force is conservative, so the work is independent of 
path. But the frictional force isn’t conservative, and the longer 
path means more work needs to be done.

7.2  (b) The potential-energy change will be slightly less because at 
greater heights, the gravitational force is lower and so, therefore, 
is the work done in traversing a given distance.

7.3  No. Mechanical energy is conserved, so if the ball is released from 
rest, it cannot climb higher than its initial height.

7.4 (1) (a) only; (2) (a) and (c)
7.5 (a), (c), (e), (f)
7.6 (1) B; (2) E; (3) C; (4) A or D; (5) B or E

the block reach the top of the incline? If so, how much kinetic 
energy does it have there? If not, how close to the top, along the 
incline, does it get?

65. Your engineering department is asked to evaluate the perfor-
mance of a new 370-hp sports car. You know that 27% of the 
engine’s power can be converted to kinetic energy of the 1200-
kg car, and that the power delivered is independent of the car’s 
velocity. What do you report for the time it will take to accelerate 
from rest to 60 mi/h on a level road?

66. Your roommate is writing a science fiction novel and asks your 
advice about a plot point. Her characters are mining ore on the 
Moon and launching it toward Earth. Bins with 1500 kg of ore 
will be launched by a large spring, to be compressed 17 m. It 
takes a speed of 2.4 km/s to escape the Moon’s gravity. What do 
you tell her is an appropriate spring constant?

67. You have a summer job at your university’s zoology department, 
where you’ll be working with an animal behavior expert. She’s as-
signed you to study videos of different animals leaping into the air. 
Your task is to compare their power outputs as they jump. You’ll 
have the mass m of each animal from data collected in the field. 
From the videos, you’ll be able to measure both the vertical dis-
tance d over which the animal accelerates when it pushes off the 
ground and the maximum height h it reaches. Your task is to find 
an algebraic expression for power in terms of these parameters.

68. Biomechanical engineers developing artificial limbs for pros-
thetic and robotic applications have developed a two-spring de-
sign for their replacement Achilles tendon. The first spring has 
constant k and the second ak, where a 7 1. When the artificial 
tendon is stretched from x = 0 to x = x1, only the first spring 
is engaged. For x 7 x1, a mechanism engages the second spring, 
giving a configuration like that described in part (a) of Chapter 4’s  
Problem 65. Find an expression for the energy stored in the artifi-
cial tendon when it’s stretched a distance 2x1.

69. Blocks with different masses are pushed against a spring one at 
a time, compressing it different amounts. Each is then launched 
onto an essentially frictionless horizontal surface that then curves 
upward, still frictionless (like Fig. 7.21 but without the frictional 
part). The table below shows the masses, spring compressions, 
and maximum vertical height each block achieves. Determine a 
quantity that, when you plot h against it, should yield a straight 
line. Plot the data, determine a best-fit line, and use its slope to 
determine the spring constant.

Mass m (g) 50.0 85.2 126 50.0 85.2

Compression x (cm) 2.40 3.17 5.40 4.29 1.83

Height h (cm) 10.3 11.2 19.8 35.2 3.81

Passage Problems
Nuclear fusion is the process that powers the Sun. Fusion occurs when 
two low-mass atomic nuclei fuse together to make a larger nucleus, 
in the process releasing substantial energy. This is hard to achieve be-
cause atomic nuclei carry positive electric charge, and their electrical 
repulsion makes it difficult to get them close enough for the short-
range nuclear force to bind them into a single nucleus. Figure 7.24 
shows the potential-energy curve for fusion of two deuterons (heavy 
hydrogen nuclei). The energy is measured in million electron volts 
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FIGURE 7.24 Potential energy for two deuterons (Passage 
Problems 70–73)
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In 2015, more than nine years after its launch, 
New Horizons became the first spacecraft to fly 
by Pluto. What condition on New Horizons’ total 
energy determines whether it will ever return to 
our Solar System?

6
Energy, Work, and  

Power

7
Conservation of  

Energy

9
Systems of Particles

10
Rotational Motion8

Gravity is the most obvious of nature’s fundamental forces. Theories of 
gravity have brought us new understandings of the nature and evo-

lution of the universe. We’ve used our knowledge of gravity to explore 
the solar system and to engineer a host of space-based technologies. In 
nearly all applications we still use the theory of gravity that Isaac Newton 
developed in the 1600s. Only in the most extreme astrophysical situations 
or where—as with Global Positioning System satellites—we need exqui-
site precision do we use the successor to Newtonian gravitation, namely, 
Einstein’s general theory of relativity.

8.1 Toward a Law of Gravity
LO 8.1 Describe the evolution of our understanding of planetary 

motion.

Newton’s theory of gravity was the culmination of a scientific revolution that 
began in 1543 with Polish astronomer Nicolaus Copernicus’s radical suggestion 
that the planets orbit not Earth but the Sun. Fifty years after Copernicus’s work 
was published, the Danish noble Tycho Brahe began a program of accurate plan-
etary observations. After Tycho’s death in 1601, his assistant Johannes Kepler 
worked to make sense of the observations. Success came when Kepler took a 
radical step: He gave up the long-standing idea that the planets moved in perfect 
circles. Kepler summarized his new insights in three laws, described in Fig. 8.1. 
Kepler based his laws solely on observation and gave no theoretical explanation. 
So Kepler knew how the planets moved, but not why.

Shortly after Kepler published his first two laws, Galileo trained his first 
telescopes on the heavens. Among his discoveries were four moons orbiting 

Gravity

Skills & Knowledge You’ll Need
■■ Newton’s second law applied to 

 circular motion (Section 5.3)

■■ Kinetic and potential energy  
(Sections 6.4, 7.2)

■■ Conservation of mechanical energy 
(Section 7.3)

Learning Outcomes
After finishing this chapter, you should be able to

LO 8.1 Describe the evolution of our understanding of planetary 
motion.

LO 8.2 Use the law of universal gravitation to find the gravitational 
force between masses.

LO 8.3 Solve problems involving circular orbits.

LO 8.4 Solve conservation-of-energy problems involving universal 
gravitation.

LO 8.5 Calculate escape speeds.

LO 8.6 Distinguish closed and open orbits based on total energy.

LO 8.7 Explain the field concept as applied to the gravitational field.
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8.2 Universal Gravitation 135

Jupiter, sunspots that blemished the supposedly perfect sphere of the Sun, and the phases 
of Venus (Fig. 8.2). His observations called into question the notion that all celestial ob-
jects were perfect and also lent credence to the Copernican view of the Sun as the center 
of planetary motion.

By Newton’s time the intellectual climate was ripe for the culmination of the revolution that 
had begun with Copernicus. Legend has it that Newton was sitting under an apple tree when an 
apple struck him on the head, causing him to discover gravity. That story is probably a myth, 
but if it were true the other half would be that Newton was staring at the Moon when the apple 
struck. Newton’s genius was to recognize that the motion of the apple and the motion of the 
Moon were the same, that both were “falling” toward Earth under the influence of the same 
force. Newton called this force gravity, from the Latin gravitas, “heaviness.” In one of the 
most sweeping syntheses in human thought, Newton inferred that everything in the universe, 
on Earth and in the celestial realm, obeys the same physical laws.

8.2 Universal Gravitation
LO 8.2 Use the law of universal gravitation to find the gravitational force 

 between masses.

Newton generalized his new understanding of gravity to suggest that any two particles in 
the universe exert attractive forces on each other, with magnitude given by

 F =
Gm1m2

r2  1universal gravitation2 (8.1)

Here m1 and m2 are the particle masses, r the distance between them, and G the constant 
of universal gravitation, whose value—which was determined after Newton’s time—is 
6.67 * 10-11 N #m2/kg2. The constant G is truly universal; observation and theory suggest 
that it has the same value throughout the universe.

The force of gravity acts between two particles; that is, m1 exerts an attractive force on 
m2, and m2 exerts an equal but oppositely directed force on m1. The two forces therefore 
obey Newton’s third law.

Newton’s law of universal gravitation applies strictly only to point particles that have 
no extent. But, as Newton showed using his newly developed calculus, it also holds for 
spherically symmetric objects of any size if the distance r is measured from their centers. 
It also applies approximately to arbitrarily shaped objects provided the distance between 
them is large compared with their sizes. For example, the gravitational force of Earth on 
the International Space Station is given accurately by Equation 8.1 because (1) Earth is 
essentially spherical and (2) the station, though irregular in shape, is vastly smaller than its 
distance from Earth’s center.

First law: The orbit
is elliptical, with the
Sun at one focus.

Third law: The square
of the orbital period is
proportional to the cube
of the semimajor axis.

Second law: If the
shaded areas are equal,
so are the times to go
from A to B and from
C to D.

C

D

B

Semimajor axis

A

FIGURE 8.1 Kepler’s laws.

FIGURE 8.2 Phases of Venus. In an 
Earth-centered system, Venus would 
always appear the same size because 
of its constant distance from Earth.

EXAMPLE 8.1 The Acceleration of Gravity: On Earth and in Space

Use the law of universal gravitation to find the acceleration of gravity 
at Earth’s surface, at the 380-km altitude of the International Space 
Station, and on the surface of Mars.

INTERPRET The problem statement tells us this is about universal 
gravitation, but what’s that got to do with the acceleration of gravity? 

The gravitational force is what causes that acceleration, so we can in-
terpret this problem as being about the force between Earth (or Mars) 
and some arbitrary mass.

DEVELOP Since the problem involves universal gravitation, Equation 8.1 
applies. But we’re asked about acceleration, not force. Newton’s second law,  

F is the magnitude of the 
gravitational force between 
any two masses. The force is 
always attractive.

m1 and m2 are the two masses . . .

G is the constant of universal 
gravitation, approximately 
6.67 * 10-11 N # m2/kg2.

. . . and r is the distance between them.

(continued )
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136 Chapter 8 Gravity

F = ma, relates the two. So our plan is to use Equation 8.1, 
F = Gm1m2/r

2, to find the gravitational force on an arbitrary mass and 
then use Newton’s second law to get the acceleration. We’ll also need the 
masses of Earth and Mars and their radii. Astrophysical data like these are 
in Appendix E.

EVALUATE Equation 8.1 gives the force a planet of mass M ex-
erts on an arbitrary mass m a distance r from the planet’s center: 
F = GM m/r2. (Here we set m1 in Equation 8.1 to the large planetary 
mass M, and m2 to the smaller mass m.) But Newton’s second law says 
that this force is equal to the product of mass and acceleration for a 
body in free fall, so we can write ma = GM m/r2. The mass m can-
cels, and we’re left with the acceleration:

a =
GM

r2  (8.2)

The distance r is measured from the center of the object providing the 
gravitational force, so to find the acceleration at Earth’s surface we use RE, 
the radius of Earth, for r. Taking RE and ME from Appendix E, we have

 a =
GME

RE
2

 =
16.67 * 10-11 N #m2/kg2215.97 * 1024 kg2

16.37 * 106 m22 = 9.81 m/s2

Our result here is the value of g—the acceleration due to gravity at 
Earth’s surface.

At the space station’s altitude, we have r = RE + 380 km, so

 a =
GME

r2

 =
16.67 * 10-11 N #m2/kg2215.97 * 1024 kg2

16.37 * 106 m + 380 * 103 m22 = 8.74 m/s2

A similar calculation using Appendix E data yields 3.73 m/s2 for the 
acceleration of gravity at the surface of Mars.

ASSESS As we’ve seen, our result for Earth is just what we ex-
pect. The acceleration at the space station is lower but still about 
90% of the surface value. This confirms Chapter 4’s point that 
weightlessness doesn’t mean the absence of gravity. Rather, as 
Equation 8.2 shows, an object’s gravitational acceleration is in-
dependent of its mass—so all objects “fall” together. Finally, our 
answer for Mars is lower than for Earth, as befits its lower mass—
although not as much lower as mass alone would imply. That’s be-
cause Mars is also smaller, so r in the denominator of Equation 8.2  
is a smaller number.

  G AND g Don’t confuse G and 
g! Both quantities are associated 
with gravity, but G is a universal 
constant, while g describes the 
gravitational acceleration at a 
particular place—namely, Earth’s 

surface—and its value depends on Earth’s 
size and mass.

The variation of gravitational acceleration with distance from Earth’s center provided 
Newton with a clue that the gravitational force should vary as the inverse square of the 
distance. Newton knew the Moon’s orbital period and distance from Earth; from these he 
could calculate its orbital speed and thus its acceleration v2/r. Newton found—as you can 
in Exercise 12—that the Moon’s acceleration is about 1/3600 the gravitational accelera-
tion g at Earth’s surface. The Moon is about 60 times farther from Earth’s center than is 
Earth’s surface; since 602 = 3600, the decrease in gravitational acceleration with distance 
from Earth’s center is consistent with a gravitational force that varies as 1/r2.

Tactics 8.1 UNDERSTANDING “INVERSE SQUARE”

Newton’s universal gravitation is the first of several 
inverse-square force laws you’ll encounter, and it’s 
important to understand what this term means. In 
Equation 8.1 the distance r between the two masses 
is squared, and it occurs in the denominator; hence 
the force depends on the inverse square of the dis-
tance. Double the distance and the force drops to 
1/22, or 1/4 of its original value. Triple the distance 
and the force drops to 1/32, or 1/9. Although you can 
always grind through the arithmetic of Equation 8.1, 
you should use these simple ratio calculations when-
ever possible. The same considerations apply to 
gravitational acceleration, since it’s proportional to 
force (Fig. 8.3).

At 2RE, gravitational acceleration
has    of its surface value c

cand at 3RE, it’s
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FIGURE 8.3 Meaning of the inverse-square 
law.

8.1 Suppose the distance between two objects is cut in half. Is the gravitational force 
between them (a) quartered, (b) halved, (c) doubled, or (d) quadrupled?
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The Cavendish Experiment: Weighing the Earth
Given Earth’s mass and radius and the measured value of g, we could use Equation 8.1 
to determine the universal constant G. Unfortunately, the only way to determine Earth’s 
mass accurately is to measure its gravitational effect and then use Equation 8.1. But that 
requires knowing G.

To determine G, we need to measure the gravitational force of a known mass. Given 
the weak gravitational force of normal-sized objects, this is a challenging task. It was 
accomplished in 1798 through an ingenious experiment by the British physicist Henry 
Cavendish. Cavendish mounted two 5-cm-diameter lead spheres on the ends of a rod 
suspended from a thin fiber. He then brought two 30-cm lead spheres nearby (Fig. 8.4). 
Their gravitational attraction caused a slight movement of the small spheres, twisting 
the fiber. Knowing the properties of the fiber, Cavendish could determine the force. With 
the known masses and their separation, he then used Equation 8.1 to calculate G. His 
result determined Earth’s mass; indeed, his published paper was entitled “On Weighing 
the Earth.”

Gravity is the weakest of the fundamental forces, and, as the Cavendish experiment 
suggests, the gravitational force between everyday objects is negligible. Yet gravity 
shapes the large-scale structure of matter and indeed the entire universe. Why, if it’s so 
weak? The answer is that gravity, unlike the stronger electric force, is always attractive; 
there’s no “negative mass.” So large concentrations of matter produce substantial grav-
itational effects. Electric charge, in contrast, can be positive or negative, and electric 
effects in normal-sized objects tend to cancel. We’ll explore this distinction further in 
Chapter 20.

8.3 Orbital Motion
LO 8.3 Solve problems involving circular orbits.

Orbital motion occurs when gravity is the dominant force acting on a body. It’s not just 
planets and spacecraft that are in orbit. An individual astronaut floating outside the space 
station is orbiting Earth. The Sun itself orbits the center of the galaxy, taking about 200 
million years to complete one revolution. If we neglect air resistance, even a baseball is 
temporarily in orbit. Here we discuss quantitatively the special case of circular orbits; then 
we describe qualitatively the general case.

Newton’s genius was to recognize that the Moon is held in its circular orbit by the 
same force that pulls an apple to the ground. From there, it was a short step for Newton to 
 realize that human-made objects could be put into orbit. Nearly 300 years before the first 
artificial satellites, he imagined a projectile launched horizontally from a high mountain 
(Fig. 8.5). The projectile moves in a curve, as gravity pulls it from the straight-line path it 
would follow if no force were acting. As its initial speed is increased, the projectile travels 
farther before striking Earth. Finally, there comes a speed for which the projectile’s path 
bends in a way that exactly follows Earth’s curvature. It’s then in circular orbit, continu-
ing forever unless a nongravitational force acts.

Why doesn’t an orbiting satellite fall toward Earth? It does! Under the influence of 
gravity, it gets ever closer to Earth than it would be on a straight-line path. It’s behaving 
exactly as Newton’s second law requires of an object under the influence of a force—by 
accelerating. For a circular orbit, that acceleration amounts to a change in the direction, 
but not the magnitude, of the satellite’s velocity.

Remember that Newton’s laws aren’t so much about motion as they are about changes 
in motion. To ask why a satellite doesn’t fall to Earth is to adopt the archaic Aristotelian 
view and assume that an object must move in the direction of the force acting on it. The 
correct Newtonian question, in contrast, is based on the idea that motion changes in re-
sponse to a force: Why doesn’t the satellite move in a straight line? And the answer is 
simple: because a force is acting. That force—gravity—is exactly analogous to the tension 
force that keeps a ball on a string whirling in its circular path.

The small spheres
move, attracted by
gravity to the large
ones.

Thin fiber

Rod

FIGURE 8.4 The Cavendish  
experiment to determine G.

Absent gravity, the
projectile would follow
a straight line.

Gravity pulls
the projectile
into a curved
path.

The circular orbit is
a special case where the
path is a circle.

FIGURE 8.5 Newton’s “thought  
experiment” showing that projectile 
and orbital motions are essentially 
the same.
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We can analyze circular orbits quantitatively because we know that a force of magni-
tude mv2/r is required to keep an object of mass m and speed v in a circular path of radius r.  
In the case of an orbit, that force is gravity, so we have

GMm

r2 =
mv2

r

where m is the mass of the orbiting object and M the mass of the object about which it’s 
orbiting. We assume here that M W m, so the gravitating object can be considered es-
sentially at rest—a reasonable approximation with Earth satellites or planets orbiting the 
much more massive Sun. Solving for the orbital speed gives

 v = AGM
r
  (speed, circular orbit) (8.3)

Often we’re interested in the orbital period, or the time to complete one orbit. In 
one period T, the orbiting object moves the orbital circumference 2pr, so its speed is 
v = 2pr/T. Squaring Equation 8.3 then gives

a2pr
T

b
2

=
GM

r
or

 T2 =
4p2r3

GM
  1orbital period, circular orbit2 (8.4)

In deriving Equation 8.4, we’ve proved Kepler’s third law—that the square of the orbital 
period is proportional to the cube of the semimajor axis—for the special case of a circular 
orbit, whose semimajor axis is identical to its radius.

Note that orbital speed and period are independent of the orbiting object’s mass m—  
another indication that all objects experience the same gravitational acceleration. Astronauts, 
for example, have the same orbital parameters as the space station. That’s why astronauts 
seem weightless inside the station and why they don’t float away if they step outside.

EXAMPLE 8.2 Orbital Speed and Period: The Space Station
Worked Example with Variation Problems

The International Space Station is in a circular orbit at altitude  
380 km. What are its orbital speed and period?

INTERPRET This problem involves the speed and period of a circular 
orbit about Earth.

DEVELOP We can compute the orbit’s radius and then use 
Equation 8.3, v = 1GM/r, to find the speed and Equation 8.4, 
T2 = 4p2r3/GM, to find the period because the orbit is circular.

EVALUATE As always, the distance is measured from the center of 
the gravitating body, so r in these equations is Earth’s 6.37-Mm radius 
plus the station’s 380-km altitude. So we have

v = BGME

r
= D16.67 * 10-11 N #m2/kg2215.97 * 1024 kg2

6.37 * 106 m + 380 * 103 m

  = 7.68 km/s

or about 17,000 mi/h. We can get the orbital period from the speed 
and radius, or directly from Equation 8.4, T = 24p2r3/GME. Using 
the numbers in the calculation for v gives T = 5.52 * 103 s, or about 
90 min.

ASSESS Make sense? Both answers have the correct units, and  
90 min seems reasonable for the period of an orbit at a small frac-
tion of the Moon’s distance from Earth. Astronauts who want a 
circular orbit 380 km up have no choice but this speed and period. 
In fact, for any “near-Earth” orbit, with altitude much less than 
Earth’s radius, the orbital period is about 90 min. If there were 
no air resistance and if you could throw a baseball fast enough, it 
too would go into orbit, skimming Earth’s surface with a roughly 
90-min period.

Example 8.2 shows that the near-Earth orbital period is about 90 min. The Moon, on the 
other hand, takes 27 days to complete its nearly circular orbit. So there must be a distance 
where the orbital period is 24 h—the same as Earth’s rotation. A satellite at this distance 
will remain fixed with respect to Earth’s surface provided its orbit is parallel to the equator. 
TV, weather, and communication satellites are often placed in such a geostationary orbit.
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Elliptical Orbits
Using his laws of motion and gravity, Newton was able to prove Kepler’s assertion that 
the planets move in elliptical paths with the Sun at one focus. Circular orbits represent the 
special case where the two foci of the ellipse coincide, so the distance from the gravitating 
center remains constant. Most planetary orbits are nearly, but not quite, circular; Earth’s 
distance from the Sun, for example, varies by about 3% throughout the year. But the or-
bits of comets and other smaller bodies are often highly elliptical (Fig. 8.6). Their orbital 
speeds vary, as they gain speed “falling” toward the Sun, whip quickly around the Sun 
at the point of closest approach (perihelion), and then “climb” ever more slowly to their 
most distant point (aphelion) before returning.

In Chapter 3, we showed that the trajectory of a projectile is a parabola. But our deri-
vation neglected Earth’s curvature and the associated variation in g with altitude. In fact, 
a projectile is just like any orbiting body. If we neglect air resistance, it too describes an 
elliptical orbit with Earth’s center at one focus. Only for trajectories whose height and 
range are small compared with Earth’s radius are the true elliptical path and the parabola 
of Chapter 3 generally indistinguishable (Fig. 8.7).

Are missiles and baseballs really in orbit? Yes. But their orbits happen to intersect 
Earth’s surface. At that point, nongravitational forces put an end to orbital motion. If Earth 
suddenly shrank to the size of a grapefruit (but kept the same mass), a baseball would con-
tinue happily in orbit, as the dashed continuation of the smaller orbit in Fig. 8.7 suggests. 
Newton’s ingenious intuition was correct: Barring air resistance, there’s truly no difference 
between the motion of everyday objects near Earth and the motion of celestial objects.

Open Orbits
With elliptical and circular orbits, the motion repeats indefinitely because the orbit 
is a closed path. But closed orbits aren’t the only possibility. Imagine again Newton’s 
thought experiment—only now fire the projectile faster than necessary for a circular orbit  
(Fig. 8.8). The projectile goes farther from Earth than before, describing an ellipse that’s 
closest to Earth at the launch site. Faster, and the ellipse gets more elongated. But with 
great enough initial speed, the projectile describes a hyperbolic trajectory that takes it ever 
farther from Earth. We’ll see in the next section how energy determines the type of orbit.

FIGURE 8.6 Orbits of most known 
comets, like the one shown here, are 
highly elliptical.

This section
approximates
a parabola.

Focus is Earth’s center.

FIGURE 8.7 Projectile trajectories are 
 actually elliptical.

Open
(hyperbola)

Borderline
(parabola)Closed

(circle)

Closed (ellipse)

FIGURE 8.8 Closed and open orbits.

EXAMPLE 8.3 Geostationary Orbit: Finding the Altitude

What altitude is required for geostationary orbit?

INTERPRET Here we’re given an orbital period—24 h or 86,400 s—and  
asked to find the corresponding altitude for a circular orbit.

DEVELOP Equation 8.4, T2 = 4p2r3/GM, relates the period T and 
distance r from Earth’s center. Our plan is to solve for r and then sub-
tract Earth’s radius to find the altitude (distance from the surface).

EVALUATE Solving for r, we get

 r = aGMET2

4p2 b
1/3

 = c 16.67 * 10-11 N #m2/kg2215.97 * 1024 kg218.64 * 104 s22

4p2 d
1/3

 = 4.22 * 107 m

or 42,200 km from Earth’s center. Subtracting Earth’s radius then 
gives an altitude of about 36,000 km, or 22,000 miles.

ASSESS Make sense? This is a lot higher than the 90-min low-
Earth orbit, but a lot lower than the Moon’s 384,000-km distance. 
Our answer defines one of the most valuable pieces of “real estate” 
in space—a place where satellites appear suspended over a fixed spot 
on Earth. Every TV dish antenna points to such a satellite, positioned 
22,000 mi over the equator. A more careful calculation would use 
Earth’s so-called sidereal rotation period, measured with respect to the 
distant stars rather than the Sun. Because Earth isn’t a perfect sphere, 
geostationary satellites drift slightly, and therefore they need to fire 
small rockets every few weeks to stay in position.

8.2 Suppose the paths in Fig. 8.8 are the paths of four projectiles. Rank each path 
(circular, elliptical, parabolic, and hyperbolic) according to the initial speed of the 
corresponding projectile. Assume all are launched from their common point at the 
top of the figure.G
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140 Chapter 8 Gravity

8.4 Gravitational Energy
LO 8.4 Solve conservation-of-energy problems involving universal gravitation.

LO 8.5 Calculate escape speeds.

LO 8.6 Distinguish closed and open orbits based on total energy.

How much energy does it take to boost a satellite to geostationary altitude? Our simple 
answer mgh won’t do here, since g varies substantially over the distance involved. So, as 
we found in Chapter 7, we have to integrate to determine the potential energy.

Figure 8.9 shows two points at distances r1 and r2 from the center of a gravitating mass M, 
in this case Earth. Equation 7.2 gives the change in potential energy associated with moving 
a mass m from r1 to r2:

∆U12 = - L
r

2

r1

F
S # d r

!

Here the force points radially inward and has magnitude GMm/r2, while the path element 
dr

!
 points radially outward. Then F

S # dr
!

= -1GMm/r22 dr, where the minus sign comes 
from the factor cos 180° in the dot product of oppositely directed vectors. This minus sign 
cancels the minus sign in the expression given for ∆U12, so here the potential energy dif-
ference becomes

 ∆U12 = L
r

2

r1

 
GMm

r2   dr = GMm L
r

2

r1

 r-2 dr = GMm 
r-1

-1
2 r2

r1

= GMm a 1
r1

-
1
r2
b (8.5)

Does this make sense? Yes: For r1 6 r2, ∆U12 is positive, showing that potential energy 
increases with height—consistent with our simpler result ∆U = mgh near Earth’s surface. 
Although we derived Equation 8.5 for two points on a radial line, Fig. 8.10 shows that it 
holds for any two points at distances r1 and r2 from the gravitating center.

The Zero of Potential Energy
Equation 8.5 has an interesting feature: The potential-energy difference remains finite even 
when the points are infinitely far apart, as you can see by setting either r1 or r2 to infinity.  
Although the gravitational force always acts, it weakens so rapidly that its effect is finite over 
even infinite distances. This property makes it convenient to set the zero of potential energy 
when the two gravitating masses M and m are infinitely far apart. Setting r1 = ∞  and drop-
ping the subscript on r2, we then have an expression for the gravitational potential energy of 
a system comprising a mass m located a distance r from the center of another mass M.

 U1r2 = -  
GMm

r
  1gravitational potential energy2 (8.6)

The potential energy is negative because we chose U = 0 when r = ∞ . When the two masses 
are closer than infinitely far apart, the system has lower—hence negative—potential energy.

Knowing the gravitational potential energy allows us to apply the powerful conservation- 
of-energy principle. Figure 8.11 shows the potential-energy curve given by Equation 8.6. 
Superposing three values of total energy E shows that orbits with E 6 0 have a turning point 
where they intersect the potential-energy curve, and are therefore closed. Orbits with E 7 0, in 
contrast, are open because they never intersect the curve and therefore extend to infinity. That 
distinction—between total energy greater than or less than zero—determines the difference 
between the open and closed orbits in Fig. 8.8. The borderline parabola has E = 0.

U is the gravitational potential energy  
associated with two masses m and M. M and m are the two masses…

…and r is the distance between them.

F
S

r1 r2

drm
M

u

FIGURE 8.9 Finding the potential- 
energy change requires integration.

Since altitude doesn’t
change, ∆U = 0
on this path c

cso ∆U12 is
the same as if
we start here.

1

2

FIGURE 8.10 Gravity is conservative, so we 
can use any path to evaluate the potential- 
energy change. Only the radial part of 
the path contributes to ∆U.
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FIGURE 8.11 A gravitational potential- 
energy curve. Distance is measured from 
the center of a gravitating object like a 
star or planet. Closed orbits, which occur 
when total energy E is less than 0, are 
elliptical or circular; orbits with E 7 0 
are hyperbolas. The intermediate case 
E = 0 gives parabolic orbits.
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Escape Speed
What goes up comes down, right? Not always! Figure 8.11 shows that when total energy is 
zero or greater, an object can escape infinitely far from a gravitating body, never to return. 
Consider an object of mass m at the surface of a gravitating body of mass M and radius r. 
The gravitational potential energy is given by Equation 8.6, U = -GMm/r. Toss the object 
upward with speed v, and there’s also kinetic energy 12  mv2. The total energy will be zero if

0 = K + U = 1
2 mv2 -

GMm
r

The speed v here that makes the total energy zero is called the escape speed because an 
object with this speed or greater has enough energy to escape forever from the gravitating 
body. Solving for v in the preceding equation gives the escape speed:

 vesc = A2GM
r
  1escape speed2 (8.7)

vesc is the speed an object would 
need to escape to infinity when it’s  
a distance r from the center of a 
gravitating mass M.

M is the mass the object might  
escape from…

…and r is the object’s distance  
from M’s center.

EXAMPLE 8.4 Conservation of Energy: Blast Off!
Worked Example with Variation Problems

A rocket is launched vertically upward at 3.1 km/s. How high does it go?

INTERPRET This sounds like a problem from Chapter 2, but here we’ll 
see that the rocket rises high enough that we can’t ignore the varia-
tion in gravity. So the acceleration isn’t constant, and we can’t use the 
 constant-acceleration equations of Chapter 2. But the conservation-of- 
mechanical-energy principle lets us cut through those details, so we can 
apply the methods of Chapter 7. “How high does it go?” in the problem 
statement means we’re dealing with the initial launch state and a final 
state where the rocket is momentarily at rest at the top of its trajectory.

DEVELOP Equation 7.6 describes conservation of mechanical  energy: 
K + U = K0 + U0. Here we’re given speed v at the bottom, so 
K0 = 1

2  mv2. We’re going to be using Equation 8.6, U1r2 = -GM m/r, 
for potential energy, and that’s already established the zero of potential 
energy at infinity. So U0 isn’t zero but is given by Equation 8.6 with r 
equal to Earth’s radius. Finally, at the top, K = 0 and U is also given 
by Equation 8.6, but now we don’t know r. Our plan is to solve for that 
r and from it get the rocket’s altitude. Figure 8.12 shows “before” and 
“after” diagrams with bar graphs, like those we introduced in Chapter 7.

EVALUATE With our values for the kinetic and potential energies, the 
equation K + U = K0 + U0 becomes

-  
GMEm

r
= 1

2  mv0
2 -

GMEm

RE

where m is the rocket’s mass, r is the distance from Earth’s center at the 
peak, and Earth’s radius RE is the distance at launch. Solving for r gives

 r = a 1
RE

-
v0

2

2GME
b

-1

 = a 1

6.37 * 106 m
-

13100 m/s22

216.67 * 10-11 N # m2/kg2215.97 * 1024 kg2 b
-1

 = 6.90 Mm

Again, this is the distance from Earth’s center; subtracting Earth’s 
 radius then gives a peak altitude of 530 km.

ASSESS Make sense? Yes. Our answer of 530 km is significantly 
greater than the 490 km you’d get assuming a potential-energy change 
of ∆U = mgh. That’s because the decreasing gravitational force lets 
the rocket go higher before all its kinetic energy becomes potential 
energy.

 ALL CONSERVATION-OF-ENERGY PROBLEMS ARE THE 
SAME This problem is essentially the same as throwing a ball 
straight up and solving for its maximum height using 
U = mgh for potential energy. The only difference is the 
more complicated potential-energy function U = -GMm/r, 
used here because the variation in gravity is significant over 
the rocket’s trajectory. Recognize what’s common to all 

similar problems, and you’ll begin to see how physics really is based on 
just a few simple principles.

1
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Final state:
K = 0
U = -

Initial state:
K0 =   mv2

U0 = -
RE

U is negative
relative to ∞, but
it’s less negative
farther from
Earth’s center.

FIGURE 8.12 Diagrams for Example 8.4.
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FIGURE 8.13 In 2012 Voyager 1 crossed 
into interstellar space. Voyager should 
continue sending data to Earth until 
about 2020.
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142 Chapter 8 Gravity

In 2013, Earth experienced two unusually close asteroid encounters. Although 
unrelated, they occurred within only 16 hours of each other. The larger of the two 
asteroids, dubbed 2012 DA

14
, passed within 35,000 km of Earth—less than one-

tenth of the Earth–Moon distance and closer than geostationary satellites. With 
a mass of some 40 kt (kilotonnes) and speed of 12.7 km/s relative to Earth (29.9 
km/s relative to the Sun), this one could have caused major damage had it struck 
Earth. Since 12.7 km/s is above Earth’s escape speed, 2012 DA

14
 could not be 

orbiting Earth. But, as you can show in Problem 68, its total energy relative to the 
Sun is negative, putting it in a bound solar orbit. We can expect another close ap-
proach of 2012 DA

14
 in the year 2123. Sixteen hours before 2012 DA

14
’s closest 

approach in 2013, a 12-kt asteroid entered Earth’s atmosphere over Siberia, mov-
ing at 19.0 km/s relative to Earth and 35.5 km/s relative to the Sun. It underwent a 
series of explosive fragmentations at altitudes ranging from 45 to 30 km and then 
disintegrated into small pieces at 22 km altitude (see photo). Shock waves from 
these explosions caused significant damage in the Russian city of Chelyabinsk 

and injured some 1600 people. The Chelyabinsk asteroid was the largest object 
to enter Earth’s atmosphere in over 100 years. As Problems 49 and 68 show, it 
too was in a bound orbit about the Sun before its demise in Earth’s atmosphere.

APPLICATION Close Encounters

At Earth’s surface, vesc = 11.2 km/s. Earth-orbiting spacecraft have lower speeds. 
Moon-bound astronauts go at just under vesc, so if anything goes wrong (as with Apollo 13), 
they can return to Earth. Planetary spacecraft have speeds greater than vesc. The Pioneer 
and Voyager missions to the outer planets gained enough additional energy in their en-
counters with Jupiter that they now have escape speed relative to the Sun and will coast 
indefinitely through our galaxy. In 2012, Voyager 1 became the first human-made object 
to leave the Sun’s realm entirely, as it escaped the “bubble” created by the Sun’s magnetic 
field and entered interstellar space (see Fig. 8.13 and this chapter’s opening image).

EXAMPLE 8.5 An Extrasolar Visitor

In 2017 astronomers for the first time spotted an object that had en-
tered our solar system from interstellar space. Named Oumuamua 
(the Hawaiian word for scout), the object had a speed of some 50 
km/s when it was at approximately Earth’s distance from the Sun. 
Determine the sign of Oumuamua’s total energy and use the result to 
argue for its interstellar origin.

INTERPRET This is a problem about the total energy of an object sub-
ject to the Sun’s gravity. Our question is whether that total energy E 
is greater than or less than zero. If it’s greater, then the object is not 
bound to the solar system—making a strong case that it’s of interstel-
lar origin.

DEVELOP Total energy comprises gravitational potential energy, 
given by Equation 8.6, and kinetic energy, given by 1

2  mv2. The total 
energy is their sum—which might be less than zero because the gravi-
tational energy is always negative.

EVALUATE The sum of the potential and kinetic energies is

E = -
GMSunm

r
+  

1
2

mv2

where m is Oumuamua’s mass, r its distance from the Sun, and v its 
speed. Because the mass m appears in both energies, we don’t need to 

know it to find out if the energy is positive or negative. It suffices to 
find the sign of - GMSun>r +  12v2:

-
GMSun

r
+

1
2

v2 = -
(6.67 * 10- 11 N #m2>kg2 ) (1.99 * 1030 kg)

1.50 * 1011 km

+
1
2

  (50 * 103 km>s)2 = 3.7 * 108 J/kg

This result is positive, showing that Oumuamua has more than enough 
energy to keep it from being bound by the Sun’s gravity—strong ev-
idence that it’s of interstellar origin rather than a resident of our own 
Solar System. We found the Sun’s mass and Earth’s orbital radius 
(which we used for r in Equation 8.6) in the table inside the back 
cover. They’re also in Appendix E.

ASSESS Our approach is equivalent to checking whether 
Oumuamua’s speed at Earth’s orbit is greater than or less than escape 
speed at that distance from the Sun. Our calculation came out in J/kg 
instead of J because we effectively divided out Oumuamua’s unknown 
mass m.

Energy in Circular Orbits
In the special case of a circular orbit, kinetic and potential energies are related in a simple 
way. In Section 8.3, we found that the speed in a circular orbit is given by
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v2 =
GM

r
where r is the distance from a gravitating center of mass M. So the kinetic energy of an 
object in circular orbit is

K = 1
2  mv2 =

GMm
2r

while potential energy is given by Equation 8.6:

U = -  
GMm

r
Comparing these two expressions shows that U = -2K  for a circular orbit. The total 
energy is therefore
 E = U + K = -2K + K = -K (8.8a)

or, equivalently,

 E = 1
2 U = -  

GMm
2r

 (8.8b)

The total energy in these equations is negative, showing that circular orbits are bound or-
bits. We stress that these results apply only to circular orbits; in elliptical orbits, there’s a 
continuous interchange between kinetic and potential energy as the orbiting object moves 
relative to the gravitating center.

Equation 8.8a shows that higher kinetic energy corresponds to lower total energy. This 
surprising result occurs because higher orbital speed corresponds to a lower orbit, with 
lower potential energy.

CONCEPTUAL EXAMPLE 8.1 Space Maneuvers

Astronauts heading for the International Space Station find themselves 
in the right circular orbit, but well behind the station. How should they 
maneuver to catch up?

EVALUATE To catch up, the astronauts will have to go faster than the 
space station. That means increasing their kinetic energy—and, as 
we’ve just seen, that corresponds to lowering their total energy. So 
they’ll need to drop into a lower orbit.

Figure 8.14 shows the catch-up sequence. The astronauts fire their 
rocket backward, decreasing their energy and dropping briefly into a 
lower-energy elliptical orbit. They then fire their rocket to circular-
ize the orbit. Now they’re in a lower-energy but faster orbit than the 
space station. When they’re correctly positioned, they fire their rocket 
to boost themselves into a higher-energy elliptical orbit, then fire again 
to circularize that orbit in the vicinity of the station.

ASSESS Our solution sounds counterintuitive—as if a car, to speed 
up, had to apply its brakes. But that’s what’s needed here, thanks to 
the interplay between kinetic and potential energy in circular orbits.

MAKING THE CONNECTION Suppose the astronauts reach the space 
station’s 380-km altitude, but find themselves one-fourth of an orbit 
behind the station. If the maneuver described above drops their space-
craft into a 320-km circular orbit, how many orbits must they make 
before catching up with the station? Neglect the time involved in 
transferring between circular orbits.

EVALUATE Applying Equation 8.4 gives periods T1 = 92.0 min for 
the space station and T2 = 90.8 min for the astronauts in their lower 
orbit. So with each orbit the astronauts gain 1.2 min on the station. 
They’ve got to make up one-fourth of an orbit, or 23 min. That will 
take 123 min2/11.2 min/orbit2 = 19 orbits, or just over a day.

(b)

(a)

FIGURE 8.14 Playing catch-up with the 
space station.
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144 Chapter 8 Gravity

8.3 Two identical spacecraft A and B are in circular orbits about Earth, with B at a 
higher altitude. Which of the following statements are true? (a) B has greater total en-
ergy; (b) B is moving faster; (c) B takes longer to complete its orbit; (d) B has greater 
potential energy; (e) a larger proportion of B’s total energy is potential energyG

O
T 

IT
?

8.5 The Gravitational Field
LO 8.7 Explain the field concept as applied to the gravitational field.

Our description of gravity so far suggests that a massive body like Earth somehow “reaches 
out” across empty space to pull on objects like falling apples, satellites, or the Moon. This 
view—called action-at-a-distance—has bothered both physicists and philosophers for 
centuries. How can the Moon, for example, “know” about the presence of the distant Earth?

An alternative view holds that Earth creates a gravitational field and that objects re-
spond to the field in their immediate vicinity. The field is described by vectors that give the 
force per unit mass that would arise at each point if a mass were placed there. Near Earth’s 
surface, for instance, the gravitational field vectors point vertically downward and have 
magnitude 9.8 N/kg. We can express this field vectorially by writing

 g
!

= -gjn  1gravitational field near Earth>s surface2 (8.9)

where we’ve assumed a coordinate system with the y-axis upward. More generally, the 
field points toward a spherical gravitating center, and its strength decreases inversely with 
the square of the distance:

 g
!

= -  
GM

r2  rn  1gravitational field of a spherical mass M2 (8.10)

where rn is a unit vector that points radially outward. Figure 8.15 shows pictorial represen-
tations of Equations 8.9 and 8.10. You can show that the units of gravitational field (N/kg) 
are equivalent to those of acceleration 1m/s22, so the field is really just a vectorial repre-
sentation of g, the local acceleration of gravity.

g
!
 is the gravitational field at a 

point in the vicinity of a mass M. 
Its magnitude is the field strength 
in N/kg.

M is the  
gravitating mass.

 rn is a unit vector pointing radially  
away from M’s center.

Equivalently, g
!
 gives the 

magnitude and direction of the 
gravitational acceleration.

The minus sign 
shows that the field 
points toward M.

r is the distance from the center 
of M to the point where the 
field is being evaluated.

(a)

(b)

FIGURE 8.15 Gravitational field vectors 
at points (a) near Earth’s surface and 
(b) on a larger scale.

If the gravitational field were uniform, all parts of a freely falling object 
would experience exactly the same acceleration. But gravity does vary, and 
the result is a force—not from gravity itself but from changes in gravity 
with position—that tends to stretch or compress an object. Ocean tides re-
sult from this tidal force, as the nonuniform gravitational forces of Sun 
and Moon stretch the oceans and create bulges that move across Earth as 
the planet rotates. The figure shows that the greatest force is on the ocean 
nearest the Moon, causing one tidal bulge. The solid Earth experiences an 
intermediate force, pulling it away from the ocean on the far side. The water 
that’s “left behind” forms a second bulge opposite the Moon. The bulges 
shown are highly exaggerated. Furthermore, shoreline effects and the dif-
fering relative positions of the Moon and Sun complicate this simple pic-
ture that suggests two equal high tides and two equal low tides a day. Tidal 

forces also cause internal heating of satellites like Jupiter’s moon Io and 
contribute to the formation of planetary rings.

cand greatest
on the near
ocean.

Force is weakest
on the far
ocean c

This results in
two tidal bulges.

Earth

Moon

APPLICATION Tides
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Chapter 8 Summary

Big Idea
The big idea here is universal gravitation—an attractive force that acts between all matter with a strength that depends directly on the product of 
two interacting masses and inversely on the square of the distance between them. Gravitation is responsible for the familiar behavior of falling ob-
jects and also for the orbits of planets and satellites. Depending on energy, orbits may be closed (elliptical/circular) or open (hyperbolic/parabolic).

Gravity governs
both the falling
apple and the
orbiting Moon.

  

Open
(hyperbola)

Borderline
(parabola)

Closed
(ellipse>
circle)

Key Concepts and Equations
Mathematically, Newton’s law of universal gravitation describes the attractive force F between two 
masses m1 and m2 located a distance r apart:

F =
Gm1m2

r2   1universal gravitation2

This equation applies to point masses of negligible size and to spherically symmetric masses of any size. It’s an excellent approximation for any 
objects whose size is much smaller than their separation. In all cases, r is measured from the centers of the gravitating objects.

F
S

F
S

r

m1 m2

Because the strength of gravity varies with distance, potential- energy changes over large distances 
aren’t just a product of force and distance. Integration shows that the potential-energy change ∆U 
 involved in moving a mass m originally a distance r1 from the center of a mass M to a distance r2 is

∆U = GMm a 1
r1

-
1
r2
b  1change in potential energy2

With gravity, it’s convenient to choose the zero of potential energy at infinity; then

U = -  
GMm

r
  1potential energy, U = 0 at infinity2

for the potential energy of a system comprising a mass m located a distance r from the center of 
another mass M.

Distance, r

Earth
Satellite

U = 0

rPo
te

nt
ia

l e
ne

rg
y,

 U

It would take this
much energy for
the satellite to
escape infinitely
far from Earth.

The satellite’s potential
energy is negative.

What do we gain by this field description? As long as we deal with situations where noth-
ing changes, the action-at-a-distance and field descriptions are equivalent. But what if, for 
example, Earth suddenly gains mass? How does the Moon know to adjust its orbit? Under 
the field view, its orbit doesn’t change immediately; instead, it takes a small but nonzero 
time for the information about the more massive Earth to propagate out to the Moon. The 
Moon always responds to the gravitational field in its immediate vicinity, and it takes a short 
time for the field itself to change. That description is consistent with Einstein’s notion that 
instantaneous transmission of information is impossible; the action-at-a-distance view is not.

More generally, the field view provides a powerful way of describing interactions in phys-
ics. We’ll see fields again when we study electricity and magnetism, and you’ll find that fields 
aren’t just mathematical or philosophical conveniences but are every bit as real as matter itself.

(continued )

M08_WOLF8559_04_SE_C08.indd   145 11/13/18   9:06 PM



146 Chapter 8 Gravity

Applications
A total energy—kinetic plus potential—of zero marks the dividing line 
between closed and open orbits. An object located a distance r from a 
gravitating mass M must have at least the escape speed to achieve an 
open orbit and escape M’s vicinity forever:

vesc = A2GM
r

Circular orbits are readily analyzed using Newton’s laws and concepts 
from circular motion. A circular orbit of radius r about a mass M has a 
period given by

T2 =
4p2r3

GM

Kinetic and potential energies are related by U = -2K. Total energy 
is negative, as appropriate for a closed orbit, and the object actually 
moves faster the lower its total energy.

F
S

Gravitational field

Force arises from field
at Moon’s location.

The gravitational field concept 
 provides a way to describe gravity 
that avoids the troublesome action 
at a distance. A gravitating mass 
creates a field in the space around it, 
and a second mass responds to the 
field in its immediate vicinity.

A special orbit is the geostationary orbit, parallel to Earth’s equa-
tor at an altitude of about 36,000 km. Here the orbital period is 24 h, 
so a satellite in geostationary orbit appears from Earth’s surface to 
be fixed in the sky. TV, communications, and weather satellites use 
 geostationary orbits.
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Dynamic Study Modules, practice quizzes, video solutions to problems, and a whole lot more!

Learning Outcomes After finishing this chapter, you should be able to:

LO 8.1 Describe the evolution of our understanding of planetary motion.
For Thought and Discussion Question 8.1

LO 8.2 Use the law of universal gravitation to find the gravitational 
force between masses.
For Thought and Discussion Questions 8.2, 8.3, 8.4, 8.8; 
Exercises 8.11, 8.12, 8.13, 8.14, 8.15, 8.16, 8.17;  
Problems 8.38, 8.39, 8.40, 8.47, 8.66, 8.69, 8.70, 8.74, 8.75

LO 8.3 Solve problems involving circular orbits.
For Thought and Discussion Questions 8.5, 8.6, 8.7, 8.9; 
Exercises 8.12, 8.18, 8.19, 8.20, 8.21, 8.22, 8.23;  
Problems 8.39, 8.43, 8.44, 8.45, 8.46, 8.47, 8.48, 8.54, 8.57, 
8.59, 8.64, 8.67, 8.70, 8.71, 8.73

LO 8.4 Solve conservation-of-energy problems involving universal 
gravitation.
For Thought and Discussion Question 8.10; Exercises 8.24, 
8.25, 8.26, 8.27; Problems 8.41, 8.42, 8.46, 8.49, 8.50, 8.51, 
8.52, 8.53, 8.55, 8.56, 8.58, 8.60, 8.62, 8.63, 8.64, 8.65, 8.68

LO 8.5 Calculate escape speeds.
Exercises 8.28, 8.29; Problems 8.53, 8.54, 8.58, 8.72

LO 8.6 Distinguish closed and open orbits based on total energy.
Problem 8.61

LO 8.7 Explain the field concept as applied to the gravitational field.

For Thought and Discussion

1. What do Newton’s apple and the Moon have in common?
2. Explain the difference between G and g.
3. When you stand on Earth, the distance between you and Earth is 

zero. So why isn’t the gravitational force infinite?
4. The force of gravity on an object is proportional to the object’s mass, 

yet all objects fall with the same gravitational acceleration. Why?
5. A friend who knows nothing about physics asks what keeps an 

orbiting satellite from falling to Earth. Give an answer that will 
satisfy your friend.

6. Could you put a satellite in an orbit that keeps it stationary over 
the south pole? Explain.

7. Why are satellites generally launched eastward and from low lat-
itudes? (Hint: Think about Earth’s rotation.)

8. Given Earth’s mass, the Moon’s distance and orbital period, and 
the value of G, could you calculate the Moon’s mass? If yes, 
how? If no, why not?

9. How should a satellite be launched so that its orbit takes it over 
every point on the (rotating) Earth?

10. Does the gravitational force of the Sun do work on a planet in a 
circular orbit? In an elliptical orbit? Explain.

Exercises and Problems

Exercises
Section 8.2 Universal Gravitation
11. Space explorers land on a planet with the same mass as Earth, but 

find they weigh twice as much as they would on Earth. What’s 
the planet’s radius?

12. Use data for the Moon’s orbit from Appendix E to compute the 
Moon’s acceleration in its circular orbit, and verify that the result 
is consistent with Newton’s law of gravitation.

13. To what fraction of its current radius would Earth have to shrink 
(with no change in mass) for the gravitational acceleration at its 
surface to triple?
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14. Calculate the gravitational acceleration at the surface of (a) 
Mercury and (b) Saturn’s moon Titan.

15. Two identical lead spheres with their centers 14 cm apart attract 
each other with a 0.25@mN force. Find their mass.

16. What’s the approximate value of the gravitational force between a 
67-kg astronaut and a 73,000-kg spacecraft when they’re 84 m apart?

17. A sensitive gravimeter is carried to the top of New York’s new One 
World Trade Center, where its reading for the acceleration of gravity 
is 1.67 mm/s2 lower than at street level. Find the building’s height.

Section 8.3 Orbital Motion
18. At what altitude will a satellite complete a circular orbit of Earth 

in 2.0 h?
19. Find the speed of a satellite in geostationary orbit.
20. Mars’s orbit has a diameter 1.52 times that of Earth’s orbit. How 

long does it take Mars to orbit the Sun?
21. Calculate the orbital period for Jupiter’s moon Io, which orbits 

4.22 * 105 km from the planet’s center.
22. An astronaut hits a golf ball horizontally from the top of a lunar 

mountain so fast that it goes into circular orbit. What’s its orbital 
period?

23. The Mars Reconnaissance Orbiter circles the red planet with a 
112-min period. What’s the spacecraft’s altitude?

Section 8.4 Gravitational Energy
24. Earth’s distance from the Sun varies from 147 Gm at perihelion to 

152 Gm at aphelion because its orbit isn’t quite circular. Find the 
change in potential energy as Earth goes from perihelion to aphelion.

25. So-called suborbital missions take scientific instruments into 
space for brief periods without the expense of getting into orbit; 
their trajectories are often simple “up and down” vertical paths. 
How much energy does it take to launch a 230-kg instrument on 
a vertical trajectory that peaks at 1800 km altitude?

26. A rocket is launched vertically upward from Earth’s surface at 
5.1 km/s. What’s its maximum altitude?

27. What vertical launch speed is necessary to get a rocket to an alti-
tude of 1100 km?

28. The escape speed from a planet of mass 2.9 * 1024 kg is 7.1 km/s. 
Find the planet’s radius.

29. Determine escape speeds from (a) Jupiter’s moon Callisto and 
(b) a neutron star, with the Sun’s mass crammed into a sphere of 
radius 6.0 km. See Appendix E for relevant data.

Example Variations
The following problems are based on two examples from the text. Each 
set of four problems is designed to help you make connections that 
enhance your understanding of physics and to build your confidence 
in solving problems that differ from ones you’ve seen before. The first 
problem in each set is essentially the example problem but with differ-
ent numbers. The second problem presents the same scenario as the 
example but asks a different question. The third and fourth problems 
repeat this pattern but with entirely different scenarios.

30. Example 8.2: The Hubble Space Telescope orbits Earth at an alti-
tude of 569 km. Find its (a) speed and (b) orbital period.

31. Example 8.2: The satellites that comprise the Global Positioning 
System (GPS) are in circular orbits with periods of 11.97 h. Find 
their (a) altitude and (b) speed.

32. Example 8.2: The ExoMars Trace Gas Orbiter is a joint project 
of the European and Russian space agencies, designed to help 
determine the origin of methane in the Martian atmosphere. 
ExoMars reached the red planet in 2016, and in 2018 its orbit 

was circularized at approximately 400 km altitude. Estimate 
ExoMars’ (a) speed and (b) orbital period.

33. Example 8.2: Find the altitude and speed of a spacecraft in 
 stationary orbit above Mars’ equator (this is analogous to a geo-
stationary orbit at Earth and is called an areostationary orbit).

34. Example 8.4: A rocket is launched vertically from Earth’s sur-
face at 8.31 km/s. How high does it go?

35. Example 8.4: A rocket is launched vertically from Earth’s surface and 
reaches a maximum altitude of 2150 km. What was its launch speed?

36. Example 8.4: A coronal mass ejection (CME) is an eruption of 
material from the Sun’s atmosphere. Electromagnetic forces ac-
celerate a particular CME to 550 km/s at an altitude of 2.0 solar 
radii above the Sun’s surface. After that, the CME coasts, head-
ing directly outward from the Sun, under the influence of solar 
gravity alone. Find its speed when it passes Earth’s orbit.

37. Example 8.4: In September 2017, the Cassini spacecraft ended 
its 20-year mission to Saturn with a self-destructive plunge into 
the planet’s atmosphere (this was done in part to avoid contami-
nating any of Saturn’s many moons). Cassini entered Saturn’s at-
mosphere at 123,000 km/h. Was this greater than or less than the 
speed Cassini would have had if it had simply started from rest and 
dropped onto Saturn from a great distance, and by how much?

Problems
38. The gravitational acceleration at a planet’s surface is 22.5 m/s2. 

Find the acceleration at an altitude equal to half the planet’s radius.
39. You’re the navigator on a spaceship studying an unexplored 

planet. Your ship has just gone into a circular orbit around the 
planet, and you determine that the gravitational acceleration at 
your orbital altitude is half what it would be at the surface. What 
do you report for your altitude, in terms of the planet’s radius?

40. If you’re standing on the ground 15 m directly below the center of a 
spherical water tank containing 4 * 106 kg of water, by what fraction 
is your weight reduced due to the water’s gravitational attraction?

41. On January 1, 2019, the 450-kg New Horizons spacecraft made the 
farthest-ever encounter with an object in our Solar System, flying 
by the Kuiper Belt object MU69 at some 51,000 km/h relative to 
the Sun. This encounter took place 6.5 billion km from the Sun, 
when New Horizons was already 1.6 billion km beyond its 2015 
encounter with Pluto. Find New Horizons’ total energy and use it 
to determine whether or not the spacecraft is bound to the Sun.

42. Equation 7.9 relates force to the derivative of potential energy. Use 
this fact to differentiate Equation 8.6 for gravitational potential en-
ergy, and show that you recover Newton’s law of gravitation.

43. During the Apollo Moon landings, one astronaut remained with 
the command module in lunar orbit, about 130 km above the sur-
face. For half of each orbit, this astronaut was completely cut off 
from the rest of humanity as the spacecraft rounded the far side 
of the Moon. How long did this period last?

44. A white dwarf is a collapsed star with roughly the Sun’s mass 
compressed into the size of Earth. What would be (a) the orbital 
speed and (b) the orbital period for a spaceship in orbit just above 
the surface of a white dwarf?

45. Given that our Sun orbits the galaxy with a period of 200 My at 
2.6 * 1020 m from the galactic center, estimate the galaxy’s mass. 
Assume (incorrectly) that the galaxy is essentially spherical and 
that most of its mass lies interior to the Sun’s orbit.

46. You’re standing at the highest point on the Moon, 10,786 m above 
the level of the Moon’s mean radius. You’ve got a golf club and a 
golf ball. (a) How fast would you need to hit the ball horizontally 
so it goes into a circular orbit? (b) If you hit the ball vertically 
with the same speed, to what height above you would it rise?
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47. Exact solutions for gravitational problems involving more than two 
bodies are notoriously difficult. One solvable problem involves a con-
figuration of three equal-mass objects spaced in an equilateral trian-
gle. Forces due to their mutual gravitation cause the configuration to 
rotate. Suppose three identical stars, each of mass M, form a triangle 
of side L. Find an expression for the period of their orbital motion.

48. Satellites A and B are in circular orbits, with A four times as far 
from Earth’s center as B. How do their orbital periods compare?

49. The asteroid that exploded over Chelyabinsk, Russia, in 2013 (see 
Application on page 142) was moving at 35.5 km/s relative to the 
Sun just before it entered Earth’s atmosphere. Calculations based 
on orbital observations show that it was moving at 11.2 km/s at 
aphelion (its most distant point from the Sun). Find the distance 
at aphelion, expressed in astronomical units (1 AU is the average 
distance of Earth from Sun; see Appendix E).

50. We still don’t have a permanent solution for the disposal of radio-
active waste. As a nuclear waste specialist with the Department 
of Energy, you’re asked to evaluate a proposal to shoot waste 
canisters into the Sun. You need to report the speed at which a 
canister, dropped from rest in the vicinity of Earth’s orbit, would 
hit the Sun. What’s your answer?

51. In November 2013, Comet ISON reached its perihelion (closest 
approach to the Sun) at 1.87 Gm from the Sun’s center (only 1.17 
Gm from the solar surface); at that point ISON was moving at 378 
km/s relative to the Sun. Do a calculation to determine whether 
its orbit was elliptical or hyperbolic. (Most of ISON’s cometary 
nucleus was destroyed in its close encounter with the Sun.)

52. Neglecting air resistance, to what height would you have to fire 
a rocket for the constant-acceleration equations of Chapter 2 to 
give a height in error by 1%? Would those equations overesti-
mate or underestimate the height?

53. Show that an object released from rest very far from Earth 
reaches Earth’s surface at essentially escape speed.

54. By what factor must an object’s speed in circular orbit be in-
creased to reach escape speed from its orbital altitude?

55. In 2017 North Korea developed ballistic missiles capable of 
hitting targets anywhere in the continental United States. The 
missiles were actually tested on near-vertical trajectories, but 
using the missile’s maximum height, U.S. scientists could de-
termine the launch speed, and from that, using the physics of 
elliptical orbits, they could determine the maximum range. In 
its first test, the North Korean Hwasong-15 missile reached an 
altitude of 4500 km—more than 10 times the 408-km altitude of 
the International Space Station (ISS). Find the missile’s launch 
speed, assuming it’s achieved at essentially zero altitude (al-
though the rocket motors actually burn out at several hundred 
kilometers).

56. Two meteoroids are 250,000 km from Earth’s center and moving 
at 2.1 km/s. One is headed straight for Earth, while the other is on 
a path that will come within 
8500 km of Earth’s center  
(Fig. 8.16). Find the speed of 
(a) the first meteoroid when 
it strikes Earth and (b) the 
second meteoroid at its clos-
est approach. (c) Will the 
second meteoroid ever return 
to Earth’s vicinity?

57. Neglecting Earth’s rotation, show that the energy needed to 
launch a satellite of mass m into circular orbit at altitude h is 

aGMEm

RE
ba RE + 2h

21RE + h2 b .

ENV
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58. A projectile is launched vertically upward from a planet of mass 
M and radius R; its initial speed is 22 times the escape speed. 
Derive an expression for its speed as a function of the distance r 
from the planet’s center.

59. A spacecraft is in circular orbit 5500 km above Earth’s surface. 
How much will its altitude decrease if it moves to a new circular 
orbit where (a) its orbital speed is 10% higher or (b) its orbital 
period is 10% shorter?

60. Two meteoroids are 160,000 km from Earth’s center and heading 
straight toward Earth, one at 10 km/s, the other at 20 km/s. At 
what speeds will they strike Earth?

61. The New Horizons mission to Pluto had the fastest launch speed 
of any space probe—16.26 km/s. Assuming this speed was 
achieved at negligible altitude compared with Earth’s radius, find 
New Horizons’ speed when it crossed the Moon’s orbit.

62. A satellite is in an elliptical orbit at altitudes ranging from 230 to 
890 km. At its highest point, it’s moving at 7.23 km/s. How fast is 
it moving at its lowest point?

63. A missile’s trajectory takes it to a maximum altitude of 1200 km. 
If its launch speed is 6.1 km/s, how fast is it moving at the peak of 
its trajectory?

64. A 720-kg spacecraft has total energy -0.53 TJ and is in circular 
orbit around the Sun. Find (a) its orbital radius, (b) its kinetic 
energy, and (c) its speed.

65. Mercury’s orbital speed varies from 38.8 km/s at aphelion to 59.0 
km/s at perihelion. If the planet is 6.99 * 1010 m from the Sun’s 
center at aphelion, how far is it at perihelion?

66. Show that the form ∆U = mg ∆r follows from Equation 8.5 
when r1 ≃ r2. [Hint: Write r2 = r1 + ∆r and apply the binomial 
approximation (Appendix A).]

67. Two satellites are in geo-
stationary orbit but in 
diametrically opposite po-
sitions (Fig. 8.17). In order 
to catch up with the other, 
one satellite descends into 
a lower circular orbit (see 
Conceptual Example 8.1 
for a description of this 
maneuver). How far should 
it descend if it’s to catch up 
in 10 orbits? Neglect rocket 
firing times and time spent 
moving between the two 
circular orbits.

68. The two asteroids described in the Application on page 142 
both set records for being the largest objects of their sizes to 
come as close to Earth in recent times as they did. Use appro-
priate data given in the Application to find the total energy for 
each  asteroid—that is, each asteroid’s kinetic energy plus poten-
tial  energy in the asteroid–Sun system. What do your results show 
about the asteroids’ orbits?

69. A spacecraft is orbiting a spherical asteroid when it deploys a 
probe that falls toward the asteroid’s surface. The spacecraft ra-
dios to Earth the probe’s position and its acceleration; the data are 
shown in the table below. Determine a quantity that, when you plot 
a against it, should yield a straight line. Plot the data, determine a 
best-fit line, and use its slope to determine the asteroid’s mass.

Probe position r (km 
from asteroid’s center)

80.0 55.0 40.0 35.0 30.0

Acceleration a (mm/s2) 0.172 0.353 0.704 0.858 1.18

CH

CH

DATA

8500 km

FIGURE 8.16 Problem 56

FIGURE 8.17 Problem 67

CHCH

CH
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70. We derived Equation 8.4 
on the assumption that the 
massive gravitating center 
remains fixed. Now con-
sider two objects with equal 
mass M orbiting each other, 
as shown in Fig. 8.18. Show 
that the orbital period is 
given by T2 = 2p2d3/GM, 
where d is the distance be-
tween the objects.

71. Tidal effects in the Earth–Moon system cause the Moon’s 
orbital period to increase at a current rate of about 35 ms per 
century. Assuming the Moon’s orbit is circular, to what rate 
of change in the Earth–Moon distance does this correspond? 
(Hint: Differentiate Kepler’s third law, Equation 8.4, and consult 
Appendix E.)

72. As a member of the 2040 Olympic committee, you’re consider-
ing a new sport: asteroid jumping. On Earth, world-class high 
jumpers routinely clear 2 m. Your job is to make sure athletes 
jumping from asteroids will return to the asteroid. Make the sim-
plifying assumption that asteroids are spherical, with average 
density 2500 kg/m3. For safety, make sure even a jumper capable 
of 3 m on Earth will return to the surface. What do you report for 
the minimum asteroid diameter?

73. The Olympic Committee is keeping you busy! You’re now asked 
to consider a proposal for lunar hockey. The record speed for a 
hockey puck is 178 km/h. Is there any danger that hockey pucks 
will go into lunar orbit?

74. Tidal forces are proportional to the variation in gravity with 
 position. By differentiating Equation 8.1, estimate the ratio of the 
tidal forces due to the Sun and the Moon. Compare your answer 
with the ratio of the gravitational forces that the Sun and Moon 
exert on Earth. Use data from Appendix E.

75. Spacecraft that study the Sun are often placed at the so-called L1 
Lagrange point, located sunward of Earth on the Sun–Earth line. L1 
is the point where Earth’s and Sun’s gravity together produce an or-
bital period of one year, so that a spacecraft at L1 stays fixed relative 
to Earth as both planet and spacecraft orbit the Sun. This placement 
ensures an uninterrupted view of the Sun, without being periodically 
eclipsed by Earth as would occur in Earth orbit. Find L1’s location 
relative to Earth. (Hint: This problem calls for numerical methods or 
solving a higher-order polynomial equation.)

Passage Problems
The Global Positioning System (GPS) uses a “constellation” of some 
30 satellites to provide accurate positioning for any point on Earth 
(Fig. 8.19). GPS receivers time radio signals traveling at the speed of 

CH

BIO

CH

COMP

light from three of the satellites to 
find the receiver’s position. Signals 
from one or more additional satel-
lites provide corrections, eliminating 
the need for high-accuracy clocks in 
individual GPS receivers. GPS satel-
lites are in circular orbits at 20,200 
km altitude.

76. What’s the approximate orbital 
period of GPS satellites?
a. 90 min
b. 8 h
c. 12 h
d. 24 h
e. 1 week

77. What’s the approximate speed of GPS satellites?
a. 9.8 m/s
b. 500 m/s
c. 1.7 km/s

d. 4 km/s
e. 12 km/s

78. What’s the approximate escape speed at GPS orbital distance?
a. 4 km/s
b. 5.5 km/s
c. 6.3 km/s

d. 9.8 km/s
e. 11 km/s

79. The current generation of GPS satellites have masses of 844 kg. 
What’s the approximate total energy of such a satellite?
a. 6 GJ
b. 3 GJ
c. -3 GJ

d. -6 GJ
e. -8 GJ

Answers to Chapter Questions

Answer to Chapter Opening Question
New Horizons’ total energy—kinetic energy plus potential energy as-
sociated with the Sun’s gravitational field—is greater than zero. Put 
another way, New Horizons has escape speed relative to the Sun.

Answers to GOT IT? Questions
8.1  (d) Quadrupled. If the original distance were r, the original force 

would be proportional to 1/r2. At half that distance, the force is 
proportional to 1/1r/222 = 4/r2.

8.2 Hyperbolic 7 parabolic 7 elliptical 7 circular
8.3  (a), (c), and (d). Since B has higher total energy, it must have lower 

kinetic energy and is therefore moving slower. B is farther from 
the gravitating body, so its potential energy is higher—still nega-
tive, but less so than A’s. For circular orbits, the ratio of potential 
energy to total energy is always the same—namely, U = 2E.

FIGURE 8.18 Problem 70

20,200 km

FIGURE 8.19 GPS satellites 
(Passage Problems 76–79)
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Most parts of the dancer’s body undergo complex 
motions during this jump, yet one special point 
follows the parabolic trajectory of a projectile. 
What is that point, and why is it special?

8
Gravity

7
Conservation of Energy

10
Rotational Motion

11
Rotational Vectors 

and Angular 
Momentum9

So far we’ve generally treated objects as point particles, ignoring the 
fact that most are composed of smaller parts. In Chapter 6’s introduc-

tion of energy, however, we needed also to develop the idea of a system 
that might comprise more than one object, and in Chapter 7 we found that 
the concept of potential energy necessarily required us to consider systems 
of at least two interacting particles. Here we deal explicitly with systems 
of many particles. These include rigid bodies—objects such as baseballs, 
cars, and planets whose constituent particles are stuck together in fixed 
orientations—as well as systems like human bodies, exploding fireworks, 
or flowing rivers, whose parts move relative to one another. In subsequent 
chapters we’ll look at specific instances of many-particle systems, including 
the rotational motion of rigid bodies (Chapter 10) and the behavior of 
fluids (Chapter 15).

9.1 Center of Mass
LO 9.1 Find the center of mass of a system of discrete particles.

LO 9.3 Use integration to find the center of mass of a continuous 
object.

LO 9.2 Describe the motion of a system’s center of mass.

Systems of Particles

Learning Outcomes
After finishing this chapter you should be able to:

LO 9.1 Find the center of mass of a system of discrete particles.

LO 9.2 Describe the motion of a system’s center of mass.

LO 9.3 Use integration to find the center of mass of a continuous 
object.

LO 9.4 Determine the total momentum of a system.

LO 9.5 Solve problems involving conservation of momentum.

LO 9.6 Break a system’s kinetic energy into center-of-mass and 
 internal components.

LO 9.7 Describe what constitutes a collision and distinguish elastic 
from inelastic collisions.

LO 9.8 Analyze totally inelastic collisions using conservation 
of momentum.

LO 9.9 Analyze elastic collisions using conservation of momentum 
and kinetic energy.

Skills & Knowledge You’ll Need
■■ The concept of momentum (Section 4.2)

■■ Newton’s second law expressed as 
F
S

= d p
!>dt (Section 4.2)

■■ Newton’s third law (Section 4.6)

■■ Your knowledge of integral calculus
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9.1 Center of Mass 151

The motion of the dancer in the photo on the previous page is complex, with each part of 
his body moving on a different path. But the superimposed curve shows one point follow-
ing the parabola we expect of a projectile (Section 3.5). This point is the center of mass, 
an average position of all the mass making up the dancer. Since the net force on the dancer 
as a whole is gravity, the photo, with its parabolic arc, suggests that the center of mass 
obeys Newton’s second law, F

S
net = Ma

!
cm,  where M is the dancer’s total mass and a

!
cm is 

the acceleration of the center of mass. (We’ll use the subscript cm for quantities associated 
with the center of mass.) To find the center of mass, we therefore need to locate a point 
whose acceleration obeys F

S
net = Ma

!
cm,  with F

S
net the net force on the entire system.

Consider a system of many particles. To find the center of mass, we want an equation 
like Newton’s second law that involves the total mass of the system and the net force on the 
entire system. If we apply Newton’s second law to the ith particle in the system, we have

F
S

i = mi a
!
i = mi 

d2r
!
i

dt2 =
d2mi r

!
i

dt2

where F
S

i is the net force on the particle, mi is its mass, and we’ve written the acceleration 
a
!
i as the second derivative of the position r

!
i. The total force on the system is the sum of the 

forces acting on all N particles. We write this sum compactly using the summation symbol g :

F
S

total = a
N

i=1
 F

S
i = a

N

i=1
 
d2mi r

!
i

dt2

where the sum runs over all particles composing the system, from i = 1 to N. But the sum 
of derivatives is the derivative of the sum, so

F
S

total =
d21a  mi r

!
i2

dt2

We can now put this equation in the form of Newton’s second law. Multiplying and di-
viding the right-hand side by the total mass M = g  mi, and distributing this constant M 
through the differentiation, we have

 F
S

total = M
d2

dt2 a
a  mi r

!
i

M
b  (9.1)

Equation 9.1 has a form like Newton’s law applied to the total mass if we define

 urcm = a  mi 
uri

M
  1center of mass2 (9.2)

Then the derivative in Equation 9.1 becomes d2 r
!
cm /dt2, which we recognize as the 

 center-of-mass acceleration, a
!
cm. So now Equation 9.1 reads F

S
total = M a

!
cm.  This is 

 almost Newton’s law—but not quite, because the force here is the sum of all the forces 
acting on all the particles of the system, and we want just the net external force—the net 
force applied from outside the system. We can write the force F

S
total as

F
S

total = a  F
S

ext + a  F
S

int

where g  F
S

ext is the sum of all the external forces and g  F
S

int the sum of the internal forces—
those acting between particles within the system. According to Newton’s third law, each of 

r
!
cm is the position of the center of mass. 

Think of this vector equation as being 
three scalar equations for coordinates 
xcm, ycm, and zcm.

r
!
cm involves a sum of the positions r

!
i

weighted by the masses mi.

M is the total mass, given by a  mi.
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152 Chapter 9 Systems of Particles

the internal forces has an equal but oppositely directed force that itself acts on a particle of 
the system and is therefore included in the sum g  F

S
int. (Each external force is also part of a 

third-law pair, but forces paired with the external forces act outside the system and therefore 
aren’t included in the sum.) Added vectorially, the internal forces therefore cancel in pairs, 
so g  F

S
int = 0

S
, and the force F

S
total in Equation 9.1 is just the net external force applied to the 

system. So the point r
!
cm defined in Equation 9.2 does obey Newton’s law, written in the form

 F
S

net ext = M a
!
cm = M 

d2 r
!
cm

dt2  (9.3)

where F
S

net ext is the net external force applied to the system and M is the total mass.
We’ve defined the center of mass r

!
cm so we can apply Newton’s second law to the en-

tire system rather than to each individual particle. As far as its overall motion is concerned, 
a complex system acts as though all its mass were concentrated at the center of mass.

Finding the Center of Mass
Equation 9.2 shows that the center-of-mass position is an average of the positions of the 
individual particles, weighted by their masses. For a one-dimensional system, Equation 
9.2 becomes xcm = g  mi xi /M; in two and three dimensions, there are similar equations 
for the center-of-mass coordinates ycm and zcm. Finding the center of mass (CM) is a matter 
of establishing a coordinate system and then using the components of Equation 9.2.

EXAMPLE 9.1

Find the center of mass of a barbell consisting of 50-kg and 80-kg 
weights at the opposite ends of a 1.5-m-long bar of negligible mass.

INTERPRET This is a problem about center of mass. We identify the 
system as consisting of two “particles”—namely, the two weights.

DEVELOP Figure 9.1 shows the barbell. Here, with just two particles, we 
have a one-dimensional situation and Equation 9.2, r

!
cm = g  mi r

!
i /M, 

becomes xcm = 1m1 x1 + m2 x22/1m1 + m22. Before we can apply this 
equation, however, we need a coordinate system. As always, any coor-
dinate system will do—but a smart choice makes the math easier. Let’s 

take x = 0 at the 50-kg mass, so the term m1x1 becomes zero. Our plan is 
then to find the center-of-mass coordinate xcm using our one-dimensional 
version of Equation 9.2.

EVALUATE With x = 0 at the left end of the barbell, the coordinate 
of the 80-kg mass is x2 = 1.5 m. So our equation becomes

xcm =
m1 x1 + m2 x2

m1 + m2
=

m2 x2

m1 + m2
=

180 kg211.5 m2
150 kg + 80 kg2 = 0.92 m

where the equation simplified because of our choice x1 = 0.

ASSESS As Fig. 9.1 shows, this result makes sense: The center of 
mass is closer to the heavier weight. If the weights had been equal, the 
center of mass would have been right in the middle.

  CHOOSING THE ORIGIN Choosing the origin at one of the 
masses here conveniently makes one of the terms in the sum g  mi xi zero. But, as always, the choice of origin is purely 
for convenience and doesn’t influence the actual physical 
location of the center of mass. Exercise 12 demonstrates this 
point, repeating Example 9.1 with a different origin.

Center of Mass in One Dimension: Weightlifting

EXAMPLE 9.2 Center of Mass in Two Dimensions: A Space Station

Figure 9.2 shows a space station consisting of three modules arranged in 
an equilateral triangle, connected by struts of length L and of negligible 
mass. Two modules have mass m, the other 2m. Find the center of mass.

INTERPRET We’re after the center of mass of the system consisting of 
the three modules.

DEVELOP Figure 9.2 is our drawing. We’ll use Equation 9.2, 
r
!
cm = g  mi r

!
i /M, to find the center-of-mass coordinates xcm and ycm. 

A sensible coordinate system has the origin at the module with mass 
2m and the y-axis downward, as shown in Fig. 9.2.

FIGURE 9.1 Our sketch of the barbell.
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9.1 Center of Mass 153

Continuous Distributions of Matter
We’ve expressed the center of mass as a sum over individual particles. Ultimately, matter 
is composed of individual particles. But it’s often convenient to consider that it’s contin-
uously distributed; we don’t want to deal with 1023 atoms to find the center of mass of a 
macroscopic object! We can think of continuous matter as being composed of individual 
pieces of mass ∆mi, with position vectors r

!
i ; we call these pieces mass  elements (Fig. 9.3). 

The center of mass of the entire chunk is then given by Equation 9.2: r
!
cm = 1g  ∆mi r

!
i2/M, 

where M = g  ∆mi is the total mass. In the limit as the mass elements become arbitrarily 
small, this expression becomes an integral:

 r
!
cm = lim

∆miS0
 a  ∆mi r

!
i

M
= 1  

r
!
 dm

M
  a center of mass,

continuous matterb  (9.4)

where the integration is over the entire object. Like the sum in Equation 9.2, the integral 
of the vector r

!
 stands for three separate integrals for the components of the center-of-mass 

position.

ri
u

∆mi

0 Origin is arbitrary.

FIGURE 9.3 A chunk of continuous 
matter, showing one mass element 
∆mi and its position vector r

!
i.

EVALUATE Labeling the modules from left to right, we see that 
x1 = -L sin 30° = -1

2 L, y1 = L cos 30° = L13/2;  x2 = y2 = 0; 
and x3 = -x1 = 1

2 L, y3 = y1 = L13/2. Writing explicitly the x- and 
y-components of Equation 9.2 for this case gives

 xcm =
mx1 + mx3

4m
=

m1x1 - x12
4m

= 0 

 ycm =
my1 + my3

4m
=

2my1

4m
=

1
2

 y1 =
13
4

L ≃ 0.43L

Although there are three “particles” here, our choice of coordinate 
system left only two nonzero terms in the numerator, both associated 
with the same mass m. The more massive module is still in the prob-
lem, though; its mass 2m contributes to make the total mass M in the 
denominator equal to 4m.

ASSESS That xcm = 0 is apparent from symmetry (more on this in 
the following Tip). How about the result for ycm? We have 2m at the 
top of the triangle, and m + m = 2m at the bottom—so shouldn’t 
the center of mass lie midway up the triangle? It does! Expressing the 
center of mass in terms of the triangle side L obscures this fact. The 
triangle’s height is h = L cos 30° = L13/2, and our answer for ycm is 
indeed half this value. We marked the center of mass (cm) on Fig. 9.2.

  EXPLOIT SYMMETRIES It’s no accident that xcm here lies on 
the vertical line that bisects the triangle; after all, the triangle 
is symmetric about that line, so its mass is distributed evenly on 
either side. Exploit symmetry whenever you can; that can save 
you a lot of computation throughout physics!FIGURE 9.2 Our sketch of the space station.

With continuous matter 
the masses mi…

…become infinitesimal mass 
elements dm…

…and the sum…
…becomes 
an integral.

EXAMPLE 9.3 Continuous Matter: An Aircraft Wing

A supersonic aircraft wing is an isosceles triangle of length L, width 
w, and negligible thickness. It has mass M, distributed uniformly over 
the wing. Where’s its center of mass?

INTERPRET Here the matter is distributed continuously, so we need to 
integrate to find the center of mass. We identify an axis of symmetry 
through the wing, which we designate the x-axis. By symmetry, the 

center of mass lies along this x-axis, so ycm = 0 and we’ll need to 
calculate only xcm.

DEVELOP Figure 9.4 shows the wing. Equation 9.4 applies, 
and we need only the x-component because the y-component 
is evident from symmetry. The x-component of Equation 9.4 is 
xcm = 11x dm2/M. Developing a plan for dealing with an integral 

(continued )

M09_WOLF8559_04_SE_C09.indd   153 13/11/18   12:29 PM



154 Chapter 9 Systems of Particles

like this requires some thought; we’ll first do the work and then 
summarize the general steps involved.

Our goal is to find an appropriate mass element dm, and express 
it in terms of the infinitesimal coordinate interval dx. As shown in 
Fig. 9.4, here it’s easiest to use a vertical strip of width dx. Each 
such strip has a different height h, depending on its position x. If we 
choose a coordinate system with origin at the wing apex, then, as you 
can see from the figure, the height grows linearly from 0 at x = 0 to 
w at x = L. So h = 1w/L2x. This strip is infinitesimally narrow, so 
its sloping edges don’t matter and its area dA is that of a very thin 
rectangle—namely, dA = h dx = 1w/L2x dx. Now comes the import-
ant step where we relate dm and dx: The strip’s mass dm is the same 

fraction of the total wing mass M as its area dA is of the total wing 
area A = 1

2 wL; that is,

dm
M

=
dA
A

=
1w/L2x dx

1
2 wL

=
2x dx

L2

so dm = 2Mx dx/L2.
In the integral we weight each mass element dm by its distance x 

from the origin, and then sum—that is, integrate—over all mass ele-
ments. So, from Equation 9.4, we have

xcm =
1
M

 L  x dm =
1
M L

L

0
x a2Mx

L2  dxb =
2

L2 L
L

0
x2 dx

As always, constants can come outside the integral. We set the limits 
0 and L to cover all the mass elements in the wing. Now we’re finally 
ready to find xcm.

EVALUATE The hard part is done. All that’s left is to evaluate the 
integral:

xcm =
2

L2 L
L

0
x2 dx =

2

L2 
x3

3
2 L
0

=
2L3

3L2 =
2
3

 L

ASSESS Make sense? Yes: Our answer puts the center of mass toward 
the back of the wing where, because of its increasing width, most of 
the mass lies. In a complicated calculation like this one, it’s reassuring 
to see that the answer is a quantity with the units of length.

Here’s a typical mass
element; in reality its
width dx is infinitesimally
small.

The height h of
a mass element
depends on its position, x.

FIGURE 9.4 Our sketch of the supersonic aircraft wing.

CMfuselage

CMplane

CMwing

⊗

FIGURE 9.5 The center of mass of the 
airplane is found by treating the wing 
and fuselage as point particles located at 
their respective centers of mass.

Tactics 9.1 SETTING UP AN INTEGRAL

An integral like1x dm can be confusing because you see both x and dm after the integral sign and they don’t 
seem related. But they are, and here’s how to proceed:

1. Find a suitable shape for your mass elements, preferably one that exploits any symmetry in the situation. 
One dimension of the elements should involve an infinitesimal interval in one of the coordinates x, y, or z. 
In Example 9.3, the mass elements were strips, symmetric about the wing’s centerline and with width dx.

2. Find an expression for the infinitesimal area of your mass elements (in a one-dimensional problem it would 
be the length; in a three-dimensional problem, the volume). In Example 9.3, the infinitesimal area of each 
mass element was the strip height h multiplied by the width dx.

3. Form ratios that relate the infinitesimal coordinate interval to the physical quantity in the integral—which 
in Example 9.3 is the mass element dm. Here we formed the ratio of the area of a mass element to the total 
area, and equated that to the ratio of dm to the total mass M.

4. Solve your ratio statement for the infinitesimal quantity, in this case dm, that appears in your integral. Then 
you’re ready to evaluate the integral.

Sometimes you’ll be given a density—mass per volume, per area, or per length—and then in place of steps 3 
and 4 you find dm by multiplying the density by the infinitesimal volume, area, or length you identified in step 2.

Although we described this procedure in the context of Example 9.3, it also applies to other integrals you’ll 
encounter in different areas of physics.

With more complex objects, it’s convenient to find the centers of mass of subparts and 
then treat those as point particles to find the center of mass of the entire object (Fig. 9.5).

The center of mass need not lie within an object, as Fig. 9.6 shows. High jumpers ex-
ploit this fact as they straddle the bar with arms and legs dangling on either side (Fig. 9.7). 
Although the jumper’s entire body clears the bar, his center of mass doesn’t need to!

A

B

C

FIGURE 9.6 Got it? The center of mass lies 
outside the semicircular wire, but which 
point is it?
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9.1 Center of Mass 155

Motion of the Center of Mass
We defined the center of mass so its motion obeys Newton’s law F

S
net ext = M a

!
cm, with 

F
S

net ext the net external force on the system and M the total mass. When gravity is the only 
external force, the center of mass follows the trajectory of a point particle. But if the net 
external force is zero, then the center-of-mass acceleration a

!
cm is also zero, and the center 

of mass moves with constant velocity. In the special case of a system at rest, the center of 
mass remains at rest despite any motions of its internal parts.

Center of mass’s
position at the
peak of the jump

Center of mass’s
trajectory

⊗

FIGURE 9.7 A high jumper clears the bar, but his center of 
mass doesn’t!

9.1 A thick wire is bent into a semicircle, as shown in Fig. 9.6. Which of the points 
shown is the center of mass?

G
O

T 
IT

?

EXAMPLE 9.4 Center-of-Mass Motion: Circus Train

Jumbo, a 4.8-t elephant, stands near one end of a 15-t railcar at rest 
on a frictionless horizontal track. (Here t is for tonne, or metric ton, 
equal to 1000 kg.) Jumbo walks 19 m toward the other end of the 
car. How far does the car move?

INTERPRET We’re asked about the car’s motion, but we can inter-
pret this problem as being about the center of mass. We identify the 
system as comprising Jumbo and the car. Because there’s no net 
external force acting on the system, its center of mass can’t move.

DEVELOP Figure 9.8a shows the initial situation. The symmet-
ric car has its CM at its center. Let’s take a coordinate system 
that’s fixed to the ground and that has x = 0 at this initial loca-
tion of the car’s center. Equation 9.2 applies—here in the sim-
pler one-dimensional, two-object form we used in Example 9.1: 
xcm = 1mJ xJ + mc xc2/M, where we use the subscripts J and c for 
Jumbo and the car, respectively, and where M = mJ + mc is the 
total mass. The center of mass of the system can't move, so we’ll 
write two versions of this expression, before and after Jumbo’s 
walk. We’ll then set them equal to state mathematically that the 
CM doesn’t move; that is, xcm i = xcm f, where the subscripts i and f  
designate quantities associated with the initial and final states, 
respectively.

xJi

xcf xcm

x = xci = 0

x = 0 xJf

xcm
(a)

(b)

⊗

⊗

FIGURE 9.8 Jumbo walks, but the system’s center of mass doesn’t move.

We chose our coordinate system so that the car’s initial position was 
xci = 0, so our expression for the initial position of the system’s center 
of mass becomes

(continued )
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156 Chapter 9 Systems of Particles

9.2 Momentum
LO 9.4 Determine the total momentum of a system.

LO 9.5 Solve problems involving conservation of momentum.

In Chapter 4 we defined the linear momentum p
!
 of a particle as p

!
= mv

!
, and we first 

wrote Newton’s law in the form F
S

= d p
!
/dt. We suggested that this form would play an 

important role in many-particle systems. We’re now ready to explore that role.
The momentum of a system of particles is the vector sum of the individual momenta: 

P
S

= g  p
!
i = g  miv

!
i, where mi and v

!
i are the masses and velocities of the individual par-

ticles. But we’d rather not have to keep track of all the particles in the system. Is there a 
simpler way to express the total momentum? There is, and it comes from writing the indi-
vidual velocities as time derivatives of position: v

!
= dr

!
/dt. Then

P
S

= a  mi 
d r

!
i

dt
=

d
dt a  mi r

!
i

where the last step follows because the individual particle masses are constant and 
 because the sum of derivatives is the derivative of the sum. In Section 9.1, we defined 
the  center-of-mass position r

!
cm as g  mi r

!
i /M, where M is the total mass. So the total 

 momentum becomes

P
S

=
d
dt

 M r
!
cm

or, assuming the system mass M remains constant,

 P
S

= M 
dr

!
cm

dt
= Mv

!
cm (9.5)

where v
!
cm = d r

!
cm/dt is the center-of-mass velocity. So a system’s momentum is given by 

an expression similar to that of a single particle; it’s the product of the system’s mass and 
its velocity—that is, the velocity of its center of mass. If this seems obvious, watch out! 
We’ll see soon that the same is not true for the system’s total energy.

xcm i = mJ xJi /M

The final center-of-mass position, after Jumbo’s walk, is 
xcm f = 1mJ xJf + mc xcf2/M. We don’t know either of the final coor-
dinates xJf or xcf here, but we do know that Jumbo walks 19 m with 
 respect to the car. Jumbo’s final position xJf is therefore 19 m to the 
right of x

Ji
, adjusted for the car’s displacement. Therefore Jumbo ends 

up at xJf = xJi + 19 m + xcf. You might think we need a minus sign 
because the car moves to the left. That’s true, but the sign of xcf will 
take care of that. Trust algebra! So our expression for the final center-
of-mass position is

xcm f =
mJ xJf + mc xcf

M
=

mJ1xJi + 19 m + xcf2 + mc xcf

M

EVALUATE Finally, we equate our expressions for the initial and final po-
sitions of the center of mass. Again, that’s because there are no forces ex-
ternal to the elephant–car system acting in the horizontal direction, so the 
center-of-mass position xcm can’t change. Thus we have xcm i = xcm f, or

mJ xJi

M
=

mJ1xJi + 19 m + xcf2 + mc xcf

M

The total mass M cancels, so we’re left with the equation 
mJ xJi = mJ 1xJi + 19 m + xcf2 + mc xcf. We aren’t given xJi, but the 
term mJ xJi is on both sides of this equation, so it cancels, leaving 
0 = mJ119 m + xcf2 + mc xcf. We solve for the unknown xcf to get

xcf = -  
119 m2mJ

1mJ + mc2 = -  
119 m214.8 t2
14.8 t + 15 t2  

= -4.6 m

The minus sign here indicates a displacement to the left, as we antici-
pated (Fig. 9.8b). Because the masses appear only in ratios, we didn’t 
need to convert to kilograms.

ASSESS The car’s 4.6-m displacement is quite a bit less than 
Jumbo’s (which is 19 m - 4.6 m, or 14.4 m relative to the ground). 
That makes sense because Jumbo is considerably less massive than 
the car.
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9.2 Momentum 157

If we differentiate Equation 9.5 with respect to time, we have

dP
S

dt
= M

d  v
!
cm

dt
= M a

!
cm

where a
!
cm is the center-of-mass acceleration. But we defined the center of mass so its 

motion obeyed Newton’s second law, F
S

= Ma
!
cm, with F

S
 the net external force on the 

system. So we can write simply

 F
S

net ext =
dP

S

dt
 (9.6)

showing that the momentum of a system of particles changes only if there’s a net external 
force on the system. Remember the hidden role of Newton’s third law in all this: Only 
because forces internal to the system cancel in pairs can we ignore them and consider just 
the external force.

Equation 9.6 might remind you of Equation 7.8, which said that the total energy of 
a system changes only if external forces—those acting from outside the system—do 
work on the system. Equation 9.6 is similar, except that it’s talking about momentum 
instead of energy: It states that the total momentum of a system changes only if there’s 
a net external force acting on the system. Just as Equation 7.8 allows transformations 
and transfers of energy within the system, so Equation 9.6 allows for the transfer of 
 momentum among the system’s constituent particles. It’s only a system’s total energy or 
total momentum that’s constrained by the broad statements embodied in Equations 7.8  
and 9.6.

Conservation of Momentum
In the special case when the net external force is zero, Equation 9.6 gives dP

S
/dt = 0

S
, so

 P
S

= constantT  1conservation of linear momentum2 (9.7)

Equation 9.7 describes conservation of linear momentum, one of the most fundamental 
laws of physics:

Conservation of linear momentum: When the net external force on a  system 
is zero, the total momentum P

S
 of the system—the vector sum of the individual 

 momenta mv
!
 of its constituent particles—remains constant.

Momentum conservation holds no matter how many particles are involved and no 
matter how they’re moving. It applies to systems ranging from atomic nuclei to pool 
balls, from colliding cars to galaxies. Although we derived Equation 9.7 from Newton’s 
laws, momentum conservation is even more basic, since it applies to subatomic and 
nuclear systems where the laws and even the language of Newtonian physics are hope-
lessly inadequate. The following examples show the range and power of momentum 
conservation.

Newton’s second law for a system 
says that the rate of change of the 
system’s momentum. . .

. . .is equal to the net force 
 applied from outside the system.

In the absence of a net external force, the 
momentum P

S
 of a system doesn’t change.

The arrow is a reminder that 
momentum is a vector quantity.

9.2 A 500-g fireworks rocket is moving with velocity v
!

= 60jn m/s at the instant it 
explodes. If you were to add the momentum vectors of all its fragments just after the 
explosion, what would be the result?G

O
T 

IT
?

M09_WOLF8559_04_SE_C09.indd   157 13/11/18   12:29 PM



158 Chapter 9 Systems of Particles

CONCEPTUAL EXAMPLE 9.1 Conservation of Momentum: Kayaking

Jess (mass 53 kg) and Nick (mass 72 kg) sit in a 26-kg kayak at rest 
on frictionless water. Jess tosses Nick a 17-kg pack, giving it hori-
zontal speed 3.1 m/s relative to the water. What’s the kayak’s speed 
after Nick catches the pack? Why can you answer without doing any 
calculations?

EVALUATE Figure 9.9 shows the kayak before Jess tosses the pack 
and again after Nick catches it. The water is frictionless, so there’s no 
net external force on the system comprising Jess, Nick, the kayak, and 
the pack. Since there’s no net external force, the system’s momentum 
is conserved. Everything is initially at rest, so that momentum is zero. 
Therefore, it’s also zero after Nick catches the pack. At that point Jess, 
Nick, pack, and kayak are all at rest with respect to each other, so the 
only way the system’s momentum can be zero is if they’re also all at 
rest relative to the water. Therefore, the kayak’s final speed is zero.

ASSESS We didn’t need any calculations here because the power-
ful conservation-of-momentum principle relates the initial and final 
states, without our having to know what happens in between.

MAKING THE CONNECTION What’s the kayak’s speed while the 
pack is in the air?

EVALUATE Momentum conservation still applies, and the system’s to-
tal momentum is still zero. Now it consists of the pack’s momentum 
mpv

!
p and the momentum 1mJ + mN + mk2v

!
k of Jess, Nick, and kayak, 

with common velocity v
!
k (Fig. 9.10). Sum these momenta, set the sum 

to zero, and solve, using the given quantities, to get vk = -0.35 m/s. 
Here we’ve dropped vector signs; the minus sign then shows that the 
kayak’s velocity is opposite the pack’s. Since kayak and passengers 
are much more massive than the pack, it makes sense that their speed 
is lower.

Initially all momenta are zero c

cand they’re zero again after Nick has caught the pack.

FIGURE 9.9 Our sketch for Conceptual Example 9.1.

While the pack is in the air,
momenta still sum to zero.

FIGURE 9.10 Our sketch for Making the Connection 9.1.

EXAMPLE 9.5 Conservation of Momentum: Radioactive Decay
Worked Example with Variation Problems

A lithium-5 nucleus 15Li2 is moving at 1.6 Mm/s when it decays into 
a proton (1H, or p) and an alpha particle (4He, or a). [Superscripts are 
the total numbers of nucleons and give the approximate masses in uni-
fied atomic mass units (u).] The alpha particle is detected moving at 
1.4 Mm/s, at 33° to the original velocity of the 5Li nucleus. What are 
the magnitude and direction of the proton’s velocity?

INTERPRET Although the physical situation here is entirely different 
from the preceding example, we interpret this one, too, as being about 
momentum conservation. But there are two differences: First, in this 
case the total momentum isn’t zero, and, second, this situation involves 
two dimensions. The fundamental principle is the same, however: In the 
absence of external forces, a system’s total momentum can’t change. 
Whether a pack gets tossed or a nucleus decays makes no difference.

DEVELOP Figure 9.11 shows what we know: the velocities for the Li 
and He nuclei. You can probably guess that the proton must emerge 
with a downward momentum component, but we’ll let the math con-
firm that. We determine that Equation 9.7, P

S
= constant, applies with 

the constant equal to the 5Li momentum. After the decay, we have two 
momenta to account for, so Equation 9.7 becomes

mLi v
!
 Li = mpv

!
p + mav

!
a

Let’s choose the x-axis along the direction of v
!
Li. Then the two com-

ponents of the momentum conservation equation become

x@component:  mLivLi = mpvpx + mavax

y@component:  0 = mpvpy + mavay

Our plan is to solve these equations for the unknowns vpx and vpy. From 
these we can get the magnitude and direction of the proton’s velocity.

FIGURE 9.11 Our sketch for Example 9.5: what we’re given.
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9.2 Momentum 159

A system’s momentum is conserved only if no external forces act. Whether a force 
is internal or external depends on your choice of what constitutes the system—a choice 
that, as we noted in Chapter 6, is entirely up to you. In the two preceding examples, it was 
convenient to choose systems that weren’t subject to external forces; then we could apply 
momentum conservation. Sometimes it’s more convenient to deal with systems that do 
experience external forces; then, since dP

!>dt = F
S

, the system’s momentum changes at a 
rate equal to the external force. Example 9.6 makes this point.

EVALUATE From Fig. 9.11 it’s evident that vax = va cos f and 
vay = va sin f. So we can solve our two equations to get

 vpx =
mLivLi - mavax

mp
=

mLivLi - mava cos f

mp

 =
15.0 u211.6 Mm/s2 - 14.0 u211.4 Mm/s21cos 33°2

1.0 u

 = 3.30 Mm/s

 vpy = -
mavay

mp
= -

mava sin f

mp

 =
14.0 u211.4 Mm/s21sin 33°2

1.0 u
= -3.05 Mm/s

We’ve kept three significant figures in these intermediate results so we 
can get an accurate two-figure result for our final answer.

Thus the proton’s speed is vp = 2vpx
2 + vpy

2 = 4.5 Mm/s, and 
its direction is u = tan-11vpy /vpx2 = -43°. Note that here, as in 

Example 9.4, the masses appear only in ratios so we don’t need to 
change units.

ASSESS Make sense? That negative u tells us the proton’s velocity is 
downward, as we anticipated. Figure 9.12 makes our result clear. Here we 
multiplied the velocities by the masses to get momentum vectors. The two 
momenta after the decay event have equal but opposite vertical compo-
nents, reflecting that the total momentum of the system never had a verti-
cal component. And the two horizontal components sum to give the initial 
momentum of the lithium nucleus. Momentum is indeed conserved.

FIGURE 9.12 Our momentum diagram for Example 9.5.

EXAMPLE 9.6 Changing Momentum: Fighting a Fire

A firefighter directs a stream of water against the window of a burning 
building, hoping to break the window so water can get to the fire. The 
hose delivers water at the rate of 45 kg/s, and the water hits the window 
moving horizontally at 32 m/s. After hitting the window, the water drops 
vertically. What horizontal force does the water exert on the window?

INTERPRET We’re asked about the window, but we’re told a lot more 
about the water. The water stops at the window, so clearly the window 
exerts a force on the water—and by Newton’s third law, that force is 
equal in magnitude to the force we’re after—namely, the force of the 
water on the window. So we identify the water as our system and rec-
ognize that it’s subject to an external force from the window.

DEVELOP Newton’s law in the form F
S

= dP
S

/dt applies to the wa-
ter. So our plan is to find the rate at which the water’s momentum 
changes. By Newton’s second law, that’s equal to the window’s force 
on the water, and by Newton’s third law, that’s equal to the water’s 
force on the window.

EVALUATE The water strikes the window at 32 m/s, so each kilogram 
of water loses 32 kg#m/s of momentum. Water strikes the window at the 
rate of 45 kg/s, so the rate at which it loses momentum to the window is

dP
dt

= 145 kg/s2132 m/s2 = 1400 kg#m/s2

By Newton’s second law, that’s equal to the force on the water, and by 
the third law, that in turn is equal in magnitude to the force on the win-
dow. So the window experiences a 1400-N force from the water. Since 
the window is rigidly attached to the building and Earth, it doesn’t 
experience significant acceleration—until it breaks and the glass frag-
ments accelerate violently.

ASSESS 1400 N is about twice the weight of a typical person, and a 
fire hose produces quite a blast of water, so this number seems rea-
sonable. Check the units, too: 1 kg#m/s2 is equal to 1 N, so our answer 
does have the units of force.

9.3 Two skaters toss a basketball back and forth on frictionless ice. Which of the 
 following does not change? (a) the momentum of an individual skater; (b) the momen-
tum of the basketball; (c) the momentum of the system consisting of one skater and the 
basketball; (d) the momentum of the system consisting of both skaters and the basketballG
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160 Chapter 9 Systems of Particles

9.3 Kinetic Energy of a System
LO 9.6 Break a system’s kinetic energy into center-of-mass and  

internal components.

We’ve seen how the momentum of a many-particle system is determined entirely by the 
motion of its center of mass; the detailed behavior of the individual particles doesn’t mat-
ter. For example, a firecracker sliding on ice has the same total momentum before and 
after it explodes.

The same, however, is not true of a system’s kinetic energy. Energetically, that fire-
cracker is very different after it explodes; internal potential energy has become kinetic 
energy of the fragments. Nevertheless, the center-of-mass concept remains useful in cate-
gorizing the kinetic energy associated with a system of particles.

The total kinetic energy of a system is the sum of the kinetic energies of the constituent 
particles: K = g  12 mi vi

2. But the velocity v
!
i of a particle can be written as the vector sum 

of the center-of-mass velocity v
!
cm and a velocity v

!
i rel of that particle relative to the center 

of mass: v
!
i = v

!
cm + v

!
i rel. Then the total kinetic energy of the system is

K = a 1
2  mi 1v

!
cm + v

!
i rel2 # 1v

!
cm + v

!
i rel2 = a 1

2 mi vcm
2 + a mi v

!
cm

# v
!
i rel + a  12 mi vi rel

2  (9.8)

Let’s examine the three sums making up the total kinetic energy. Since the center-
of-mass speed vcm is common to all particles, it can be factored out of the first sum, so g  12 mi vcm

2 = 1
2 vcm

2  g  mi = 1
2 Mvcm

2 , where M is the total mass. This is the kinetic energy of 
a particle with mass M moving at speed vcm, so we call it Kcm, the kinetic energy of the 
center of mass.

The center-of-mass velocity can also be factored out of the second term in Equation 9.8, 
giving g  mi v

!
cm

# v
!
i rel = v

!
cm

# g  mi v
!
i rel. Because the v

!
i rel>s are the particle velocities rel-

ative to the center of mass, the sum here is the total momentum relative to the center of 
mass. But that’s zero, so the entire second term in Equation 9.8 is zero.

The third term in Equation 9.8, g  12 mi vi rel
2,  is the sum of the individual kinetic energies 

measured in a frame of reference moving with the center of mass. We call this term Kint, 
the internal kinetic energy.

With the middle term gone, Equation 9.8 shows that the kinetic energy of a system 
breaks into two terms:

 K = Kcm + Kint  1kinetic energy of a system2 (9.9)

The first term, the kinetic energy of the center of mass, depends only on the center-of-mass 
motion. In our firecracker example, Kcm doesn’t change when the firecracker  explodes. 
The second term, the internal kinetic energy, depends only on the motions of the indi-
vidual particles relative to the center of mass. The explosion dramatically increases this 
internal kinetic energy.

Rockets provide propulsion in the vacuum of 
space, where there’s nothing for a wheel or pro-
peller to push against. If no external forces act, 
total momentum stays constant. As the rocket’s 
exhaust carries away momentum, the result is an 
equal but oppositely directed momentum gain 
for the rocket. The rate of momentum change 
is the force on the rocket, which engineers call 
thrust. As with the fire hose in Example 9.6, 
thrust is the product of the exhaust rate dM/dt 
and exhaust speed vex: F = vex dM/dt. Because 
the rocket has to carry the mass it’s going to 
 exhaust, the most efficient rockets use high 
 exhaust velocities and therefore need less fuel. 
You can explore the physics of rocket propulsion 
quantitatively in Problem 83.

What actually propels the rocket? It’s ulti-
mately hot gases inside the rocket engine pushing 
on the front of the engine chamber. The rocket 
doesn’t “push against” anything outside itself; 
all the pushing is done inside the rocket engine, 
 accelerating the rocket forward. That’s why rock-
ets work just fine in the vacuum of space.

The photo shows the 2011 launch of the Juno 
spacecraft, heading for its 2016 rendezvous with 
Jupiter.

APPLICATION Rockets

A system’s kinetic energy K 
consists of two parts.

Kint is the sum of the kinetic  energies of the individual parts of the 
system, associated with their  motion  relative to the center of mass.

Kcm is energy associated with the motion of the center of mass.

9.4 Which of the following systems has (1) zero internal kinetic energy and (2) zero 
center-of-mass kinetic energy? (a) a pair of ice skaters, arms linked, skating together 
in a straight line; (b) a pair of skaters who start from rest facing each other and then 
push off so they’re moving in opposite directions; (c) a pair of skaters as in (b) but 
who initially are moving together along the ice before they push off
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9.4 Collisions 161

9.4 Collisions
LO 9.7 Describe what constitutes a collision and distinguish elastic from 

 inelastic collisions.

A collision is a brief, intense interaction between objects. Examples abound: automobile 
collisions; collisions of balls on a pool table; the collision of a tennis ball and racket, 
baseball and bat, or football and foot; an asteroid colliding with a planet; and collisions 
of high-energy particles that probe the fundamental structure of matter. Less obvious are 
collisions among galaxies that last a hundred million years, the interaction of a spacecraft 
with a planet as the craft gains energy for a voyage to the outer solar system, and the 
repulsive interaction of two protons that approach but never touch. All these collisions 
meet two criteria. First, they’re brief, lasting but a short time in the overall context of the 
colliding objects’ motions. On a pool table, the collision time is short compared with the 
time it takes for a ball to roll across the table. An automobile collision lasts a fraction of a 
second. A baseball spends far more time coming from the pitcher than it does interacting 
with the bat. And even 108 years is short compared with the lifetime of a galaxy. Second, 
collisions are intense: Forces among the interacting objects are far larger than any external 
forces that may be acting on the system. External forces are therefore negligible during the 
collision, so the total momentum of the colliding objects remains essentially unchanged.

Impulse
The forces between colliding objects are internal to the system comprising those objects, 
so they can’t alter the total momentum of the system. But they dramatically alter the mo-
tions of the colliding objects. How much depends on the magnitude of the force and how 
long it’s applied.

If F
S

is the average force acting on one object during a collision that lasts for time ∆t, 

then Newton’s second law reads F
S

 = ∆p
!
/∆t or

 ∆p
!

= F
S
∆t  (9.10a)

The product of average force and time that appears in this equation is called impulse. It’s 
given the symbol J

S
, and its units are newton-seconds.

An impulse J
S

produces the same momentum change regardless of whether it involves a 
larger force exerted over a shorter time or a smaller force exerted over a longer time. The 
force in a collision usually isn’t constant and can fluctuate wildly. In that case, we find the 
impulse by integrating the force over time, so the momentum change becomes

 ∆p
!

= J
S

= L  F
S1t2 dt  1impulse2 (9.10b)

Although we introduced impulse in the context of collisions, it’s useful in other situations 
involving intense forces applied over short times. For example, small rocket engines are 
characterized by the impulse they impart.

Energy in Collisions
Kinetic energy may or may not be conserved in a collision. If it is, then the collision is 
elastic; if not, it’s inelastic. An elastic collision requires that the forces between collid-
ing objects be conservative; then kinetic energy is stored briefly as potential energy and 
released when the collision is over. Interactions at the atomic and nuclear scales are often 
truly elastic. In the macroscopic realm, nonconservative forces convert kinetic energy into 
internal energy, heating the colliding objects, or they may permanently deform the objects; 
either way, nonconservative forces rob the system of mechanical energy. But even many 
macroscopic collisions are close enough to elastic that we can neglect mechanical energy 
loss during the collision.

Automotive engineers perform crash tests to 
 assess the safety of their vehicles. Sensors mea-
sure the rapidly varying forces as the test car col-
lides with a fixed barrier. The graph below is a 
force-versus-time curve from a typical crash test; 
impulse is the area under the curve. In addition 
to force sensors on the vehicle, accelerometers 
in crash-test dummies determine the maximum 
accelerations of the heads and other body parts 
to assess potential injuries.

F
S

Time

Fo
rc

e

Impulse is the area
under the force–time
curve. With F the
average force, these
two areas are the same.

S

APPLICATION Crash Tests
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162 Chapter 9 Systems of Particles

9.5 Totally Inelastic Collisions
LO 9.8 Analyze totally inelastic collisions using conservation of momentum.

In a totally inelastic collision, the colliding objects stick together to form a single object. 
Even then, kinetic energy is usually not all lost. But a totally inelastic collision entails the 
maximum energy loss consistent with momentum conservation. The motion after a totally 
inelastic collision is determined entirely by momentum conservation, and that makes to-
tally inelastic collisions easy to analyze.

Consider masses m1 and m2 with initial velocities v
!
1 and v

!
2 that undergo a totally inelas-

tic collision. After colliding, they stick together to form a single object of mass m1 + m2 
and final velocity v

!
f. Conservation of momentum states that the initial and final momenta 

of this system must be the same:

 m1v
!
1 + m2v

!
2 = 1m1 + m22v

!
f  1totally inelastic collision2 (9.11)

Given four of the five quantities m1, v
!
1, m2, v

!
2, and v

!
f, we can solve for the fifth.

9.5 Which of the following qualifies as a collision? Of the collisions, which are nearly 
elastic and which inelastic? (a) A basketball rebounds off the backboard; (b) two mag-
nets approach, their north poles facing; they repel and reverse direction without touch-
ing; (c) a basketball flies through the air on a parabolic trajectory; (d) a truck strikes 
a parked car and the two slide off together, crumpled metal hopelessly intertwined;  
(e) a snowball splats against a tree, leaving a lump of snow adhering to the bark.
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In a totally inelastic collision, 
only momentum is conserved.

There’s only one final  velocity 
because the objects stick together.

Here are the momenta of the colliding 
particles before the collision.

Here’s the final momentum, associated 
with both objects stuck together.

EXAMPLE 9.7 An Inelastic Collision: Hockey

The hockey captain, a physics major, decides to measure the puck’s 
speed. She loads a small Styrofoam chest with sand, giving a total 
mass of 6.4 kg. She places it at rest on frictionless ice. The 160-g puck 
strikes the chest and embeds itself in the Styrofoam. The chest moves 
off at 1.2 m/s. What was the puck’s speed?

INTERPRET This is a totally inelastic collision. We identify the sys-
tem as consisting of puck and chest. Initially, all the system’s momen-
tum is in the puck; after the collision, it’s in the combination puck +  
chest. In this case of a single nonzero velocity before collision and a 
single velocity after, momentum conservation requires that both mo-
tions be in the same direction. Therefore, we have a one-dimensional 
problem.

DEVELOP Figure 9.13 is a sketch of the situation before and after the 
collision. With a totally inelastic collision, Equation 9.11—the state-
ment of momentum conservation—tells it all. In our one-dimensional 
situation, this equation becomes mpvp = 1mp + mc2vc, where the sub-
scripts p and c stand for puck and chest, respectively.

EVALUATE Here we want the initial puck velocity, so we solve for vp:

vp =
1mp + mc2vc

mp
=

10.16 kg + 6.4 kg211.2 m/s2
0.16 kg

= 49 m/s

ASSESS Make sense? Yes: The puck’s mass is small, so it needs a 
much higher speed to carry the same momentum as the much more 
massive chest. Variations on this technique are often used to determine 
speeds that would be difficult to measure directly.

Before collision, the puck
has all the momentum.

After collision, the
puck + chest has the
same momentum.

FIGURE 9.13 Our 
sketch for 
Example 9.7.

¯˘˙
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9.5 Totally Inelastic Collisions 163

EXAMPLE 9.8 Conservation of Momentum: Fusion

In a fusion reaction, two deuterium nuclei 12H2 join to form helium 
14He2. Initially, one of the deuterium nuclei is moving at 3.5 Mm/s, 
the second at 1.8 Mm/s at a 64° angle to the velocity of the first. Find 
the speed and direction of the helium nucleus.

INTERPRET Although the context is very different, this is another to-
tally inelastic collision. But here both objects are initially moving, and 
in different directions, so we have a two-dimensional situation. We 
identify the system as consisting of initially the two deuterium nuclei 
and finally the single helium nucleus. We’re asked for the final veloc-
ity of the helium, expressed as magnitude (speed) and direction.

DEVELOP Figure 9.14 shows the situation. Momentum is con-
served, so Equation 9.11 applies; solving that equation for v

!
f gives 

v
!
f = 1m1v

!
1 + m2v

!
22/1m1 + m22. In two dimensions, this represents 

two equations for the two components of v
!
f. We need a coordinate sys-

tem, and Fig. 9.14 shows our choice, with the x-axis along the motion 

of the first deuterium nucleus. We need the components of the initial 
velocities in order to apply our equation for v

!
f.

EVALUATE With v
!
1 in the x-direction, we have v1x = 3.5 Mm/s 

and v1y = 0. Figure 9.14 shows that v2x = 11.8 Mm/s21cos 64°2 =  
0.789 Mm/s and v2y = 11.8 Mm/s21sin 64°2 = 1.62 Mm/s. So the 
components of our equation become

 vfx =
m1v1x + m2v2x

m1 + m2

 =
12 u213.5 Mm/s2 + 12 u210.789 Mm/s2

2 u + 2 u
= 2.14 Mm/s

 vfy =
m1v1y + m2v2y

m1 + m2

 =
0 + 12 u211.62 Mm/s2

2 u + 2 u
= 0.809 Mm/s

As in Example 9.5, the superscripts are the nuclear masses in u, and 
because the mass units cancel, there’s no need to convert to kilograms.

From these velocity components we can get the final speed and di-
rection: vf = 2vfx

2 + vfy
2 = 2.3 Mm/s and u = tan-11vfy/vfx2 = 21°. 

We show this final velocity on the diagram in Fig. 9.14.

ASSESS In this example the two incident particles have the same 
masses, so their velocities are proportional to their momenta. 
Figure 9.14 shows that the total initial momentum is largely horizon-
tal, with a smaller vertical component, so the 21° angle of the final 
velocity makes sense. The magnitude of v

!
f also makes sense: Now the 

total momentum is contained in a single, more massive particle, so we 
expect a final speed comparable to the initial speeds.

FIGURE 9.14 Our sketch of the velocity 
vectors for Example 9.8.

EXAMPLE 9.9 The Ballistic Pendulum

The ballistic pendulum measures the speeds of fast-moving objects 
like bullets. It consists of a wooden block of mass M suspended from 
vertical strings (Fig. 9.15). A bullet of mass m strikes and embeds it-
self in the block, and the block swings upward through a vertical dis-
tance h. Find an expression for the bullet’s speed.

INTERPRET Interpreting this example is a bit more involved. We 
actually have two separate events: the bullet striking the block and 
the subsequent rise of the block. We can interpret the first event as 
a one-dimensional totally inelastic collision, as in Example 9.7. 
Momentum is conserved during this event but, because the collision 
is inelastic, mechanical energy is not. Then the block rises, and now 

a net external force—from string tension and gravity—acts to change 
the momentum. But gravity is conservative, and the string tension 
does no work, so now mechanical energy is conserved.

DEVELOP Figure 9.15 is our drawing. Our plan is to separate 
the two parts of the problem and then to combine the results to 
get our final answer. First is the inelastic collision; here momen-
tum is conserved, so Equation 9.11 applies. In one dimension, that 
reads mv = 1m + M2V, where v is the initial bullet speed and  
V is the speed of the block with embedded bullet just after the col-
lision. Solving gives V = mv/1m + M2. Now the block swings up-
ward. Momentum isn’t conserved, but mechanical energy is. Setting 
the zero of potential energy in the block’s initial position, we have 
U0 = 0 and—using the situation just after the collision as the initial 
state—K0 = 1

2 1m + M2V2. At the peak of its swing the block is mo-
mentarily at rest, so K = 0. But it’s risen a height h, so the potential 
energy is U = 1m + M2gh. Conservation of mechanical energy reads 
K0 + U0 = K + U—in this case, 12 1m + M2V2 = 1m + M2gh.

EVALUATE Now we’ve got two equations describing the two parts of 
the problem. Using our expression for V from momentum conserva-
tion in the energy-conservation equation, we get

v
u

h
FIGURE 9.15 A ballistic 
pendulum (Example 9.9).

(continued )
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164 Chapter 9 Systems of Particles

1
2
a mv

m + M
b

2

= gh

Solving for the bullet speed v then gives our answer:

v = am + M
m

b12gh

ASSESS Make sense? Yes: The smaller the bullet mass m, the higher 
velocity it must have to carry a given momentum; that’s reflected 
by the factor m alone in the denominator. The higher the rise h, the 
greater the bullet speed. But the speed scales not as h itself but as 1h. 
That’s because kinetic energy—which turned into potential energy of 
the rise—depends on velocity squared.

v1i
u

v1i
u

v2i
u

v2i
u

(a)

(b)

Here internal forces act
on the same line as the
incident velocities c

cbut here they don’t, so the motion
involves two dimensions.

FIGURE 9.16 Only a head-on collision is 
one-dimensional.

9.6 Elastic Collisions
LO 9.9 Analyze elastic collisions using conservation of momentum and 

kinetic energy.

We’ve seen that momentum is essentially conserved in any collision. In an elastic colli-
sion, kinetic energy is conserved as well. In the most general case of a two-body collision, 
we consider two objects of masses m1 and m2, moving initially with velocities v

!
1i and v

!
2i, 

respectively. Their final velocities after collision are v
!
1f and v

!
2f. Then the conservation 

statements for momentum and kinetic energy become

 m1v
!
1i + m2v

!
2i = m1v

!
1f + m2v

!
2f (9.12)

and

 1
2 m1v1i

2 + 1
2 m2v2i

2 = 1
2 m1v1f

2 + 1
2 m2v2f

2 (9.13)

Given initial velocities, we’d like to predict the outcome of a collision. In the totally 
 inelastic two-dimensional collision, we had enough information to solve the prob-
lem. Here, in the two-dimensional elastic case, we have two components of momen-
tum  conservation (Equation 9.12) and a single scalar equation for energy conservation 
(Equation 9.13). But we have four unknowns—the magnitudes and directions of both 
final velocities. With three equations and four unknowns, we don’t have enough infor-
mation to solve the general two-dimensional elastic collision. Later we’ll see how other 
information can help solve such problems. First, though, we look at the special case of 
one-dimensional elastic collisions.

Elastic Collisions in One Dimension
When two objects collide head-on, the internal forces act along the same line as the inci-
dent motion, and the objects’ subsequent motion must therefore be along that same line 
(Fig. 9.16a). Although such one-dimensional collisions are a special case, they do occur 
and they provide much insight into the more general case.

In the one-dimensional case, the momentum conservation (Equation 9.12) has only one 
nontrivial component:

 m1v1i + m2v2i = m1v1f + m2v2f (9.12a)

where the v’s stand for velocity components, rather than magnitudes, and can therefore be 
positive or negative. If we collect together the terms in Equations 9.12a and 9.13 that are 
associated with each mass, we have

 m11v1i - v1f2 = m21v2f - v2i2 (9.12b)

9.6 Which of the following collisions qualify as totally inelastic? (a) Two equal-
mass objects approach from opposite directions at different speeds. They collide 
head-on and stick together; the combined object continues to move; (b) two equal-
mass objects approach from opposite directions at the same speed. They collide 
head-on and stick together; the combined object is then at rest; (c) two equal-mass 
objects approach from opposite directions at the same speed. They collide head-on 
and rebound, but with lower speed than before.

G
O

T 
IT

?
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9.6 Elastic Collisions 165

and

 m11v1i
2 - v1f

22 = m21v2f
2 - v2i

22 (9.13a)

But a2 - b2 = 1a + b21a - b2, so Equation 9.13a can be written

 m11v1i - v1f21v1i + v1f2 = m21v2f - v2i21v2f + v2i2 (9.13b)

Dividing the left and right sides of Equation 9.13b by the corresponding sides of Equation 
9.12b then gives

v1i + v1f = v2f + v2i

Rearranging shows that

 v1i - v2i = v2f - v1f (9.14)

What does this equation tell us? Both sides describe the relative velocity between the two 
particles; the equation therefore shows that the relative speed remains unchanged after the 
collision, although the direction reverses. If the two objects are approaching at a relative 
speed of 5 m/s, then after collision they’ll separate at 5 m/s.

Continuing our search for the final velocities, we solve Equation 9.14 for v2f:

v2f = v1i - v2i + v1f

and use this result in Equation 9.12a:

m1v1i + m2v2i = m1v1f + m21v1i - v2i + v1f2

Solving for v1f then gives

 v1f =
m1 - m2

m1 + m2
 v1i +

2m2

m1 + m2
 v2i (9.15a)

Problem 75 asks you to show similarly that

 v2f =
2m1

m1 + m2
 v1i +

m2 - m1

m1 + m2
 v2i (9.15b)

Equations 9.15 are our result, expressing the final velocities in terms of the initial 
velocities.

To see that these results make sense, we suppose that v2i = 0. (This really isn’t a 
special case, since we can always work in a reference frame with m2 initially at rest.) We 
then consider the three special cases of one-dimensional elastic collisions illustrated in 
Fig. 9.17.

Case 1: m1V m2 (Fig. 9.17a) Picture a ping-pong ball colliding with a bowling ball, or 
any object colliding elastically with a perfectly rigid surface. If we set v2i = 0 in Equations 
9.15, and drop m1 as being negligible compared with m2, Equations 9.15 become simply

v1f = -v1i

and

v2f = 0

That is, the lighter object rebounds with no change in speed, while the heavier object 
 remains at rest. Does this make sense in light of the conservation laws that Equations 9.15 
are supposed to reflect? First consider energy conservation: The kinetic energy of m2 re-
mains zero and, because m1’s speed doesn’t change, neither does its kinetic energy 12 m1v

2
1 . 

So kinetic energy is conserved. But what about momentum? The momentum of the lighter 
object has changed, from m1 v1i to -m1 v1i. But momentum is conserved; the momentum 
given up by the lighter object is absorbed by the heavier object. In the limit of an arbitrarily 
large m2, the heavier object can absorb huge amounts of momentum mv without acquiring 
significant speed. If we “back off” from the extreme case where m1 can be neglected al-
together, we would find that a lighter object striking a heavier one rebounds with reduced 
speed and that the heavier object begins moving slowly in the opposite direction.

Before

After

1

1 2

2

2

21

1

1

1

2

2

Before

After

Before

After

(a)  m1 V m2

(c)  m1 W m2

(b)  m1 = m2

FIGURE 9.17 Special cases of elastic colli-
sions in one dimension.

M09_WOLF8559_04_SE_C09.indd   165 13/11/18   12:30 PM



166 Chapter 9 Systems of Particles

Case 2: m1 = m2 (Fig. 9.17b) Again with v2i = 0, Equations 9.15 now give

v1f = 0

and

v2f = v1i

So the first object stops abruptly, transferring all its energy and momentum to the second. 
A head-on collision between billiard balls is an almost perfect example of this type of col-
lision. For purposes of energy transfer, two equal-mass particles are perfectly “matched.” 
We’ll encounter analogous instances of energy transfer “matching” when we discuss wave 
motion and again in connection with electric circuits.

Case 3: m1 W m2 (Fig. 9.17c) Now Equations 9.15 give

v1f = v1i

and

v2f = 2v1i

where we’ve neglected m2 compared with m1. So here the more massive object barrels right 
on with no change in motion, while the lighter one heads off with twice the speed of the mas-
sive one. This result is entirely consistent with our earlier claim that the relative speed remains 
unchanged in a one-dimensional elastic collision. How are momentum and energy conserved 
in this case? In the extreme limit where we neglect the mass m2, its energy and momentum are 
negligible. Essentially all the energy and momentum remain with the more massive object, 
and both these quantities are essentially unchanged in the collision. In the less extreme case 
where an object of finite mass strikes a less massive object initially at rest, both objects move 
off in the initial direction of the incident object, with the lighter one moving faster.

EXAMPLE 9.10 Elastic Collisions: Nuclear Engineering
Worked Example with Variation Problems

Nuclear power reactors include a substance called a moderator, whose 
job is to slow the neutrons liberated in nuclear fission, making them 
more likely to induce additional fission and thus sustain a nuclear chain 
reaction. A Canadian reactor design uses so-called heavy water as its 
moderator. In heavy water, ordinary hydrogen atoms are replaced by 
deuterium, the rare form of hydrogen whose nucleus consists of a pro-
ton and a neutron. The mass of this deuteron is thus about 2 u, com-
pared with a neutron’s 1 u. Find the fraction of a neutron’s kinetic energy 
that’s transferred to an initially stationary deuteron in a head-on elastic 
collision.

INTERPRET We have a head-on collision, so we’re dealing with a 
one-dimensional situation. The system of interest consists of the neu-
tron and the deuteron. We’re not told much else except the masses 
of the two particles. That should be enough, though, because we’re 
not asked for the final velocities but rather for a ratio of related 
 quantities—namely, kinetic energies.

DEVELOP Since we have a one-dimensional elastic collision, 
 Equations 9.15 apply. We’re asked for the fraction of the neutron’s 
kinetic energy that gets transferred to the deuteron, so we need to 
 express the deuteron’s final velocity in terms of the neutron’s initial 
velocity. If we take the neutron to be particle 1, then we want Equation 
9.15b. With the deuteron initially at rest, v2i = 0 and the equation be-
comes v2f = 2m1 v1i/1m1 + m22. Our plan is to use this equation to 
determine the kinetic-energy ratio.

EVALUATE The kinetic energies of the two particles are given by 
K1 = 1

2 m1v1
2 and K2 = 1

2 m2v2
2.  Using our equation for v2f gives

K2 =
1
2

 m2 a
2m1v1

m1 + m2
b

2

=
2m2 m1

2v1
2

1m1 + m222

We want to compare this with K1:

K2

K1
= K2 a 1

K1
b = a 2m2 m1

2v1
2

1m1 + m222 ba
1

1
2 m1v1

2
b =

4m1 m2

1m1 + m222  (9.16)

In this case m1 = 1 u and m2 = 2 u, so we have K2/K1 = 8/9 ≃ 0.89. 
Thus 89% of the incident energy is transferred in a single collision, 
leaving the neutron with 11% of its initial energy.

ASSESS Let’s take a look at Equation 9.16 in the context of our three 
special cases. We numbered this equation because it’s a general result for 
the fractional energy transfer in any one-dimensional elastic collision. In 
case 1, m1 V m2, so we neglect m1 compared with m2 in the denomina-
tor; then our energy ratio is approximately 4m1/m2. This becomes zero in 
the extreme limit where m1’s mass is negligible—consistent with our case 
1 where the massive object didn’t move at all. In case 2, m1 = m2, and 
Equation 9.16 becomes 4m2/12m22 = 1, where m is the mass of both ob-
jects. That too agrees with our earlier analysis: The incident object stops and 
transfers all its energy to the struck object. Finally, in case 3, m1 W m2, 
so we neglect m2 in the denominator. Now the energy ratio becomes 
4m2/m1. As in case 1, this approaches zero as the mass ratio gets extremely 
large. So the maximum energy transfer occurs with two equal masses, and 
tails off toward zero if the mass ratio becomes extreme in either direction.

For the particles in this example, the mass ratio 1:2 is close enough 
to equality that the energy transfer is nearly 90% efficient. Problem 84 
explores further this energy transfer.
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9.6 Elastic Collisions 167

Elastic Collisions in Two Dimensions
Analyzing an elastic collision in two dimensions requires the full vector statement of momen-
tum conservation (Equation 9.12), along with the statement of energy conservation (Equation 
9.13). But these equations alone don’t provide enough information to solve a problem. In a 
collision between reasonably simple macroscopic objects, that information may be provided 
by the so-called impact parameter, a measure of how much the collision differs from being 
head-on (Fig. 9.18). More typically—especially with atomic and nuclear  interactions—the 
necessary information must be supplied by measurements done after the collision. Knowing 
the direction of motion of one particle after collision, for example, provides enough informa-
tion to analyze a collision if the masses and initial velocities are also known.

v
u F

S

F
S

Impact parameter b is the
distance between the spheres’ centers c

cb determines where they hit and
thus the direction of the collision forces.

(a) (b)

b
b

FIGURE 9.18 The impact parameter b determines the directions of the collision forces.

EXAMPLE 9.11 A Two-Dimensional Elastic Collision: Croquet

A croquet ball strikes a stationary ball of equal mass. The collision is 
elastic, and the incident ball goes off at 30° to its original direction. In 
what direction does the other ball move?

INTERPRET We’ve got an elastic collision, so both momentum and ki-
netic energy are conserved. The system consists of the two croquet balls. 
We aren’t given a lot of information, but since we’re asked only for a 
direction, the magnitudes of the velocities won’t matter. Thus we’ve got 
what we need to know about the initial velocities, and we’ve got one 
other piece of information, so we have enough to solve the problem.

DEVELOP Figure 9.19 shows the situation, in which we’re after the 
unknown angle u. Since the collision is elastic, Equations 9.12 (mo-
mentum conservation) and 9.13 (energy conservation) both apply. The 
masses are equal, so they cancel from both equations. With v2i = 0, 
we then have v

!
1i = v

!
1f + v

!
2f  for momentum conservation and 

v1i
2 = v1f

2 + v2f
2 for energy conservation. The rest will be algebra.

EVALUATE Solving for one unknown in terms of another is going to 
get messy here, with some velocities squared and some not. Here’s a 
more clever approach: Rather than write the momentum equation in 
two components, let’s take the dot product of each side with  itself. 
That will bring in velocity-squared terms, letting us combine the 
 momentum and energy equations. And the dot product includes an 
 angle—which is what we’re asked to find.

The dot product is distributive and commutative, so here’s what we 
get when we dot the momentum equation with itself:

 v
!
1i

# v
!
1i = 1v

!
1f + v

!
2f2 # 1v

!
1f + v

!
2f2 = v

!
1f

# v
!
1f + v

!
2f

# v
!
2f + 2v

!
1f

# v
!
2f

Recall that the dot product of two vectors is the product of their  
magnitudes with the cosine of the angle between them: 
A
S # B

S
= AB cos u. Since the angle between a vector and itself is zero, 

the dot product of a vector with itself is the square of its magnitude: 
A
S # A

S
= A2 cos102 = A2. So our equation becomes

v1i
2 = v1f

2 + v2f
2 + 2v1f v2f cos1u + 30°2

where the argument of the cosine follows because, as Fig. 9.19 shows, 
the angle between v

!
1f and v

!
2f is u + 30°. We now subtract the energy 

equation from this new equation to get

FIGURE 9.19 Our sketch of the collision between croquet 
balls of equal mass (Example 9.11).

9.7 One ball is at rest on a level floor. A second ball collides elastically with the 
first, and the two move off separately but in the same direction. What can you con-
clude about the masses of the two balls?G

O
T 
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?

(continued )
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168 Chapter 9 Systems of Particles

The Center-of-Mass Frame
Two-dimensional collisions take a particularly simple form in a frame of reference moving 
with the center of mass of the colliding particles, since the total momentum in such a frame 
must be zero. That remains true after a collision, which involves only internal forces that 
don’t affect the center of mass. Therefore, both the initial and final momenta form pairs of 
oppositely directed vectors of equal magnitude, as shown in Fig. 9.20. In an elastic colli-
sion, energy conservation requires further that the incident and final momenta have the same 
values, so a single number—the angle u in Fig. 9.20—completely describes the collision.

It’s often easier to analyze a collision by transforming to the center-of-mass frame, do-
ing the analysis, and then transforming the resulting momentum and velocity vectors back 
to the original or “lab” frame. High-energy physicists routinely make such transformations 
as they seek to understand the fundamental forces between elementary particles. Those 
forces are described most simply in the center-of-mass frame of colliding particles, but in 
some experiments—those where lighter particles slam into massive nuclei or stationary 
targets—the physicists and their particle accelerators are not in the center-of-mass frame.

2v1f v2f cos1u + 30°2 = 0

But neither of the final speeds is zero, so this equation requires that 
cos1u + 30°2 = 0. Thus u + 30° = 90°, and our answer follows: 
u = 60°.

ASSESS This result seems reasonable, although we don’t have a lot to go 
on because we haven’t calculated the final speeds. But it’s intriguing that 
the two balls go off at right angles to each other. Is this a coincidence? No: 
It happens in any two-dimensional elastic collision between objects of 
equal mass when one is initially at rest. You can prove this in Problem 76.

p2f
u

p2i
u

p1i
u

p1f
u

u

u

Collision
point

m1 m2

FIGURE 9.20 An elastic collision viewed 
in the center-of-mass frame, showing 
that the initial and final momen-
tum vectors form pairs with equal 
 magnitudes and opposite directions.

CONCEPTUAL EXAMPLE 9.2 In the Center-of-Mass Frame

Figure 9.21 shows initial and final velocities for a collision between 
two equal masses as observed in their center-of-mass reference frame. 
What would a comparable diagram look like in a reference frame 
where m2 is initially at rest?

INTERPRET Since the masses are equal, momenta and velocity vec-
tors are proportional. Thus Fig. 9.21 does indeed show a collision in 
the center-of-mass reference frame. We need to transform the diagram 
to a frame where m2 is initially at rest.

EVALUATE To get from Fig. 9.21 to a reference frame where m2 
is initially at rest, we need to add -v

!
2i to m2’s initial velocity—and 

therefore to all other velocities. That makes v
!
1i twice as long and adds 

an equal-length but perpendicular vector to each final velocity, mak-
ing them both 22 times as long as in the center-of-mass frame and 
pointing at 45°. Figure 9.22 is our result.

ASSESS In the ASSESS step of Example 9.11, you learned that a 
two-dimensional collision between equal masses, with one initially at 
rest, results in the final velocities being perpendicular. Our result is 
consistent with that fact, and its symmetry is consistent with the sym-
metry shown in the center-of-mass frame.

MAKING THE CONNECTION Consider a collision in the center-of-
mass frame, as shown in Fig. 9.20, but now with equal-mass objects. 
If the angle u shown in Fig. 9.20 is 70°, what are the angles shown in 
a diagram analogous to Fig. 9.19, in a frame where one of the objects 
is initially at rest?

EVALUATE Since the objects’ masses are equal, in the zero-momentum 
center-of-mass frame they must be approaching each other with equal 
speeds v. We also know that the two velocities after collision must be 
equal and opposite in the center-of-mass frame; again, that’s because 
the total momentum of the two equal-mass balls is zero in the center-
of-mass frame. Furthermore, to conserve kinetic energy the speeds in 
the center-of-mass frame must be the same as they were before the 
collision. So the collision looks like Fig. 9.20, and we can replace  
the momentum vectors with equal-magnitude velocity vectors since 
the objects have equal masses. To get to a reference frame where m2 is 
initially at rest, we need to add a rightward velocity v

!
 to all the vectors 

shown in the center-of-mass frame. That will give m1 an after-collision 
velocity whose components are v1x = v cos u + v and v1y = -v sin u, 
with the minus sign designating the downward direction in Fig. 9.20. 
The angle of m1’s velocity, analogous to the 30° angle in Fig. 9.19, is 
then tan-1[-sin u/(1 +  cos u)]. Work this out for u = 70°, and you’ll 
get 35°. In fact, you could show in general that, for equal-mass  objects, 
the angles in the center-of-mass frame and in the frame with one 
 object initially at rest are always related by a factor of 2.

m1 m2

v2f
u

v2i
u

v1f
u

v1i
u

FIGURE 9.21 A two-dimensional 
 collision between equal masses in the 
center-of-mass frame.

FIGURE 9.22 The same collision in a 
frame with m2 initially at rest.
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Big Idea

The big idea of this chapter is that systems consisting of many particles exhibit simple behaviors that don’t depend on the complexities of their in-
ternal structure or motions. That, in turn, allows us to understand those internal details. In particular, a system responds to external forces as though 
it were a point particle located at the center of mass. If the net external force on a system is zero, then the center of mass does not accelerate and the 
system’s total momentum is conserved. Conservation of momentum holds to a very good approximation during the brief, intense encounters called 
collisions, allowing us to relate particles’ motions before and after colliding.

Newton’s second and third laws are behind these big ideas. The third law, in particular, says that forces 
internal to a system cancel in pairs, and therefore they don’t contribute to the net force on the system. 
That’s what allows us to describe a system’s overall motion without having to worry about what’s going 
on internally.

Newton’s
third law

Internal
forces cancel

in pairs

The center of
mass satisfies

Newton’s second 
law

⊗

⊗

⊗

⊗

Only the
center of
mass follows
the trajectory
of a point
particle.

The center of mass position r
!
cm is a weighted average of the positions 

of a system’s constituent particles:

r
!
cm = a  mir

!
i

M
 or, with continuous matter, r

!
cm = 1r

!
 dm

M
Here M is the system’s total mass and the sum or integral is taken over 
the entire system. The center of mass obeys Newton’s second law:

F
S

net ext = M a
!
cm =

dP
S

dt
where F

S
net ext is the net external force on the system, a

!
cm the 

 acceleration of the center of mass, and P
S

the system’s total momentum.

p2
u

p1
u

pf
u

A collision is a brief, intense interaction between particles 
 involving large internal forces. External forces have little effect 
during a collision, so to a good approximation the total momentum 
of the interacting particles is conserved.

In a totally inelastic collision, the colliding 
objects stick together to form a  composite; 
in that case momentum conservation 
 entirely determines the outcome:

m1v
!
1 + m2v

!
2 = 1m1 + m22v

!
f  

(conservation of momentum,
totally inelastic collision)

Key Concepts and Equations

An elastic collision conserves kinetic energy as well as momentum, and the colliding particles  
separate after the collision:

m1v
!
1i + m2v

!
2i = m1v

!
1f + m2v

!
2f  1conservation of momentum, elastic collision2

1
2 m1v1i

2 + 1
2 m2v2i

2 = 1
2 m1v1f

2 + 1
2 m2v2f

2  1conservation of energy, elastic collision2
In the special case of a one-dimensional elastic collision, knowledge of the mass and initial  
velocities is sufficient to determine the outcome. To analyze elastic collisions in two dimensions  
requires an additional piece of information, such as the impact parameter or the direction of one  
of the particles after the collision.

p1f
u

p2f
u

p1i
u

The incoming ball
carries momentum
and energy.

After an
elastic collision,
the two balls’
momenta and
energy sum to
those of the
incoming ball.Initially

at rest.

Applications
One-dimensional collisions  
with one object initially at rest  
provide insights into the nature  
of collisions. There are three  
cases, depending on the relative  
masses:

Before

After

m1
m1 m2

m1

m1

m2

m2
m1

m2m1

m2

m2

m1 6 m2 m1 = m2

m1 reverses direction.

m1 7 m2

m1 continues in
same direction.

m1 stops.

Rockets provide a technological application of momentum conservation. A rocket exhausts matter out the back at high velocity; momentum con-
servation then requires that the rocket gain momentum in the forward direction. Rocket propulsion requires no interaction with any external mate-
rial, which is why rockets work in space.

SummaryChapter 9
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Learning Outcomes After finishing this chapter you should be able to:

LO 9.1 Find the center of mass of a system of discrete particles.
For Thought and Discussion Questions 9.1, 9.2; 
Exercises 9.10, 9.11, 9.12, 9.13, 9.14; Problems 9.41, 9.90

LO 9.2 Describe the motion of a system’s center of mass.
Problems 9.44, 9.59

LO 9.3  Use integration to find the center of mass of a continuous object.
Problems 9.47, 9.55, 9.86, 9.87, 9.88, 9.91

LO 9.4 Determine the total momentum of a system.
LO 9.5 Solve problems involving conservation of momentum.

For Thought and Discussion Question 9.3; Exercises 9.16, 
9.17, 9.18, 9.19; Problems 9.45, 9.48, 9.51, 9.54, 9.56, 9.57, 
9.58, 9.60, 9.63, 9.65, 9.67, 9.68, 9.70, 9.83, 9.89, 9.92

LO 9.6  Break a system’s kinetic energy into center-of-mass and 
 internal components.
Exercises 9.19, 9.20; Problem 9.43

LO 9.7  Describe what constitutes a collision and distinguish elastic 
from inelastic collisions.
For Thought and Discussion Questions 9.4, 9.6, 9.7, 9.9; 
Exercises 9.21, 9.22, 9.23; Problems 9.42, 9.46, 9.81

LO 9.8  Analyze totally inelastic collisions using conservation of 
momentum.
Exercises 9.24, 9.25, 9.26, 9.27; Problems 9.49, 9.50, 9.52, 
9.64, 9.66, 9.69, 9.71, 9.79

LO 9.9  Analyze elastic collisions using conservation of momentum 
and kinetic energy.
For Thought and Discussion Questions 9.5, 9.8; Exercises 
9.28, 9.29, 9.30, 9.31, 9.32; Problems 9.53, 9.61, 9.62, 
9.72, 9.73, 9.74, 9.75, 9.76, 9.77, 9.78, 9.80, 9.82, 9.84, 
9.85, 9.93

For Thought and Discussion

1. Explain why a high jumper’s center of mass need not clear the bar.
2. The center of mass of a solid sphere is clearly 

at its center. If the sphere is cut in half and 
the two halves are stacked as in Fig. 9.23, 
is the center of mass at the point where they 
touch? If not, roughly where is it? Explain.

3. The momentum of a system of pool balls is 
the same before and after they are hit by the 
cue ball. Is it still the same after one of the 
balls strikes the edge of the table? Explain.

4. Is it possible to have an inelastic collision in which all the kinetic 
energy of the colliding objects is lost? If so, give an example. If not, 
why not?

5. If you want to stop the neutrons in a reactor, why not use massive 
nuclei like lead?

6. Why don’t we need to consider external forces acting on a system 
as its constituent particles undergo a collision?

7. How is it possible to have a collision between objects that don’t 
ever touch? Give an example of such a collision.

8. A pitched baseball moves no faster than the pitcher’s hand. But a 
batted ball can move much faster than the bat. What’s the difference?

9. Two identical satellites are going in opposite directions in the 
same circular orbit when they collide head-on. Describe their sub-
sequent motion if the collision is (a) elastic or (b) totally inelastic.

Exercises and Problems

Exercises

Section 9.1 Center of Mass
10. A 28-kg child sits at one end of a 3.5-m-long seesaw. Where 

should her 65-kg father sit so the center of mass will be at the 
center of the seesaw?

11. Two particles of equal mass m are at the vertices of the base of an 
equilateral triangle. The triangle’s center of mass is midway between 
the base and the third vertex. What’s the mass at the third vertex?

12. Rework Example 9.1 with the origin at the center of the barbell, 
showing that the physical location of the center of mass doesn’t 
depend on your coordinate system.

13. Three equal masses lie at the corners of an equilateral triangle of 
side L. Find the center of mass.

14. How far from Earth’s center is the center of mass of the Earth–
Moon system? (Hint: Consult Appendix E.)

Section 9.2 Momentum
15. A popcorn kernel at rest in a hot pan bursts into two pieces, with 

masses 91 mg and 64 mg. The more massive piece moves hori-
zontally at 47 cm/s. Describe the motion of the second piece.

16. A 60-kg skater, at rest on frictionless ice, tosses a 12-kg snow-
ball with velocity v

!
= 53.0 in + 14.0 jn m/s, where the x- and 

y-axes are in the horizontal plane. Find the skater’s subsequent 
velocity.

17. A plutonium-239 nucleus at rest decays into a uranium-235 nu-
cleus by emitting an alpha particle 14He2 with kinetic energy 5.15 
MeV. Find the speed of the uranium nucleus.

18. A toboggan of mass 8.6 kg is moving horizontally at 23 km/h. As 
it passes under a tree, 15 kg of snow drop onto it. Find its subse-
quent speed.

Section 9.3 Kinetic Energy of a System
19. At the peak of its trajectory, a 995-g fireworks rocket is moving 

horizontally at 18.6 m/s. It’s a dud, and instead of exploding glo-
riously, it bursts into two pieces. One of them, with mass 372 g, 
continues in the original direction at 31.3 m/s. How much energy 
did the two pieces gain when the rocket burst?

20. An object with kinetic energy K explodes into two pieces, each of 
which moves with twice the speed of the original object. Find the 
ratio of the internal kinetic energy to the center-of-mass energy 
after the explosion.

FIGURE 9.23 For 
Thought and 
Discussion 2
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33. Example 9.5: A lithium-5 nucleus 15Li2 is moving at 2.25 Mm/s 
when it decays into a proton 11H2 and an alpha particle 14He2.  
The alpha particle is detected moving at 1.03 Mm/s at 23.6° to 
the original velocity of the 5Li nucleus. Find the magnitude and 
direction of the proton’s velocity.

34. Example 9.5: A lithium-5 nucleus 15Li2 decays into a proton 
11H2 and an alpha particle 14He2. The alpha particle is detected 
moving at 2.43 Mm/s at 31.5° above the x-axis (i.e., with a pos-
itive y-component), while the proton is moving at 1.78 Mm/s at 
24.7° below the x-axis. Find the original velocity of the lithium-5 
nucleus, expressed in unit vector notation.

35. Example 9.5: A spacecraft consists of a 549-kg orbiter and a 235-kg  
lander. It’s moving at 81.6 km/s relative to a nearby space station. 
Explosive bolts separate the orbiter and lander, after which the 
orbiter is moving at 55.2 km/s at a 41.4° angle to the motion of 
the original composite spacecraft. Find the magnitude and direc-
tion of the lander’s velocity.

36. Example 9.5: A spacecraft consists of a 784-kg orbiter and a 392-kg  
lander. Explosive bolts separate the orbiter and lander, after 
which the orbiter’s velocity is 225 in + 107 jn m/s and the lander’s 
is -75.4 in - 214 jn m/s. Find the velocity of the composite space-
craft before the separation.

37. Example 9.10: Some nuclear reactors, especially in England and 
Russia, use graphite (pure carbon and nearly all 12C) for the mod-
erator. When a neutron hits a stationary 12C nucleus in a head-on 
elastic collision, what percentage of its kinetic energy is trans-
ferred to the carbon?

38. Example 9.10: A neutron undergoes an elastic head-on collision 
with an initially stationary nucleus, and 48.4% of the neutron’s 
kinetic energy is transferred to the struck nucleus. How does the 
mass of the nucleus compare with that of the neutron?

39. Example 9.10: A 685-g block is sliding on a frictionless surface 
when it collides elastically and head-on with a stationary block of 
mass 232 g. What percentage of the more massive block’s kinetic 
energy is transferred to the lighter block?

40. Example 9.10: A mass m
1
 collides elastically and head-on with 

a stationary mass m2, and three-fourths of m1’s initial kinetic en-
ergy is transferred to m2. How are the two masses related?

Problems

41. Find the center of mass of a pentagon with five equal sides of 
length a, but with one triangle missing (Fig. 9.24). (Hint: See 
Example 9.3, and treat the pentagon as a group of triangles.)

42. Wildlife biologists fire 20-g rubber bullets to stop a rhinoceros 
charging at 0.81 m/s. The bullets strike the rhino and drop ver-
tically to the ground. The biologists’ gun fires 15 bullets each 
second, at 73 m/s, and it takes 34 s to stop the rhino. (a) What 
impulse does each bullet deliver? (b) What’s the rhino’s mass? 
Neglect forces between rhino and ground.

BIO

Section 9.4 Collisions
21. The graph shown with the Application: Crash Tests on page 161 

shows the force exerted on a 2000-kg test car as it crashes into a sta-
tionary barrier and comes to rest. Take the horizontal axis to extend 
from 0 to 800 ms and the vertical axis from 0 to 100 kN. Estimate 
(a) the impulse imparted to the car and (b) its initial speed.

22. High-speed photos of a 220@mg flea jumping vertically show that 
the jump lasts 1.2 ms and involves an average vertical acceler-
ation of 100g. What (a) average force and (b) impulse does the 
ground exert on the flea during its jump? (c) What’s the change 
in the flea’s momentum during its jump?

23. You’re working in mission control for an interplanetary space 
probe. A trajectory correction calls for a rocket firing that imparts 
an impulse of 5.64 N #  s. If the rocket’s average thrust is 135 mN, 
how long should the rocket fire?

Section 9.5 Totally Inelastic Collisions
24. In a railroad switchyard, a 56-ton freight car is sent at 7.0 mi/h 

toward a 31-ton car moving in the same direction at 2.6 mi/h. (a) 
What’s the speed of the cars after they couple? (b) What fraction 
of the initial kinetic energy was lost in the collision?

25. In a totally inelastic collision between two equal masses, with one 
initially at rest, show that half the initial kinetic energy is lost.

26. A neutron (mass 1.01 u) strikes a deuteron (mass 2.01 u), and 
they combine to form a tritium nucleus (mass 3.02 u). If the neu-
tron’s initial velocity was 23.5in + 14.4jn Mm/s and if the tritium 
leaves the reaction with velocity 15.1in + 22.6jn Mm/s, what was 
the deuteron’s velocity?

27. Two identical trucks have mass 5500 kg when empty, and the 
maximum permissible load for each is 8000 kg. The first truck, 
carrying 3800 kg, is at rest. The second truck plows into it at 
65 km/h, and the pair moves away at 37 km/h. As an expert wit-
ness, you’re asked to determine whether the second truck was 
overloaded. What do you report?

Section 9.6 Elastic Collisions
28. An alpha particle 14He2 strikes a stationary gold nucleus 1197Au2 

head-on. What fraction of the alpha’s kinetic energy is trans-
ferred to the gold? Assume a totally elastic collision.

29. Playing in the street, a child accidentally tosses a ball at 18 m/s 
toward the front of a car moving toward him at 14 m/s. What’s 
the ball’s speed after it rebounds elastically from the car?

30. A block of mass m undergoes a one-dimensional elastic collision 
with a block of mass M initially at rest. If both blocks have the 
same speed after colliding, how are their masses related?

31. A proton moving at 6.9 Mm/s collides elastically head-on with a 
second proton moving in the opposite direction at 11 Mm/s. Find 
their subsequent velocities.

32. A head-on, elastic collision between two particles with equal ini-
tial speed v leaves the more massive particle 1m12 at rest. Find (a) 
the ratio of the particle masses and (b) the final speed of the less 
massive particle.

Example Variations
The following problems are based on two worked examples from the 
text. Each set of four problems is designed to help you make connec-
tions that enhance your understanding of physics and to build your 
confidence in solving problems that differ from ones you’ve seen be-
fore. The first problem in each set is essentially the example problem 
but with different numbers. The second problem presents the same sce-
nario as the example but asks a different question. The third and fourth 
problems repeat this pattern but with entirely different scenarios.

BIO
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FIGURE 9.24 Problem 41

M09_WOLF8559_04_SE_C09.indd   171 13/11/18   12:30 PM



172 Chapter 9 Systems of Particles

56. A 42-g firecracker is at rest at the origin when it explodes into 
three pieces. The first, with mass 12 g, moves along the x-axis at 
35 m/s. The second, with mass 21 g, moves along the y-axis at 29 
m/s. Find the velocity of the third piece.

57. A 60-kg astronaut floating in space simultaneously tosses away 
a 14-kg oxygen tank and a 5.8-kg camera. The tank moves in 
the x-direction at 1.6 m/s, and the astronaut recoils at 0.85 m/s 
in a direction 200° counterclockwise from the x-axis. Find the 
camera’s velocity.

58. Assuming equal-mass pieces in Exercise 20, find the angles of 
the two velocities relative to the direction of motion before the 
explosion.

59. A 62-kg sprinter stands on the left end of a 190-kg cart moving 
leftward at 7.1 m/s. She runs to the right end and continues hor-
izontally off the cart. What should be her speed relative to the 
cart so that once she’s off the cart, she has no horizontal velocity 
relative to the ground?

60. You’re a production engineer in a cookie factory, where mounds 
of dough drop vertically onto a conveyor belt at the rate of one 
12-g mound every 2 s. You’re asked to design a mechanism that 
will keep the conveyor belt moving at a constant 50 cm/s. What 
average force must the mechanism exert on the belt?

61. Mass m, moving at speed 2v, approaches mass 4m, moving at 
speed v. The two collide elastically head-on. Find expressions for 
their subsequent speeds.

62. Verify explicitly that kinetic energy is conserved in the collision 
of the preceding problem.

63. While standing on frictionless ice, you (mass 65.0 kg) toss a 
4.50-kg rock with initial speed 12.0 m/s. If the rock is 15.2 m 
from you when it lands, (a) at what angle did you toss it? (b) 
How fast are you moving?

64. You’re an accident investigator at a scene where a drunk driver 
in a 1600-kg car has plowed into a 1300-kg parked car with its 
brake set. You measure skid marks showing that the combined 
wreckage moved 25 m before stopping, and you determine a fric-
tional coefficient of 0.77. What do you report for the drunk driv-
er’s speed just before the collision?

65. A fireworks rocket is launched vertically upward at 40 m/s. At 
the peak of its trajectory, it explodes into two equal-mass frag-
ments. One reaches the ground 2.87 s after the explosion. When 
does the second reach the ground?

66. Two objects moving in opposite directions with the same speed 
v undergo a totally inelastic collision, and half the initial kinetic 
energy is lost. Find the ratio of their masses.

67. Explosive bolts separate a 950-kg communications satellite from 
its 640-kg booster rocket, imparting a 350@N #s impulse. At what 
relative speed do satellite and booster separate?

68. You’re working in quality control for a model rocket manu-
facturer, testing a class-D rocket whose specifications call for 
an impulse between 10 and 20 N #s. The rocket’s burn time is 
∆t = 2.8 s, and its thrust during that time is F1t2 = at1t - ∆t2, 
where a = -4.6 N/s2. Does the rocket meet its specs?

69. You’re investigating a crash in which a 1640-kg Nissan Leaf 
electric car and a 3220-kg Toyota Land Cruiser SUV collided at 
right angles in an intersection. The combined wreckage skidded 
17.6 m before stopping. You measure the coefficient of friction 
between tires and road and find it to be 0.697. Show that at least 
one car must have exceeded the 70-km/h speed limit at the in-
tersection. You’ll need to consider each car separately, assuming 
that it was at the speed limit and finding the other car’s speed, 
which you should report in your answer.

CH

43. Three 100-g objects have velocities given by v
!
1 = 25.0 inm/s, 

v
!
2 = -9.45 in + 11.6 jn m/s ,  and  v

!
3 = -3.67 in - 11.6 jn m/s .  

Find the center of mass and internal kinetic energies of this 
system.

44. You’re with 19 other people on a boat at rest in frictionless water. 
The group’s total mass is 1500 kg, and the boat’s mass is 12,000 kg.  
The entire party walks the 6.5-m distance from bow to stern. 
How far does the boat move?

45. A hemispherical bowl is at rest on a frictionless counter. A mouse 
drops onto the bowl’s rim from a cabinet directly overhead. The 
mouse climbs down inside the bowl to eat crumbs at the bottom. 
If the bowl moves along the counter a distance equal to one-tenth 
of its diameter, how does the mouse’s mass compare with the 
bowl’s mass?

46. Physicians perform needle biopsies to sample tissue from internal 
organs. A spring-loaded gun shoots a hollow needle into the tissue; 
extracting the needle brings out the tissue core. A particular device 
uses 8.3-mg needles that take 90 ms to stop in the tissue, which 
exerts a stopping force of 41 mN. (a) Find the impulse imparted 
by the tissue. (b) How far into the tissue does the needle penetrate?

47. Find the center of mass of the uniform, solid cone of height h, 
base radius R, and constant den-
sity r shown in Fig. 9.25. (Hint: 
Integrate over disk-shaped mass el-
ements of thickness dy, as shown in 
the figure.)

48. A firecracker, initially at rest, ex-
plodes into two fragments. The first, 
of mass 14 g, moves in the +x-direc-
tion at 48 m/s. The second moves at 
32 m/s. Find the second fragment’s 
mass and the direction of its motion.

49. An 11,000-kg freight car rests against a spring bumper at the end 
of a railroad track. The spring has constant k = 0.32 MN/m. The 
car is hit by a second car of 9400-kg mass moving at 8.5 m/s, and 
the two couple together. Find (a) the maximum compression of 
the spring and (b) the speed of the two cars when they rebound 
together from the spring.

50. On an icy road, a 1200-kg car moving at 50 km/h strikes a 4400-
kg truck moving in the same direction at 35 km/h. The pair is 
soon hit from behind by a 1500-kg car speeding at 65 km/h, and 
all three vehicles stick together. Find the speed of the wreckage.

51. Kids are pelting a window with snowballs. On average, two 
snowballs of roughly 300-g mass hit the window each second, 
moving horizontally at some 10 m/s. The snowballs drop verti-
cally to the ground after hitting the window. Estimate the average 
force exerted on the window.

52. A 1250-kg car is moving with velocity v
!
1 = 36.2in + 12.7jn m/s. 

It skids on a frictionless icy patch and collides with a 448-kg hay 
wagon with velocity v

!
2 = 13.8in + 10.2jn m/s. If the two stay to-

gether, what’s their velocity?
53. Masses m and 3m approach at the same speed v and undergo a 

head-on elastic collision. Show that mass 3m stops, while mass m 
rebounds at speed 2v.

54. A 238U nucleus is moving in the x-direction at 5.0 * 105 m/s 
when it decays into an alpha particle 14He2 and a 234Th nucleus. 
The alpha moves at 1.4 * 107 m/s at 22° above the x-axis. Find 
the recoil velocity of the thorium.

55. Find an expression for the center of mass of a solid hemisphere, given 
as the distance from the center of the flat part of the hemisphere.

BIO
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FIGURE 9.25 Problem 47
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the incline (Fig. 9.28). How much later do the two blocks collide 
again?

83. A rocket of mass M moving at speed v ejects an infinitesimal 
mass dm out its exhaust nozzle at speed vex. (a) Show that con-
servation of momentum implies that M dv = vex dm, where dv is 
the change in the rocket’s speed. (b) Integrate this equation from 
some initial speed vi and mass Mi to a final speed vf and mass Mf 
to show that the rocket’s final velocity is given by the expression 
vf = vi + vex ln1Mi>Mf2.

84. A block of mass m1 undergoes a one-dimensional elastic colli-
sion with an initially stationary block of mass m2. Find an ex-
pression for the fraction of the initial kinetic energy transferred 
to the second block, and plot your result for mass ratios m1/m2 
from 0 to 20.

85. Two objects of unequal mass, one initially at rest, undergo a 
one-dimensional elastic collision. For a given mass ratio, show 
that the fraction of the initial energy transferred to the initially 
stationary object doesn’t depend on which object it is.

86. In Figure 9.6, the uniform semicircular wire has radius R. How 
far above the center of the semicircle is its center of mass?

87. Find the center of mass of a uniform slice of pizza with radius R 
and angular width u.

88. In a ballistic pendulum demonstration gone bad, a 0.52-g pel-
let, fired horizontally with kinetic energy 3.25 J, passes straight 
through a 400-g Styrofoam pendulum block. If the pendulum 
rises a maximum height of 0.50 mm, how much kinetic energy 
did the pellet have after emerging from the Styrofoam?

89. An 80-kg astronaut has become detached from the safety line 
connecting her to the International Space Station. She’s 200 m 
from the station, at rest relative to it, and has 4 min of air remain-
ing. To get herself back, she tosses a 10-kg tool kit away from the 
station at 8.0 m/s. Will she make it back in time?

90. Astronomers detect extrasolar planets by measuring the slight 
movement of stars around the center of mass of the star–planet 
system. Considering just the Sun and Jupiter, determine the ra-
dius of the circular orbit the Sun makes about the Sun–Jupiter 
center of mass.

91. A thin rod extends from x = 0 to x = L. It carries a nonuniform 
mass per unit length m = Mxa/L1 + a, where M is a constant with 
units of mass, and a is a non-negative dimensionless constant. 
Find expressions for (a) the rod’s mass and (b) the location of its 
center of mass. (c) Are your results what you expect when a = 0?

92. Model rocket motors are specified by giving the impulse they 
provide, in N #s, over the entire time the rocket is firing. The 
 table below shows the results of rocket-motor tests with differ-
ent motors used to launch rockets of different masses. Determine 
two data-based quantities that, when plotted against each other, 
should give a straight line and whose slope should allow you to 
determine g. Plot the data, establish a best-fit line, and determine 
g. Assume that the maximum height is much greater than the dis-
tance over which the rocket motor is firing, so you can neglect 
the latter. You’re also neglecting air resistance—but explain how 
that affects your experimentally determined value for g.

Impulse, J (N # s) 4.5 7.8 4.5 7.8 11

Rocket mass (g) (including motor) 180 485 234 234 485

Maximum height achieved (m) 22 13 19 51 23

93. A block of mass M is moving at speed v0 on a frictionless sur-
face that ends in a rigid wall, heading toward a stationary block 
of mass nM, where n Ú 1 (Fig. 9.29). Collisions between the 

CH
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70. A 400-mg popcorn kernel is skittering across a nonstick frying 
pan at 8.2 cm/s when it pops and breaks into two equal-mass 
pieces. If one piece ends up at rest, how much energy was re-
leased in the popping?

71. Two identical objects with the same initial speed collide and 
stick together. If the composite object moves with half the initial 
speed of either object, what was the angle between the initial 
velocities?

72. A proton (mass 1 u) moving at 6.90 Mm/s collides elastically 
head-on with a second particle moving in the opposite direction 
at 2.80 Mm/s. After the collision, the proton is moving opposite 
its initial direction at 8.62 Mm/s. Find the mass and final velocity 
of the second particle.

73. Two objects, one initially at rest, undergo a one-dimensional 
elastic collision. If half the kinetic energy of the initially moving 
object is transferred to the other object, what is the ratio of their 
masses?

74. Blocks  B  and  C  have 
masses 2m and m, respec-
tively, and are at rest on a 
frictionless surface. Block 
A, also of mass m, is head-
ing at speed v toward block 
B as shown in Fig. 9.26. 
Determine the final velocity of each block after all subsequent 
collisions are over. Assume all collisions are elastic.

75. Derive Equation 9.15b.
76. An object collides elastically with an equal-mass object initially 

at rest. If the collision isn’t head-on, show that the final velocity 
vectors are perpendicular.

77. A proton (mass 1 u) collides elastically with a stationary deu-
teron (mass 2 u). If the proton is deflected 37° from its original 
direction, what fraction of its kinetic energy does it transfer to the 
deuteron?

78. Two identical billiard balls are initially at rest when they’re 
struck symmetrically by a third identical ball moving with veloc-
ity v

!
0 = v0 in (Fig. 9.27). Find the velocities of all three balls after 

this elastic collision.
79. A 114-g Frisbee is lodged on a tree 

branch 7.65 m above the ground. To 
free it, you lob a 240-g dirt clod ver-
tically upward. The dirt leaves your 
hand at a point 1.23 m above the 
ground, moving at 17.7 m/s. It sticks to the Frisbee. Find (a) the 
maximum height reached by the Frisbee–dirt combination and 
(b) the speed with which the combination hits the ground.

80. You set a small ball of mass m atop a large ball of mass 
M W m and drop the pair from height h. Assuming the balls 
are perfectly elastic, show that the smaller ball rebounds to 
height 9h.

81. A car moving at speed v undergoes a one-dimensional collision 
with an identical car initially at rest. The collision is neither elas-
tic nor fully inelastic; 5/18 of the initial kinetic energy is lost. 
Find the velocities of the two cars after the collision.

82. A 200-g block is released from rest at a height of 25 cm on a fric-
tionless 30° incline. It slides 
down the incline and then 
along a frictionless surface 
until it collides elastically 
with an 800-g block at rest 
1.4 m from the bottom of 

CH

CH

CH

CH

v
u

A B C

FIGURE 9.26 Problem 74

v0
u

FIGURE 9.27 Problem 78

1.4 m

25 cm
30°

FIGURE 9.28 Problem 82
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174 Chapter 9 Systems of Particles

c. a little more than half.
d. about 90%.

96. The component of the ball’s velocity whose magnitude is most 
affected by the collisions is
a. horizontal.
b. vertical.
c. Both are affected equally.

97. Compared with the time between bounces, the duration of each 
collision is
a. a tiny fraction of the time between bounces.
b. a significant fraction of the time between bounces.
c. much longer than the time between bounces.

Answers to Chapter Questions

Answer to Chapter Opening Question
The dancer’s center of mass follows the simple path of a projectile 
because, as Newton’s laws show, the dancer’s mass acts like it’s all 
concentrated at this point.

Answers to GOT IT? Questions
9.1  The center of mass is the uppermost point A. You can see this by 

imagining horizontal strips through the loop; the higher the strip 
the more mass is included, so the center of mass must lie nearer 
the top of the loop. The bottommost point would be the center of 
mass for a complete circle.

9.2  Momentum is conserved, so the momentum both before and after 
the explosion is the same: P

S
= mv

!
= 10.50 kg2160jn m/s2 =  

30jn kg#m/s.
9.3  Only (d). The individual skaters experience external forces from 

the ball, as does the ball from the skaters. A system consisting of 
the ball and one skater experiences external forces from the other 
skater. Only the system of all three has no net external force and 
therefore has conserved momentum.

9.4 (1) (a); (2) (b)
9.5  all but (c) are collisions; (a) and (b) are nearly elastic; (d) and (e) 

are inelastic
9.6 (a) and (b) are totally inelastic; (c) is inelastic but not totally so
9.7  The ball initially at rest is less massive; otherwise, the incident 

ball would have reversed direction (or stopped if the masses  
were equal).

two blocks or the left-hand 
block and the wall are elas-
tic and one-dimensional. (a) 
Show that the blocks will 
undergo only one collision 
with each other if n … 3. 
(b) Show that the blocks 
will undergo two collisions with each other if n = 4. (c) How 
many collisions will the blocks undergo if n = 10, and what will 
be their final speeds?

Passage Problems
You’re interested in the intersection of physics and sports, and you 
recognize that many sporting events involve collisions—bat and base-
ball, foot and football, hockey stick and puck, basketball and floor. 
Using strobe photography, you embark on a study of such collisions.  
Figure 9.30 is your strobe photo of a ball bouncing off the floor. The 
ball is launched from a point near the top left of the photo, and your 
camera then captures it undergoing three subsequent collisions with 
the floor.

94. The collisions between ball and floor are
a. totally elastic.
b. totally inelastic.
c. neither totally elastic nor totally inelastic.

95. The fraction of the ball’s mechanical energy that’s lost in the sec-
ond collision is
a. about 10%.
b. a little less than half.

M nM

v0
u

FIGURE 9.29 Problem 93

vin
u

vout
u

FIGURE 9.30 Passage Problems 94–97
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For a given blade mass, how should you engineer 
a wind turbine’s blades so it’s easiest for the wind 
to get the turbine rotating?

9
Systems of Particles

8
Gravity

11
Rotational Vectors 

and Angular 
Momentum

12
Static Equilibrium10

You’re sitting on a rotating planet. The wheels of your car rotate. Your 
favorite movie comes from a rotating DVD. A circular saw rotates to 

rip its way through a board. A dancer pirouettes, and a satellite spins 
about its axis. Even molecules rotate. Rotational motion is commonplace 
throughout the physical universe.

In principle, we could treat rotational motion by analyzing the motion 
of each particle in a rotating object. But that would be a hopeless task for 
all but the simplest objects. Instead, we’ll describe rotational motion by 
analogy with linear motion as governed by Newton’s laws.

This chapter parallels our study of one-dimensional motion in Chapters 2 
and 4. In the next chapter we introduce a full vector description to treat 
multidimensional rotational motion.

10.1 Angular Velocity and Acceleration
LO 10.1 Identify and calculate rotational analogs of position, 

 velocity, acceleration, force, and mass.

LO 10.2 Solve rotational analogs of one-dimensional constant- 
acceleration problems.

You slip a DVD into a player, and it starts spinning. You could describe its 
motion by giving the speed and direction of each point on the disc. But it’s 
much easier just to say that the disc is rotating at 800 revolutions per minute 
(rpm). As long as the disc is a rigid body—one whose parts remain in fixed 
positions relative to one another—then that single statement suffices to de-
scribe the motion of the entire disc.

Rotational Motion

Learning Outcomes
After finishing this chapter you should be able to:

LO 10.1    Identify and calculate rotational analogs of position,  
velocity, acceleration, force, and mass.

LO 10.2    Solve rotational analogs of one-dimensional constant- 
acceleration problems.

LO 10.3   Calculate rotational inertias by summing or integrating.

LO 10.4   Apply the rotational analog of Newton’s second law.

LO 10.5    Solve problems involving coupled linear and rotational 
motion.

LO 10.6   Calculate rotational kinetic energy.

LO 10.7   Describe quantitatively the behavior of rolling objects.

Skills & Knowledge You’ll Need
■■ Kinematics of constant acceleration 

in one dimension (Section 2.4)

■■ Newton’s second law expressed  
as F = ma (Section 4.2)

■■ Your knowledge of integral calculus
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176 Chapter 10 Rotational Motion

Angular Velocity
The rate at which a body rotates is its angular velocity—the rate at which the angular po-
sition of any point on the body changes. With our 800-rpm DVD, the unit of angle was one 
full revolution (360°, or 2p radians), and the unit of time was the minute. But we could 
equally well express angular velocity in revolutions per second (rev/s), degrees per second 
1°/s2, or radians per second (rad/s or simply s-1 since radians are dimensionless). Because 
of the mathematically simple nature of radian measure, we often use radians in calcula-
tions involving rotational motion (Fig. 10.1).

We use the symbol v (lowercase Greek omega) for angular velocity and define  
average angular velocity v as

 v =
∆u

∆t
   1average angular velocity2 (10.1)

where ∆u is the angular displacement—that is, the change in angular position— 
occurring in the time ∆t (Fig. 10.2). When angular velocity is changing with time, we 
define  instantaneous angular velocity as the limit over arbitrarily short time intervals:

 v = lim
∆tS0

 
∆u

∆t
=

du
dt
   1instantaneous angular velocity2 (10.2)

These definitions are analogous to those of average and instantaneous linear velocity in-
troduced in Chapter 2. Just as we use the term speed for the magnitude of velocity, so we 
define angular speed as the magnitude of the angular velocity.

Velocity is a vector quantity, with magnitude and direction. Is angular velocity also a vector? 
Yes, but we’ll wait until the next chapter for the full vector description of rotational motion. In 
this chapter, it’s sufficient to know whether an object’s rotation is clockwise (CW) or coun-
terclockwise (CCW) about a fixed axis—as suggested by the curved arrow in Fig. 10.2. This 
restriction to a fixed axis is analogous to Chapter 2’s restriction to one-dimensional motion.

Angular and Linear Speed
Individual points on a rotating object undergo circular motion. Each point has an instan-
taneous linear velocity v

!
 whose magnitude is the linear speed v. We now relate this linear 

speed v to the angular speed v. The definition of angular measure in radians (Fig. 10.1) is 
u = s/r. Differentiating this expression with respect to time, we have

du
dt

=
1
r
 
ds
dt

because the radius r is constant. The left-hand side of this equation is the angular velocity v,  
as defined in Equation 10.2. Because s is the arc length—the actual distance traversed by a 
point on the rotating object—the term ds/dt is just the linear speed v, so v = v/r, or

 v = vr (10.3)

Thus the linear speed of any point on a rotating object is proportional both to the angular 
speed of the object and to the distance from that point to the axis of rotation (Fig. 10.3).

v is the instantaneous  
angular velocity.

v comes from applying the  
limiting procedure to the  
average angular velocity ∆u>∆t.

Thus, v is the derivative du>dt—the rate  
of change of angular position with  
respect to time.

v is the linear speed a distance r  
from the rotation axis…

…of an object rotating with 
angular angular velocity v.

The equality only holds if v is 
measured in radians/second or s-1.

  RADIAN MEASURE Equation 10.3 was derived using the definition of angle in radians and 
therefore holds for only angular speed measured in radians per unit time. If you’re given 
other angular measures—degrees or revolutions, for example—you should convert to radi-
ans before using Equation 10.3.

s
r

The full circumference is
2pr, so 1 revolution is 2p
radians.  That makes 1 radian
360°>2p or about 57.3°.

Angle in radians is the
ratio of arc s to radius r:
u = s>r.  Here u is a little
less than 1 radian.

r

s
u

u = 

FIGURE 10.1 Radian measure of angles.

∆u

The arm rotates through
the angle ∆u in time ∆t,
so its average angular
velocity is v = ∆u>∆t.

Direction is
counterclockwise (CCW).

FIGURE 10.2 Average angular velocity.

v
u

v
u

v

Linear speed is proportional
to distance from the rotation axis.

The point on the rim has
the same angular speed v 
but a higher linear speed v
than the inner point.

v = vrr

FIGURE 10.3 Linear and rotational 
speeds.
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10.1 Angular Velocity and Acceleration 177

EXAMPLE 10.1 Angular Speed: A Wind Turbine

A wind turbine’s blades are 28 m long and rotate at 21 rpm. Find the 
angular speed of the blades in radians per second, and determine the 
linear speed at the tip of a blade.

INTERPRET This problem is about converting between two units of 
angular speed, revolutions per minute and radians per second, as well 
as finding linear speed given angular speed and radius.

DEVELOP We’ll first convert the units to radians per second and then 
calculate the linear speed using Equation 10.3, v = vr.

EVALUATE One revolution is 2p rad, and 1 min is 60 s, so we have

v = 21 rpm =
121 rev/min212p rad/rev2

60 s/min
= 2.2 rad/s

The speed at the tip of a 28-m-long blade then follows from Equation 
10.3: v = vr = 12.2 rad/s2128 m2 = 62 m/s.

ASSESS With v in radians per second, multiplying by length in me-
ters gives correct velocity units of meters per second because radians 
are dimensionless.

a
u

v
u

at is the tangential
component of
acceleration a and is
parallel to the linear
velocity v.

r u

at = ra

ar = v2r

v

v

ar is the radial component,
perpendicular to v.

u

u

u

FIGURE 10.4 Radial and tangential 
acceleration.

Angular Acceleration
If the angular velocity of a rotating object changes with time, then the object undergoes 
angular acceleration a, defined analogously to linear acceleration:

 a = lim
∆tS0

 
∆v

∆t
=

dv
dt
  1angular acceleration2 (10.4)

Taking the limit gives the instantaneous angular acceleration; if we don’t take the limit, 
then we have an average over the time interval ∆t. The SI units of angular acceleration are 
rad/s2, although we sometimes use other units such as rpm/s or rev/s2.

Angular acceleration has the same direction as angular velocity—CW or CCW—if the 
angular speed is increasing, and the opposite direction if it’s decreasing. These situations 
are analogous to a car that’s speeding up (acceleration and velocity in the same direction) 
or braking (acceleration opposite velocity).

When a rotating object undergoes angular acceleration, points on the object speed up 
or slow down. Therefore, they have tangential acceleration dv/dt directed parallel or an-
tiparallel to their linear velocity (Fig. 10.4). We introduced this idea of tangential accelera-
tion back in Chapter 3; here we can recast it in terms of the angular acceleration:

 at =
dv
dt

=
d1vr2

dt
= r 

dv
dt

= ra   1tangential acceleration2 (10.5)

Whether or not there’s angular acceleration, all the points on a rotating object also have  
radial acceleration because they’re in circular motion. Radial acceleration is given, as usual, by 
ar = v2/r; using v = vr from Equation 10.3, we can recast this in angular terms as ar = v2r.

Because angular velocity and acceleration are defined analogously to linear velocity and 
acceleration, all the relations among linear position, velocity, and acceleration automatically 
apply among angular position, angular velocity, and angular acceleration. If angular accel-
eration is constant, then all our constant-acceleration formulas of Chapter 2 apply when we 
make the substitutions u for x, v for v, and a for a. Table 10.1 summarizes this direct analogy 

Angular acceleration a is defined 
analogously to linear acceleration a…

…as the rate of change, or time 
derivative, of angular velocity v.

Table 10.1 Angular and Linear Position, Velocity, and Acceleration

Linear Quantity Angular Quantity

Position x Angular position u

Velocity v =
dx
dt

Angular velocity v =
du
dt

Acceleration a =
dv
dt

=
d2x

dt2 Angular acceleration a =
dv
dt

=
d2u

dt2

Equations for Constant Linear Acceleration Equations for Constant Angular Acceleration

v = 1
21v0 + v2 (2.8) v = 1

21v0 + v2 (10.6)

v = v0 + at (2.7) v = v0 + at (10.7)

x = x0 + v0 t + 1
2 at2 (2.10) u = u0 + v0 t + 1

2 at2 (10.8)

v2 = v0
2 + 2a1x - x02 (2.11) v2 = v0

2 + 2a1u - u02 (10.9)
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178 Chapter 10 Rotational Motion

EXAMPLE 10.2 Linear Analogies: Spin-down

When the wind dies, the turbine of Example 10.1 spins down with 
constant angular acceleration of magnitude 0.12 rad/s2. How many 
revolutions does the turbine make before coming to a stop?

INTERPRET The key to problems involving rotational motion is to 
identify the analogous situation for linear motion. This problem is 
analogous to asking how far a braking car travels before coming to a 
stop. We identify the number of rotations—the angular  displacement—
as the analog of the car’s linear displacement. The given angular ac-
celeration is analogous to the car’s braking acceleration. The initial 
angular speed (2.2 rad/s, from Example 10.1) is analogous to the car’s 
initial speed. And in both cases the final state we’re interested in has 
zero speed—whether linear or angular.

DEVELOP Our plan is to develop the analogy further so we can find 
the angular displacement. The easiest way to solve the linear problem 
would be to use Equation 2.11, v2 = v0

2 + 2a1x - x02, with v = 0, v0 
the initial velocity, a the car’s acceleration, and ∆x = x - x0 the 

distance we’re solving for. In Table 10.1, Equation 10.9 is the analo-
gous equation for rotational motion: v2 = v0

2 + 2a∆u, where we’ve 
written u - u0 = ∆u for the rotational displacement during the 
spin-down.

EVALUATE We solve for ∆u:

∆u =
v2 - v0

2

2a
=

0 - 12.2 rad/s22

1221-0.12 rad/s22 = 20 rad = 3.2 revolutions

where the last conversion follows because 1 revolution is 2p radians.

ASSESS The turbine blades are turning rather slowly—less than 
1 revolution every second—so it’s not surprising that a small angular 
acceleration can bring them to a halt in a short angular “distance.” 
Note, too, how the units work out. Also, by taking v as positive, we 
needed to treat a as negative because the angular acceleration is oppo-
site the angular velocity when the rotation rate is slowing—just as the 
braking car’s linear acceleration is opposite its velocity.

r
u

r
u

r
u

F
S

F
S

F
S

The same force is applied
at different points on the
wrench.

Closest to O, t is smallest.

Farther away, t becomes larger.

Farthest away, t becomes greatest.

(a)

(b)

(c)

O

O

O

FIGURE 10.5 Torque increases 
with the distance r from the  
rotation axis O to the point 
where force is applied.

between linear and rotational quantities. With Table 10.1, problems involving rotational mo-
tion are analogous to the one-dimensional linear problems you solved in Chapter 2.

10.2 Torque
LO 10.1 Identify and calculate rotational analogs of position, velocity,  

acceleration, force, and mass.

Newton’s second law, F
S

= ma
!
, proved very powerful in our study of motion. Ultimately 

Newton’s law governs all motion, but its application to every particle in a rotating object 
would be terribly cumbersome. Can we instead formulate an analogous law that deals with 
rotational quantities?

To develop such a law, we need rotational analogs of force, mass, and acceleration. 
Angular acceleration a is the analog of linear acceleration; in the next two sections we 
develop analogs for force and mass.

How can a small child balance her father on a seesaw? By sitting far from the seesaw’s 
rotation axis; that way, her smaller weight at a greater distance from the pivot is as effective 
as her father’s greater weight closer to the pivot. In general, the effectiveness of a force in 
bringing about changes in rotational motion—a quantity called torque—depends not only on 
the magnitude of the force but also on how far from the rotation axis it’s applied (Fig. 10.5). 
The effectiveness of the force also depends on the direction in which it’s applied, as Fig. 10.6 
suggests. Based on these considerations, we define torque as the product of the distance r 

10.1 A wheel undergoes constant angular acceleration, starting from rest. Which graph 
describes correctly the time dependence of both the transverse and radial accelerations of 
a point on the wheel’s rim? Explain.
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10.2 Torque 179

from the rotation axis and the component of force perpendicular to that axis. Torque is given 
the symbol t (Greek tau, pronounced to rhyme with “how”). Then we can write

 t = rF sin u (10.10)

where u is the angle between the force vector and the vector r
!
 from the rotation axis to 

the force application point. Figure 10.7 shows two interpretations of Equation 10.10.  
Figure 10.7b also defines the so-called lever arm.

Torque, which you can think of as a “twisting force,” plays the role of force in the 
rotational analog of Newton’s second law. Equation 10.10 shows that torque is measured 
in newton-meters. Although this is the same unit as energy, torque is a different physical 
quantity, so we reserve the term joule 1=1 N #m2 for energy.

Does torque have direction? Yes, and we’ll extend our notion of torque to provide a 
vector description in the next chapter. For now we’ll specify the direction as either clock-
wise or counterclockwise.

r
ur

u
r
u

F
S

F
S

F
S

OO O

Torque is greatest when F
is perpendicular to r.

The same force is applied at different angles.

Torque decreases when F
is no longer perpendicular
to r.

Torque is zero when
F is parallel to r.

(a) (b) (c)

u
u

u
S

S

S

FIGURE 10.6 Torque is greatest with F
S

 and r
!
 at right angles, and diminishes to zero as they  

become colinear.

r
u

F
S

F}

F# is the e�ective force;
F} doesn’t produce torque.

(a)

O

F# = F sinu
u

r
u

F
S

r}

r# is the lever arm—the 
e�ective distance at which F acts.

(b)

O

r# = r sinu

u

S

FIGURE 10.7 Two ways of thinking about 
torque. (a) t = rF#  ; (b) t = r#F. Both 
give t = rF sin u.

EXAMPLE 10.3 Torque: Changing a Tire

You’re tightening your car’s wheel nuts after changing a flat tire. The instruc-
tions specify a tightening torque of 95 N # m so the nuts won’t come loose. If 
your 45-cm-long wrench makes a 67° angle with the horizontal, with what 
force must you pull horizontally to produce the required torque?

INTERPRET We need to find the force required to produce a specific 
torque, given the distance from the rotation axis and the angle the force 
makes with the wrench.

DEVELOP Figure 10.8 is our drawing, and we’ll calculate the torque 
using Equation 10.10, t = rF sin u. With the force applied horizontally, 
comparison of Figs. 10.7a and 10.8 shows that the angle u in Equation 
10.10 is 180° - 67° = 113°.

EVALUATE We solve Equation 10.10 for the force F:

F =
t

r sin u
=

95 N # m
10.45 m21sin 113°2 = 230 N

ASSESS Is a 230-N force reasonable? Yes: It’s roughly the force 
needed to lift a 23-kg 1∼50@lb2 suitcase. Tightening torques, as in this 

FIGURE 10.8 Our sketch of the 
wrench and wheel nut.

example, are often specified for nuts and bolts in critical applica-
tions. Mechanics use specially designed “torque wrenches” that 
provide a direct indication of the applied torque.

  SPECIFY THE AXIS Torque depends 
on where the force is applied relative 
to some rotation axis. The same phys-
ical force results in different torques 
about different axes. Be sure the 
rotation axis is specified before you 
make a calculation involving torque.

G
O

T 
IT

? 10.2 The forces in Figs. 10.5 and 10.6 all have the same magnitude. (1) Which of 
Figs. 10.5a, 10.5b, and 10.6b has the greatest torque? (2) Which of these has the 
least torque?

M10_WOLF8559_04_SE_C10.indd   179 11/13/18   9:05 PM



180 Chapter 10 Rotational Motion

10.3 Rotational Inertia and the Analog  
of Newton’s Law
LO 10.3 Calculate rotational inertias by summing or integrating.

LO 10.4 Apply the rotational analog of Newton’s second law.

LO 10.5 Solve problems involving coupled linear and rotational motion.

Torque and angular acceleration are the rotational analogs of force and linear acceleration. 
To develop a rotational analog of Newton’s law, we still need the rotational analog of mass.

The mass m in Newton’s law is a measure of a body’s inertia—of its resistance to 
changes in motion. So we want a quantity that describes resistance to changes in rotational 
motion. Figure 10.9 shows that it’s easier to set an object rotating when its mass is concen-
trated near the rotation axis. Therefore, our rotational analog of inertia must depend not 
only on mass itself but also on the distribution of mass relative to the rotation axis.

Suppose the object in Fig. 10.9 consists of an essentially massless rod of length R with a 
ball of mass m on the end. We allow the object to rotate about an axis through the free end of 
the rod and apply a force F

S
 to the ball, always at right angles to the rod (Fig.  10.10). The ball 

undergoes a tangential acceleration given by Newton’s law: F = mat. (There’s also a tension 
force in the rod, but because it acts along the rod, it doesn’t contribute to the torque or angu-
lar acceleration.) We can use Equation 10.5 to express the tangential acceleration in terms of 
the angular acceleration a and the distance R from the rotation axis: F = mat = maR. We 
can also express the force F in terms of its associated torque. Since the force is perpendicular 
to the rod, Equation 10.10 gives t = RF. Using our expression for F, we have

t = 1mR22a
Here we have Newton’s law, F = ma, written in terms of rotational quantities. The 

torque—analogous to force—is the product of the angular acceleration and the quantity 
mR2, which must therefore be the rotational analog of mass. We call this quantity the  
rotational inertia or moment of inertia and give it the symbol I. Rotational inertia is 
measured in kg #m2 and accounts for both an object’s mass and the distribution of that 
mass. Like torque, the value of the rotational inertia depends on the location of the rotation 
axis. Given the rotational inertia I, our rotational analog of Newton’s law becomes

 t = Ia  1rotational analog of Newton>s second law2 (10.11)

Although we derived Equation 10.11 for a single, localized mass, it applies to extended 
objects if we interpret t as the net torque on the object and I as the sum of the rotational 
inertias of the individual mass elements making up the object.

Calculating the Rotational Inertia
When an object consists of a number of discrete mass points, its rotational inertia about an 
axis is the sum of the rotational inertias of the individual mass points:

 I = a  mi ri
2  1rotational inertia2 (10.12)

Here mi is the mass of the ith mass point, and ri is its distance from the rotation axis.

Torque t is the rotational 
analog of force F.

Angular acceleration a is the rotational 
analog of linear acceleration a.

Rotational inertia I is the 
rotational analog of mass m.

Rotating the
mass near the
axis is easy.

Farther away,
it’s harder
to spin.

Rotation axis

FIGURE 10.9 It’s easier to set an object 
rotating if the mass is concentrated 
near the axis.

F
S F

S

R
m

F
S

FIGURE 10.10 A force applied 
 perpendicular to the rod results in 
angular acceleration.

Rotational inertia I  
of an object…

…is the sum of the rotational inertias 
mi ri

2 of its constituent particles.¯˘˙
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10.3 Rotational Inertia and the Analog of Newton’s Law 181

EXAMPLE 10.4 Rotational Inertia: A Sum

A dumbbell-shaped object consists of two equal masses m = 0.64 kg 
on the ends of a massless rod of length L = 85 cm. Calculate its rota-
tional inertia about an axis one-fourth of the way from one end of the 
rod and perpendicular to it.

INTERPRET Here we have two discrete masses, so this problem is 
asking us to calculate the rotational inertia by summing over the in-
dividual masses.

DEVELOP Figure 10.11 is our sketch. We’ll use Equation 10.12, 
I = g  mi ri

2, to sum the two individual rotational inertias.

EVALUATE

 I = a  mi ri
2 = m11

4L22 + m13
4L22 = 5

8 mL2

 = 5
810.64 kg210.85 m22 = 0.29 kg # m2

ASSESS Make sense? Even though there are two masses, our answer is 
less than the rotational inertia mL2 of a single mass rotated about a rod 
of length L. That’s because distance from the rotation axis is squared, 
so it contributes more in determining rotational inertia than does mass.

FIGURE 10.11 Our sketch for Example 10.4, showing  
rotation about an axis perpendicular to the page.

Find the rotational inertia of a uniform, narrow rod of mass M and 
length L about an axis through its center and perpendicular to the rod.

INTERPRET The rod is a continuous distribution of matter, so calcu-
lating the rotational inertia is going to involve integration. We identify 
the rotation axis as being in the center of the rod.

DEVELOP Figure 10.13 shows the rod and rotation axis; we added 
a coordinate system with x-axis along the rod and the origin at 
the rotation axis. With a continuous distribution, Equation 10.13, 
I = 1r2 dm, applies. To develop a solution plan, we need to set up 
the integral in Equation 10.13. That equation may seem confusing 
because the integral contains both the geometric variable r and the 
mass element dm. How are they related? At this point you might 
want to review Tactics 9.1 (page 154); we’ll follow its steps here. (1) 
We first find a suitable mass element; here, with a one- dimensional 
rod, that can be a short section of the rod. We marked a typical 
mass element in Fig. 10.13. (2) This step is straightforward in this 

one-dimensional case; the length of the mass element is dx, signi-
fying an infinitesimally short piece of the rod. (3) Now we relate dx 
and the mass element dm. The total mass of the rod is M, and its total 
length is L. With the mass distributed uniformly, that means dx is the 
same fraction of L that dm is of M, or dx/L = dm/M. (4) We solve 
for the mass element: dm = 1M/L2 dx.

EXAMPLE 10.5 Rotational Inertia by Integration: A Rod
Worked Example with Variation Problems

The mass element
has mass dm and
length dx.

FIGURE 10.13 Our sketch of the uniform rod of 
Example 10.5.

The mass element dm contributes
rotational inertia r2 dm.

Rotation
axis

r

dm

FIGURE 10.12 Rotational inertia  
can be found by integrating the 
rotational inertias r2 dm of the mass 
elements making up an object.

10.3 Would the rotational inertia of the two-mass dumbbell in Example 10.4 (a) 
increase, (b) decrease, or (c) stay the same (1) if the rotation axis were at the center 
of the rod? (2) If it were at one end?

G
O

T 
IT

?

With continuous distributions of matter, we consider a large number of very small mass 
elements dm throughout the object, and sum the individual rotational inertias r2 dm over 
the entire object (Fig. 10.12). In the limit of an arbitrarily large number of infinitesimally 
small mass elements, that sum becomes an integral:

 I = Lr2 dm  a rotational inertia,
continuous matterb  (10.13)

where the limits of integration cover the entire object.

I is the rotational 
inertia of an object.

With continuous matter the 
sum becomes an integral.

dm is an infinitesimal 
mass element…

…and r is dm’s distance from the rotation axis.

(continued )
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182 Chapter 10 Rotational Motion

We’re almost done. But the integral in Equation 10.13 contains r, and 
we’ve related dm and dx. No problem: On the one-dimensional rod, 
distances from the rotation axis are just the coordinates x. So r be-
comes x in our integral, and we have

I = Lr2 dm = L
L/2

-L/2
x2 

M
L

 dx

We chose the limits to include the entire rod; with the origin at the 
center, it runs from -L/2 to L/2.

EVALUATE The constants M and L come outside the integral, so we have

I = L
L/2

-L/2
x2 

M
L

 dx =
M
L L

L/2

-L/2
x2 dx =

M
L

 
x3

3
`
L/2

-L/2
= 1

12 ML2 (10.14)

ASSESS Make sense? In Example 10.4 we found I = 5
8 mL2 for a rod 

with two masses m on the ends. If you thought about GOT IT? 10.3, 
you probably realized that the rotational inertia would be 12 mL2 for ro-
tation about the rod’s center. The total mass for that one was M = 2m, 
so in terms of total mass the rotational inertia about the center would 
be I = 1

4 ML2—a lot larger than what we’ve found for the continuous 
rod. That’s because much of the continuous rod’s mass is close to the 
rotation axis, so it contributes less to the rotational inertia.

EXAMPLE 10.6 Rotational Inertia by Integration: A Ring

Find the rotational inertia of a thin ring of radius R and mass M about 
the ring’s axis.

INTERPRET This example is similar 
to Example 10.5, but the geometry has 
changed from a rod to a ring.

DEVELOP Figure 10.14 shows the ring 
with a mass element dm. All the mass el-
ements in the ring are the same distance 
R from the  rotation axis, so r in Equation 
10.13 is the constant R, and the equation 
becomes

I = LR2 dm = R2Ldm

where the integration is over the ring.

EVALUATE Because the sum of the mass elements over the ring is the 
total mass M, we find

I = MR2  1thin ring2 (10.15)

ASSESS The rotational inertia of the ring is the same as if all the mass 
were concentrated in one place a distance R from the rotation axis; the 
angular distribution of the mass about the axis doesn’t matter. Notice, 
too, that it doesn’t matter whether the ring is narrow like a loop of wire 
or long like a section of hollow pipe, as long as it’s thin enough that 

all of it is essentially equidistant from the rotation axis (Fig. 10.15).

FIGURE 10.14 Our sketch 
of a thin ring, showing 
one mass element dm.

FIGURE 10.15 The rotational inertia is MR2 for any thin ring, 
whether it’s narrow like a wire loop or long like a pipe.

EXAMPLE 10.7 Rotational Inertia by Integration: A Disk

A disk of radius R and mass M has uniform density. Find the rotational 
inertia of the disk about an axis through its center and perpendicular 
to the disk.

INTERPRET Again we need to find the rotational inertia for a piece of 
continuous matter, this time a disk.

DEVELOP Because the disk is continuous, we need to integrate using 
Equation 10.13, I = 1r2 dm. We’ll condense the strategy we applied 
in Example 10.5. The result of Example 10.6 suggests dividing the 
disk into rings, as shown in Fig. 10.16a. Equation 10.15, with M S dm, 
shows that a ring of radius r and mass dm contributes r2 dm to the ro-
tational inertia of the disk. Then the total inertia will be I = 1R

0 r2 dm, 
where we chose the limits to pick up contributions from all the mass 
elements on the disk. Again we need to relate r and dm. Think of 
“unwinding” the ring, as shown in Fig. 10.16b; it becomes essen-
tially a rectangle whose area dA is its circumference multiplied by 
its width: dA = 2pr dr. Next, we form ratios. The ring area dA is to 

the total disk area pR2 as the ring mass dm is to the total mass M: 
2pr dr/pR2 = dm/M. Solving for dm gives dm = 12Mr/R22 dr.

(a)

(b)

FIGURE 10.16 A disk may be divided into ring-shaped mass ele-
ments of mass dm, radius r, and width dr.
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10.3 Rotational Inertia and the Analog of Newton’s Law 183

EVALUATE We now evaluate the integral:

 I = L
R

0
r2 dm = L

R

0
r2 a2Mr

R2 b  dr

 =
2M

R2 L
R

0
r3 dr =

2M

R2  
r4

4
`
R

0
= 1

2  MR2   1disk2 (10.16)

ASSESS Again, this result makes sense. In the disk, some of the mass 
is closer to the rotation axis, so the rotational inertia should be less 
than the value MR2 for the ring.

  CONSTANTS AND VARIABLES Note the different roles of R 
and r here. R represents a fixed quantity—the actual radius of 
the disk—and it’s a constant that can go outside the integral. 
In contrast, r is the integration variable, and it changes as we 
range from the disk’s center to its edge, adding up all the 
infinitesimal mass elements. Because r is a variable over the 
region of integration, we can’t take it outside the integral.

The rotational inertias of other shapes about various axes are found by integration as 
in these examples. Table 10.2 lists results for some common shapes. Note that more than 
one rotational inertia is listed for some shapes, since the rotational inertia depends on the 
rotation axis.

If we know the rotational inertia Icm about an axis through the center of mass of a body, 
a useful relation called the parallel-axis theorem allows us to calculate the rotational in-
ertia I through any parallel axis. The parallel-axis theorem states that

 I = Icm + Md2 (10.17)

where d is the distance from the center-of-mass axis to the parallel axis and M is the total 
mass of the object. Figure 10.17 shows the meaning of the parallel-axis theorem, which 
you can prove in Problem 78.

10.4 Explain why the rotational inertia of the solid sphere in Table 10.2 is less than 
that of the spherical shell with the same radius and the same mass.
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2
5

2
5

7
5

This axis is through
the sphere’s center,
so I =   MR2.

This parallel axis is
a distance d = R away
from the original axis, 
so I =   MR2 + Md2 =   MR2.

(a) (b)

d = R

FIGURE 10.17 Meaning of the parallel-axis 
theorem.Table 10.2 Rotational Inertias

1
2

1
3

2
3

1
12

1
12

Thin rod about center
I =    ML2

Thin rod about end
I =   ML2

R
R

RR

Thin ring or hollow cylinder
about its axis
I = MR2

Disk or solid cylinder
about its axis
I =   MR2

Hollow spherical shell about diameter
I =   MR2

Solid sphere about diameter
I =   MR2

b
a

b

a

Flat plate about perpendicular axis
I =    M1a2 + b22

Flat plate about central axis
I =    Ma2

L

L

2
5

1
12
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184 Chapter 10 Rotational Motion

Rotational Dynamics
Knowing a body’s rotational inertia, we can use the rotational analog of Newton’s second 
law (Equation 10.11) to determine its behavior, just as we used Newton’s law itself to ana-
lyze linear motion. Like the force in Newton’s law, the torque in Equation 10.11 is the net 
external torque—the sum of all external torques acting on the body.

A cylindrical satellite is 1.4 m in diameter, with its 940-kg mass dis-
tributed uniformly. The satellite is spinning at 10 rpm but must be 
stopped so that astronauts can make repairs. Two small jets, each with 
20-N thrust, are mounted on opposite sides of the satellite and fire 
tangent to the satellite’s rim. How long must the jets be fired in order 
to stop the satellite’s rotation?

INTERPRET This is ultimately a problem about angular acceler-
ation, but we’re given the forces the jets exert. So it becomes a 
problem about calculating torque and then acceleration—that is, 
a problem in rotational dynamics using the rotational analog of 
Newton’s law.

DEVELOP Figure 10.18 shows the  
situation. We’re asked about  
the time, which we can get from 
the angular acceleration and ini-
tial angular speed. We can find 
the acceleration using the rota-
tional analog of Newton’s law, 
Equation 10.11, if we know both 
torque and rotational inertia. So 
here’s our plan: (1) Find the satel-
lite’s rotational inertia from Table 
10.2, treating it as a solid cylinder. 
(2) Find the torque due to the jets using Equation 10.10, t = rF sin u.  
(3) Use the rotational analog of Newton’s law—Equation 10.11, 

t = Ia—to find the angular acceleration. (4) Use the change in angu-
lar speed to get the time.

EVALUATE Following our plan, (1) the rotational inertia from  
Table 10.2 is I = 1

2 MR2. (2) With the jets tangent to the satellite, sin u 
in Equation 10.10 is 1, so each jet contributes a torque of magnitude 
RF, where R is the satellite radius and F the jet thrust force. With two 
jets, the net torque then has magnitude t = 2RF. (3) Equation 10.11 
gives a = t/I = 12RF2/11

2 MR22 = 4F/MR. (4) We want this torque 
to drop the angular speed from v0 = 10 rpm to zero, so the magni-
tude of the speed change is

 ∆v = 10 rev/min = 110 rev/min212p rad/rev2/160 s/min2
 = 1.05 rad/s

Since angular acceleration is a = ∆v/∆t, our final answer is

 ∆t =
∆v

a
=

MR ∆v

4F
 =

1940 kg210.70 m211.05 rad/s2
142120 N2 = 8.6 s

ASSESS Make sense? Yes: The thrust F appears in the denominator, 
showing that a larger force and hence torque will bring the satellite 
more rapidly to a halt. Larger M and R contribute to a larger rotational 
inertia, thus lengthening the stopping time—although a larger R also 
means a larger torque, an effect that reduces the R dependence from 
the R2 that appears in the expression for rotational inertia.

Rotational Dynamics: De-Spinning a SatelliteEXAMPLE 10.8

FIGURE 10.18 Torque from 
the jets stops the satellite’s 
rotation.

A single problem can involve both rotational and linear motion with more than one object. 
The strategy for dealing with such problems is similar to the multiple-object strategy we devel-
oped in Chapter 5, where we identified the objects whose motions we were interested in, drew 
a free-body diagram for each, and then applied Newton’s law separately to each object. We 
used the physical connections among the objects to relate quantities appearing in the separate 
Newton’s law equations. Here we do the same thing, except that when an object is rotating, we 
use Equation 10.11, the rotational analog of Newton’s law. Often the physical connection will 
entail relations between the force on an object in linear motion and the torque on a rotating 
object, as well as between the objects’ linear and rotational accelerations.

A solid cylinder of mass M and radius R is mounted on a frictionless hori-
zontal axle over a well, as shown in Fig. 10.19. A rope of negligible mass 
is wrapped around the cylinder and supports a bucket of mass m. Find an 
expression for the bucket’s acceleration as it falls down the well shaft.

INTERPRET If it weren’t connected to the cylinder, the bucket would 
fall with acceleration g. But the rope exerts an upward tension force 
T
S

 on the bucket, reducing its acceleration and at the same time ex-
erting a torque on the cylinder. So we have a problem involving both 

Rotational and Linear Dynamics: Into the WellEXAMPLE 10.9

FIGURE 10.19 Example 10.9.
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10.4 Rotational Energy 185

rotational and linear dynamics. We identify the bucket and the cylinder 
as the objects of interest; the bucket is in linear motion while the cyl-
inder rotates. The connection between them is the rope.

DEVELOP Figure 10.20 
shows free-body diagrams 
for the two objects; note 
that both involve the rope 
tension, T

S
.  We chose 

the downward direction 
as positive in the bucket 
diagram and the clock-
wise direction as positive 
in the cylinder diagram. 
Now we’re ready to write 
Newton’s second law 
and its analog—Equation 
10.11, t = Ia—for the 
two objects. Our plan is to formulate both equations and solve using 
the connection between them—physically the rope and mathemati-
cally the magnitude of the rope tension. We have to express the torque 
on the cylinder in terms of the tension force, using Equation 10.10, 
t = rF sin u. We also need to relate the cylinder’s angular accelera-
tion to the bucket’s linear acceleration, using Equation 10.5, at = ra.

EVALUATE With the downward direction positive, Newton’s sec-
ond law for the bucket reads Fnet = mg - T = ma. For the cylinder 

we have the rotational analog of Newton’s second law: t = Ia. But 
here the torque is due to the rope tension, which exerts a force T at 
right angles to a line from the rotation axis and so produces torque 
RT. Then the Newton’s law analog becomes RT = Ia. As the rope 
unwinds, the tangential acceleration of the cylinder’s edge must be 
equal to the bucket’s linear acceleration; thus, using Equation 10.5, 
we have a = a/R, and the cylinder equation becomes RT = Ia/R or 
T = Ia/R2. But the cylinder’s rotational inertia, from Table 10.2, is 
I = 1

2 MR2, so T = 1
2 Ma. Using this result in the bucket equation 

gives ma = mg - T = mg - 1
2 Ma; solving for a, we then have

a =
mg

m + 1
2 M

ASSESS Make sense? If M = 0, there would be no rotational inertia and 
we would have a = g. With no torque needed to accelerate the cylinder, 
there would be no rope tension and the bucket would fall freely with ac-
celeration g. But as the cylinder’s mass M increases, the bucket’s deceler-
ation drops as greater torque and thus rope tension are needed to give the 
cylinder its rotational acceleration. You may be surprised to see that the 
cylinder radius doesn’t appear in our answer. That, too, makes sense: The 
rotational inertia scales as R2, but both the torque and the tangential ac-
celeration scale with R. Since the cylinder’s tangential acceleration is the 
same as the bucket’s acceleration, the increases in torque and tangential 
acceleration cancel the effect of a greater rotational inertia.

FIGURE 10.20 Our free-body diagrams 
for the bucket and cylinder.

1
2

r

dm

v = vr

v

A mass element dm has linear
speed v = vr, giving it kinetic
energy dK =   1dm21vr22.

FIGURE 10.21 Kinetic energy of a mass 
element.

10.4 Rotational Energy
LO 10.6 Calculate rotational kinetic energy.

A rotating object has kinetic energy because all its parts are in motion. We define an 
 object’s rotational kinetic energy as the sum of the kinetic energies of all its individ-
ual mass elements, taken with respect to the rotation axis. Figure 10.21 shows that an 
 individual mass element dm a distance r from the rotation axis has kinetic energy given 
by dK = 1

21dm21v22 = 1
21dm21vr22. The rotational kinetic energy is given by summing—

that is, integrating—over the entire object:

Krot = LdK = L  121dm21vr22 = 1
2 v2Lr2 dm

where we’ve taken v2 outside the integral because it’s the same for every mass element in 
the rigid, rotating object. The remaining integral is just the rotational inertia I, so we have

 Krot = 1
2 Iv2   1rotational kinetic energy2 (10.18)

10.5 The figure shows two identical masses m connected 
by a string that passes over a frictionless pulley whose 
mass M is not negligible. One mass rests on a frictionless 
table; the other hangs vertically, as shown. Is the magni-
tude of the tension force in the vertical section of the string 
(a) greater than, (b) equal to, or (c) less than that in the 
horizontal section? Explain.
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Pulley mass M

m

m

Krot is the rotational analog of   
linear kinetic energy K = 1

2mv2.
Angular velocity v is the 
analog of linear velocity v.

Rotational inertia I is 
the analog of mass m.
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This formula makes sense in light of our analogies between linear and rotational mo-
tion: Since I and v are the rotational analogs of mass and speed, Equation 10.18 is the 
rotational equivalent of K = 1

2 mv2.

A flywheel has a 135-kg solid cylindrical rotor with radius 30 cm and 
spins at 31,000 rpm. How much energy does it store?

INTERPRET We’re being asked about kinetic energy stored in a rotat-
ing cylinder.

DEVELOP Equation 10.18, Krot = 1
2 Iv2, gives the rotational energy. 

To use it, we need the rotational inertia from Table 10.2, and we need 
to convert the rotation rate in revolutions per minute to angular speed 
v in radians per second.

EVALUATE Table 10.2 gives the rotational inertia, I = 1
2 MR2 =  

11
221135 kg210.30 m22 = 6.1 kg # m2, and 31,000 rpm is equivalent to 

131,000 rev/min212p rad/rev2/160 s/min2 = 3246 rad/s. Then Equa-
tion 10.18 gives

Krot = 1
2 Iv2 = 11

2216.1 kg # m2213246 rad/s22 = 32 MJ

ASSESS 32 MJ is roughly the energy contained in a liter of gasoline. 
The advantages of the flywheel over a fuel or a chemical battery are 
more concentrated energy storage and greater efficiency at getting en-
ergy into and out of storage; see the Application below. Can you see why 
the solid disk of this example isn’t the most efficient flywheel design? 
You can explore this question further in Question 9 and Problem 77.

Rotational Energy: Flywheel StorageEXAMPLE 10.10

  WHEN TO USE RADIANS We 
der ived  Equat ion  10 .18 , 
K = 1

2 Iv2, using Equation 10.3,  
v = vr. Since that equation  
works only with radian mea-
sure, the same is true of 
Equation 10.18.

Energy and Work in Rotational Motion
In Section 6.3 we proved the work–kinetic energy theorem, which states that the change 
in an object’s linear kinetic energy is equal to the net work done on the object. There the 
work was the product (or the integral, for a changing force) of the net force and the dis-
tance the object moves. Not surprisingly, there’s an analogous relation for rotational mo-
tion: The change in an object’s rotational kinetic energy is equal to the net work done on 
the object. Now the work is, analogously, the product (or the integral, when torque varies 
with angle) of the torque and the angular displacement:

 W = L
uf

ui

t du = ∆Krot = 1
2 Ivf

2 - 1
2 Ivi

2     awork9kinetic energy theorem,
rotational motion b  (10.19)

Here the subscripts refer to the initial and final states.

Flywheels provide an attractive alternative to batteries in applications requiring short bursts of 
power. Examples include acceleration and hill climbing in hybrid vehicles, industrial lifting 
equipment and amusement park rides, power management on the electric grid, and uninterrupt-
ible power supplies. Flywheel-based hybrid vehicles would achieve high efficiency by storing 
mechanical energy in the flywheel during braking rather than dissipating it as heat in conven-
tional brakes or even storing it in a chemical battery as in today’s hybrids.

Equation 10.18 shows that the stored energy can be substantial, provided the flywheel has 
significant rotational inertia and angular speed—the latter being especially important because the 
energy scales as the square of the angular speed. Modern flywheels can supply tens of kilowatts 
of power for as long as a minute; unlike batteries, their output isn’t reduced in cold weather. They 
achieve rotation rates of 30,000 rpm and more using advanced carbon composite materials that 
can withstand the forces needed to maintain the radial acceleration of magnitude v2r. Advanced 
flywheels spin in vacuum, using magnetic bearings to minimize friction. Some even use supercon-
ducting materials, which eliminate electrical losses that we’ll examine in Chapter 26. The photo 
shows a high-speed flywheel for hybrid buses. It can be retrofitted into existing buses and results in 
some 30% increase in fuel efficiency.

APPLICATION Flywheel Energy Storage
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An automobile wheel with tire has rotational inertia 2.7 kg # m2. What 
constant torque does a tire-balancing machine need to apply in order 
to spin this tire up from rest to 700 rpm in 25 revolutions?

INTERPRET The wheel’s rotational kinetic energy changes as it 
spins up, so the machine must be doing work by applying a torque. 
Therefore, the concept behind this problem is the work–kinetic energy 
theorem for rotational motion.

DEVELOP The work–kinetic energy theorem of Equation 10.19 re-
lates the work to the change in rotational kinetic energy:

W = L
uf

ui

t du = ∆Krot = 1
2 Ivf

2 - 1
2 Ivi

2.

We’re given the initial and final angular velocities, although we have 
to convert them to radians per second. With constant torque, the 

integral in Equation 10.19 becomes the product t ∆u, so we can solve 
for the torque.

EVALUATE The initial angular speed vi is zero, and the final speed 
vf = 1700 rev/min212p rad/rev2/160 s/min2 = 73.3 rad/s.  The an-
gular displacement ∆u is 125 rev212p rad/rev2 = 157 rad. Then 
Equation 10.19 becomes W = t ∆u = 1

2 Ivf
2, which gives

t =
1
2 Ivf

2

∆u
=

11
2212.7 kg # m22173.3 rad/s22

157 rad
= 46 N # m

ASSESS If this torque results from a force applied at the rim of a 
 typical 40-cm-radius tire, then the magnitude of the force would 
be just over 100 N, about the weight of a 10-kg mass and thus a 
 reasonable value.

EXAMPLE 10.11 Work and Rotational Energy: Balancing a Tire

10.5 Rolling Motion
LO 10.7 Describe quantitatively the behavior of rolling objects.

A rolling object exhibits both rotational motion and translational motion—the motion of 
the whole object from place to place. How much kinetic energy is associated with each?

In Section 9.3, we found that the kinetic energy of a composite object comprises two 
terms: the kinetic energy of the center of mass and the internal kinetic energy relative to 
the center of mass. That is, K = Kcm + Kinternal. A wheel of mass M moving with  
speed v has  center-of-mass kinetic energy Kcm = 1

2 Mv2. In the center-of-mass frame, 
the wheel is simply rotating with angular speed v about the center of mass, so its internal 
kinetic energy is Kinternal = 1

2 Icmv
2, where the rotational inertia is taken about the center of 

mass. The total energy is the sum of Kcm and Kinternal:

 Ktotal = 1
2 Mv2 + 1

2 Icmv
2 (10.20)

When a wheel is rolling—moving without slipping against the ground—its trans-
lational speed v and angular speed v about its center of mass are related. Imagine a 
wheel that rolls half a revolution and therefore moves horizontally half its circumference  
(Fig.  10.22). Then the wheel’s angular speed is the angular displacement ∆u, here half a 
revolution, or p radians, divided by the time ∆t: v = p/∆t. Its translational speed is the 
actual distance the wheel travels divided by the same time interval. But we’ve just argued 
that the wheel travels half a circumference, or pR, where R is its radius. So its translational 
speed is v = pR/∆t. Comparing our expressions for v and v, we see that

 v = vR   1rolling motion2 (10.21)

Equation 10.21 looks deceptively like Equation 10.3. But it says more. In Equation 10.3, 
v = vr, v is the linear speed of a point a distance r from the center of a rotating object. 
In Equation 10.21, v is the translational speed of the whole object and R is its radius. The 
two equations look similar because, as our argument leading to Equation 10.21 shows, an 
object that rolls without slipping moves with respect to the ground at the same rate that a 
point on its rim moves in the center-of-mass frame.

10.6 A wheel is rotating at 100 rpm. To spin it up to 200 rpm will take (a) less;  
(b) more; (c) the same work as it took to get it from rest to 100 rpm.
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R

R

pR

The wheel travels a distance
equal to half its circumference.

FIGURE 10.22 A rolling wheel turns 
through half a revolution.
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vcm
u

vcm
u

vcm
u

2vcm

v = 0-vcm

Motion of
the CM plus c

cmotion about 
the CM equals c

cmotion of individual
points on the wheel.

These two velocity
vectors sum to give
zero velocity at bottom.

The bottom of
the wheel is at
rest!  But 
only for an
instant.

+ =

u

uu

FIGURE 10.23 Motion of a rolling wheel, decomposed into translation of the entire wheel plus rotation about 
the center of mass.

Our description of rolling motion leads to a point you may at first find absurd: In a 
rolling wheel, the point in contact with the ground is, instantaneously, at rest! Figure 10.23 
shows how this surprising situation comes about.

Why would an object roll without slipping? The answer is friction. On an icy slope, a 
wheel just slides down without rolling. Normally, though, the force of static friction keeps 
it from sliding. Instead, it rolls (Fig. 10.24). Because the contact point is at rest, the fric-
tional force does no work and therefore mechanical energy is conserved. This lets us use 
the conservation-of-energy principle to analyze rolling objects.

10.7 The wheels of trains, subway 
cars, and other rail vehicles include a 
flange that extends beyond the part of 
the wheel that rolls on top of the rail, 
as shown. The flanges keep the train 
from running off the rails. Consider 
the bottommost point on the flange: 
Is it (a) moving in the direction of the 
train’s motion; (b) instantaneously at 
rest; or (c) moving backward, oppo-
site the train’s motion?

G
O

T 
IT

?

Rail

What’s the motion of the bottom of this flange?

fs
u

Friction keeps the
wheel from slipping.

FIGURE 10.24 Rolling down a 
slope.

A solid ball of mass M and radius R starts from rest and rolls down a 
hill. Its center of mass drops a total distance h. Find the ball’s speed at 
the bottom of the hill.

INTERPRET This is similar to conservation-of-energy problems from 
Chapter 7, but now we identify two types of kinetic energy: transla-
tional and rotational. The ball starts on the slope with some gravita-
tional potential energy, which ends up as kinetic energy at the bottom. 
The frictional force that keeps the ball from slipping does no work, so 
we can apply conservation of mechanical energy.

DEVELOP Figure 10.25 shows the situation, including bar graphs 
showing the distribution of energy in the ball’s initial and final states. 
We’ve determined that conservation of mechanical energy holds, so 
K0 + U0 = K + U. Here K0 = 0 and, if we take the zero of potential 
energy at the bottom, then U0 = Mgh and U = 0. Finally, K consists of 
both translational and rotational kinetic energy as expressed in Equation 
10.20, Ktotal = 1

2 Mv2 + 1
2 Iv2. Our plan is to use this expression in the 

conservation-of-energy statement and solve for v. It looks like there’s an 

extra variable, v, that we don’t know. But the ball isn’t slipping, so Equation 
10.21 holds and gives v = v/R. Then conservation of energy becomes

Mgh = 1
2 Mv2 + 1

2 Iv2 = 1
2 Mv2 + 1

212
5 MR22a v

R
b

2

= 7
10 Mv2

where we found the rotational inertia of a solid sphere, 2
5 MR2, from 

Table 10.2.

EXAMPLE 10.12 Energy Conservation: Rolling Downhill
Worked Example with Variation Problems

FIGURE 10.25 How 
fast is the ball moving 
at the bottom of the 
hill?
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10.5 Rolling Motion 189

Example 10.12 shows that the final speed of an object that rolls down an incline depends 
on the details of its mass distribution. Therefore, objects that look superficially identical 
may reach the bottom of an incline at different times, if they have different mass distribu-
tions. Conceptual Example 10.1 helps you think further about this point. Another differ-
ence that can affect the speed of rolling objects is whether they roll as rigid bodies or not. 
When a can of liquid rolls down a ramp, for instance, the liquid need not spin as fast as 
the can itself (or it may not even spin at all), and therefore less energy goes into rotation— 
leaving more for translational motion. You can see an example by viewing the video tutorial 
“Canned Food Race” accessed from the QR code on page 191. After watching the video, 
can you see how you might distinguish a hard-boiled egg from a raw one?

EVALUATE Solving for v gives our answer:

v = A10
7

 gh

ASSESS This result is less than the speed v = 12gh for an ob-
ject that slides down a frictionless incline. Make sense? Yes: Some 

of the energy the rolling object gains goes into rotation, leaving 
less for translational motion. As often happens with gravitational 
problems, mass doesn’t matter. Neither does radius: That factor 7

10 
results from the distribution of mass that gives the sphere its partic-
ular rotational inertia and would be the same for all spheres regard-
less of radius or mass.

CONCEPTUAL EXAMPLE 10.1 A Rolling Race

A solid ball and a hollow ball roll without slipping down a ramp. 
Which reaches the bottom first?

EVALUATE Example 10.12 shows that when a ball rolls down a 
slope, some of its potential energy gets converted into rotational ki-
netic energy—leaving less for translational kinetic energy. As a re-
sult, it moves more slowly, and therefore takes more time, than an 
object that slides without rolling. Here we want to compare two roll-
ing objects—the solid ball treated in Example 10.12 and a hollow 
one. With its mass concentrated at its surface, far from the rotation 
axis, the hollow ball has greater rotational inertia. Thus more of its 
energy goes into rotation, meaning its translational speed is lower, so 
it reaches the bottom later.

ASSESS Make sense? Yes: Energy is conserved for both balls, but for 
the hollow ball more of that energy is in rotation and less in transla-
tion. As Example 10.12 shows, neither the mass nor the radius of a 
ball affects its speed; all that matters is its mass distribution and hence 
its rotational inertia.

MAKING THE CONNECTION Compare the final speeds of the two 
balls in this example.

EVALUATE Example 10.12 gives 110gh/7 for the speed of the solid 
ball after it’s rolled down a vertical drop h. Substituting the hollow 
ball’s rotational inertia, I = 2

3MR2 from Table 10.2, in the calculation 
of Example 10.12 gives v = 16gh/5. So the solid ball is faster by a 
factor 110/7/16/5 ≃ 1.1.

Chapter 10 Summary

Big Idea
The big idea of this chapter is rotational motion, quantified as the rate 
of change of angular position of any point on a rotating object. All the 
quantities used to describe linear motion have analogs in rotational 
motion. The analogs of force, mass, and acceleration are, respectively, 
torque, rotational inertia, and angular acceleration—and together they 
obey the rotational analog of Newton’s second law.

Displacement

Position, x

Linear
motion

 displacem
ent 

A
ngular 

       Angular position, u

Rotational
motion

Rotation
axis

(continued)
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190 Chapter 10 Rotational Motion

Key Concepts and Equations
The defining relations for rotational quantities are analogous to those for linear quantities, as is the statement of Newton’s second law for rotational 
motion. Key concepts include angular velocity and acceleration, torque, and rotational inertia.

Angular velocity, v

Time t t + ∆t

∆u

v = ∆u∆t

   

r
u

F
S

Torque, t

Rotation axis

u

t = rF sinu

   

L

Rotational inertia, I

Mass closer
to axis:
lower I

Discrete
masses

Continuous
matter

r2 dm

Same mass,
farther from axis:
greater I

I = amir i
2

This table summarizes the analogies between  linear 
and rotational quantities, along with quantitative 
relations that link rotational and linear quanti-
ties. Many of these relations require that angles 
be  measured in radians, and most require explicit 
 specification of a rotation axis.

Linear Quantity or Equation
Angular Quantity  
or  Equation

Relation between Linear 
and Angular Quantities

Position x Angular position u

Speed v = dx/dt Angular speed v = du/dt v = vr

Acceleration a Angular acceleration a at = ar

Mass m Rotational inertia I I = 1r2 dm

Force F Torque t t = rF sin u

Kinetic energy Ktrans = 1
2  mv2 Kinetic energy Krot = 1

2 Iv2

Newton’s second law (constant mass or rotational inertia):

F = ma t = Ia

Applications
Constant angular acceleration: When angular 
acceleration is constant, equations analogous to 
those of Chapter 2 apply.

Equations for Constant 
Linear Acceleration

Equations for Constant 
Angular Acceleration

v = 1
21v0 + v2 (2.8) v = 1

21v0 + v2 (10.6)

v = v0 + at (2.7) v = v0 + at (10.7)

x = x0 + v0 t + 1
2 at2 (2.10) u = u0 + v0 t + 1

2 at2 (10.8)

v2 = v0
2 + 2a1x - x02 (2.11) v2 = v0

2 + 2a1u - u02 (10.9)

Rolling motion: When an object of radius R rolls without slipping, the point in contact with the ground is 
instantaneously at rest. In this case the object’s translational and rotational speeds are related by v = vR. 
The object’s kinetic energy is shared among translational kinetic energy 12 Mv2 and rotational kinetic energy 
1
2 Iv2, with the division between these forms dependent on the rotational inertia.

Rolling:

v = 0
at bottom R

v = vR
v
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For Thought and Discussion

1. Do all points on a rigid, rotating object have the same angular 
velocity? Linear speed? Radial acceleration?

2. A point on the rim of a rotating wheel has nonzero acceleration, 
since it’s moving in a circular path. Does it necessarily follow 
that the wheel is undergoing angular acceleration?

3. Two forces act on an object, but the net force is zero. Must the 
net torque be zero? If so, why? If not, give a counterexample.

4. Is it possible to apply a counterclockwise torque to an object 
that’s rotating clockwise? If so, how will the object’s motion 
change? If not, why not?

5. A solid sphere and a hollow sphere of the same mass and radius 
are rolling along level ground. If they have the same total kinetic 
energy, which is moving faster?

6. A solid cylinder and a hollow cylinder of the same mass and ra-
dius are rolling along level ground at the same speed. Which has 
more kinetic energy?

7. A circular saw takes a long time to stop rotating after the power 
is turned off. Without the saw blade mounted, the motor stops 
much more quickly. Why?

8. The lower part of a horse’s leg contains essentially no muscle. 
How does this help the horse to run fast? Explain in terms of 
rotational inertia.

9. Given a fixed amount of a material, what shape should you make 
a f lywheel so it will store the most energy at a given angular 
speed?

10. A ball starts from rest and 
rolls without slipping down 
a slope, then starts up a fric-
tionless slope (Fig. 10.26). 
Compare its maximum height 
on the frictionless slope with 
its starting height on the first 
slope.

Exercises and Problems

Exercises

Section 10.1 Angular Velocity and Acceleration
11. Determine the angular speed, in rad/s, of (a) Earth about its axis; 

(b) the minute hand of a clock; (c) the hour hand of a clock; and 
(d) an eggbeater turning at 300 rpm.

12. What’s the linear speed of a point (a) on Earth’s equator and  
(b) at your latitude?

13. Express each of the following in radians per second: (a) 720 rpm; 
(b) 50°/h; (c) 1000 rev/s; (d) 1 rev/year (Earth’s angular speed in 
its orbit).

14. A 25-cm-diameter circular saw blade spins at 3500 rpm. How 
fast would you have to push a straight hand saw to have the teeth 
move through the wood at the same rate as the circular saw teeth?

15. A compact disc’s rotation varies from about 200 rpm to 500 rpm. 
If the disc plays for 74 min, what’s its average angular accelera-
tion in (a) rpm/s and (b) rad/s2?

16. During startup, a power plant’s turbine accelerates from rest at 
0.52 rad/s2. (a) How long does it take to reach its 3600-rpm oper-
ating speed? (b) How many revolutions does it make during this 
time?

17. A merry-go-round starts from rest and accelerates with angular 
acceleration 0.010 rad/s2 for 14 s. (a) How many revolutions does 
it make during this time? (b) What’s its average angular speed?

Section 10.2 Torque
18. A 320-N frictional force acts on the rim of a 1.0-m-diameter 

wheel to oppose its rotational motion. Find the torque about the 
wheel’s central axis.

19. Conventional rim brakes on a bicycle apply an approximately 
1-kN force at the rim of the wheel, some 60 cm in diameter. Disc 
brakes, which are becoming increasingly popular, apply roughly 
4 kN near the outer edge of a 200-mm-diameter disc. Estimate 
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Learning Outcomes After finishing this chapter you should be able to:

LO 10.1 Identify and calculate rotational analogs of position, velocity, 
acceleration, force, and mass.
For Thought and Discussion Questions 10.1, 10.2, 10.3, 
10.4; Exercises 10.11, 10.12, 10.13, 10.18, 10.19, 10.20, 
10.21, 10.22; Problems 10.53, 10.76

LO 10.2 Solve rotational analogs of one-dimensional constant- 
acceleration problems.
For Thought and Discussion Questions 10.7, 10.8; Exercises 
10.14, 10.15, 10.16, 10.17

LO 10.3 Calculate rotational inertias by summing or integrating.
For Thought and Discussion Question 10.9; Exercises 10.23, 
10.24, 10.25, 10.26, 10.27, 10.28, 10.29; Problems 10.50, 
10.51, 10.52, 10.54, 10.56, 10.59, 10.65, 10.69, 10.71, 
10.73, 10.74, 10.78

LO 10.4 Apply the rotational analog of Newton’s second law.
Exercises 10.27, 10.28, 10.29; Problems 10.45, 10.46, 
10.47, 10.48, 10.49, 10.55, 10.58, 10.59

LO 10.5 Solve problems involving coupled linear and rotational 
motion.
Problems 10.57, 10.60, 10.66, 10.79

LO 10.6 Calculate rotational kinetic energy.
For Thought and Discussion Questions 10.5, 10.6, 10.10; 
Exercises 10.30, 10.31, 10.32, 10.33; Problems 10.63, 
10.64, 10.70, 10.72, 10.77

LO 10.7 Describe quantitatively the behavior of rolling objects.
For Thought and Discussion Questions 10.5, 10.6, 10.10; 
Exercises 10.34, 10.35, 10.36; Problems 10.61, 10.62, 
10.64, 10.67, 10.68

h
No slip

Frictionless

FIGURE 10.26 For Thought and 
Discussion 10, Problem 64
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192 Chapter 10 Rotational Motion

the torques to determine which braking system exerts the greater 
torque and by approximately what factor.

20. A car tune-up manual calls for tightening the spark plugs to a 
torque of 35.0 N # m. To achieve this torque, with what force must 
you pull on the end of a 24.0-cm-long wrench if you pull (a) at a 
right angle to the wrench shaft and (b) at 110° to the wrench shaft?

21. A 55-g mouse runs out to the end of the 17-cm-long minute hand 
of a grandfather clock when the clock reads 10 past the hour. 
What torque does the mouse’s weight exert about the rotation 
axis of the clock hand?

22. You have your bicycle upside down for repairs. The front wheel 
is free to rotate and is perfectly balanced except for the 25-g 
valve stem. If the valve stem is 32 cm from the rotation axis and 
at 24° below the horizontal, what’s the resulting torque about the 
wheel’s axis?

Section 10.3 Rotational Inertia and the Analog  
of Newton’s Law
23. Four equal masses m are located at the corners of a square of side 

L, connected by essentially massless rods. Find the rotational in-
ertia of this system about an axis (a) that coincides with one side 
and (b) that bisects two opposite sides.

24. The shaft connecting a power plant’s turbine and electric gener-
ator is a solid cylinder of mass 6.8 Mg and diameter 85 cm. Find 
its rotational inertia.

25. The chamber of a rock-tumbling machine is a hollow cylinder 
with mass 120 g and radius 8.5 cm. The chamber is closed by 
end caps in the form of uniform circular disks, each of mass 33 g.  
Find (a) the rotational inertia of the chamber about its central 
axis and (b) the torque needed to give the chamber an angular 
acceleration of 3.3 rad/s2.

26. A wheel’s diameter is 92 cm, and its rotational inertia is 
7.8 kg # m2. (a) What’s the minimum mass it could have? (b) How 
could it have more mass?

27. (a) Estimate Earth’s rotational inertia, assuming it to be a uni-
form solid sphere. (b) What torque applied to Earth would cause 
the length of a day to change by 1 second every century?

28. A 108-g Frisbee is 24 cm in diameter and has half its mass spread 
uniformly in the disk and the other half concentrated in the rim. 
(a) What’s the Frisbee’s rotational inertia? (b) With a quarter-turn 
flick of the wrist, a student sets the Frisbee rotating at 550 rpm. 
What’s the magnitude of the torque, assumed constant, that the 
student applied?

29. At the MIT Magnet Laboratory, energy is stored in huge solid 
flywheels of mass 7.7 * 104 kg and radius 2.4 m. The flywheels 
ride on shafts 41 cm in diameter. If a frictional force of 34 kN 
acts tangentially on the shaft, how long will it take the flywheel 
to come to a stop from its usual 360-rpm rotation rate?

Section 10.4 Rotational Energy
30. A 25-cm-diameter circular saw blade has mass 0.85 kg, distrib-

uted uniformly in a disk. (a) What’s its rotational kinetic energy 
at 3500 rpm? (b) What average power must be applied to bring 
the blade from rest to 3500 rpm in 3.2 s?

31. Humankind currently uses energy at the rate of about 18 TW. 
Suppose we found a way to extract this energy from Earth’s rota-
tion. Estimate how long it would take before the length of the day 
increased by 1 second.

32. A 150-g baseball is pitched at 33 m/s spinning at 42 rad/s. You 
can treat the baseball as a uniform solid sphere of radius 3.7 cm. 
What fraction of its kinetic energy is rotational?

33. (a) Find the energy stored in the flywheel of Exercise 29 when 
it’s rotating at 360 rpm. (b) The wheel is attached to an electric 
generator and the rotation rate drops from 360 rpm to 300 rpm in 
3.0 s. What’s the average power output?

Section 10.5 Rolling Motion
34. A solid 2.4-kg sphere is rolling at 5.0 m/s. Find (a) its transla-

tional kinetic energy and (b) its rotational kinetic energy.
35. What fraction of a solid disk’s kinetic energy is rotational if it’s 

rolling without slipping?
36. A rolling ball has total kinetic energy 100 J, 40 J of which is rota-

tional energy. Is the ball solid or hollow?

Example Variations
The following problems are based on two worked examples from the 
text. Each set of four problems is designed to help you make con-
nections that enhance your understanding of physics and to build 
your confidence in solving problems that differ from ones you’ve 
seen before. The first problem in each set is essentially the example 
problem but with different numbers. The second problem presents 
the same scenario as the example but asks a different question. The 
third and fourth problems repeat this pattern but with entirely differ-
ent scenarios.

37. Example 10.5: (a) Find the rotational inertia of a meter stick with 
mass 172 g about a perpendicular axis through its center. Treat 
the stick as a thin rod. (b) The meter stick’s width is 2.54 cm. 
You can treat the stick more accurately as a flat plate (see Table 
10.2). If you do so, by what percentage is your answer to part  
(a) in error?

38. Example 10.5: The rotational inertia of a thin rod of mass M 
and length L about a perpendicular axis is ML2>9. Where’s the 
axis?

39. Example 10.5: NASA’s Ames Research Center has a large cen-
trifuge used for astronaut training. The centrifuge consists of a 
3880-kg, 18.0-m-long tubular structure, which rotates about its 
center. Find the centrifuge’s rotational inertia when two 105-kg  
seats are mounted at either end of the tube, 7.92 m from the ro-
tation axis, and both are occupied by 72.6-kg astronauts. Treat 
the tube as a thin rod and the astronauts and seats as point 
masses.

40. Example 10.5: Repeat the preceding problem, now treating the 
arm more accurately as a tube with square cross section of side 
2.10 m and the astronaut/chair combination as a cube with side 
1.85 m with its center at 7.92 m from the rotation axis.

41. Example 10.12: A marble rolls down an incline, starting from 
rest 24.2 cm above the bottom. What’s its speed when it reaches 
the bottom?

42. Example 10.12: A marble rolls down an incline, and when it’s 
halfway down it’s going at 1.12 m/s. Find (a) its starting height 
and (b) its speed at the bottom.

43. Example 10.12: A 29.5-kg wheel with radius 40.6 cm and ro-
tational inertia 3.58 kg.m2  starts from rest and rolls down a 
12.6-m-high incline. (a) Find its speed at the bottom. (b) Is the 
wheel uniformly solid, or is its mass concentrated at the rim, or is 
its structure somewhere in between?

44. Example 10.12: A wheel with total mass 14.7 kg consists of a 
solid wooden disk with a thin metal rim bonded to the disk’s edge. 
It starts from rest and rolls down an incline of height 1.00 m.  
At the bottom it’s going at 3.38 m/s. Find the masses of the disk 
and the rim.

M10_WOLF8559_04_SE_C10.indd   192 11/13/18   9:06 PM



Exercises and Problems 193

Problems
45. A wheel turns through 2.0 revolutions while accelerating from 

rest at 18 rpm/s. (a) What’s its final angular speed? (b) How long 
does it take?

46. You’re an engineer designing kitchen appliances, and you’re 
working on a two-speed food blender, with 3600 rpm and 1800 
rpm settings. Specs call for the blender to make no more than 
60 revolutions while it’s switching from high to low speed. If it 
takes 1.4 s to make the transition, does it meet its specs?

47. You rev your car’s engine and watch the tachometer climb 
steadily from 1200 rpm to 5500 rpm in 2.7 s. What are (a) the 
engine’s angular acceleration and (b) the tangential acceleration 
of a point on the edge of the engine’s 3.5-cm-diameter crank-
shaft? (c) How many revolutions does the engine make during 
this time?

48. A circular saw spins at 5800 rpm, and its electronic brake is sup-
posed to stop it in less than 2 s. As a quality-control specialist, 
you’re testing saws with a device that counts the number of blade 
revolutions. A particular saw turns 75 revolutions while stopping. 
Does it meet its specs?

49. Full-circle rotation is common in mechanical systems, but less 
evident in biology. Yet many single-celled organisms are pro-
pelled by spinning, tail-like flagella. The flagellum of the bac-
terium E. coli spins at some 600 rad/s, propelling the bacterium 
at speeds around 25 mm/s. How many revolutions does E. coli’s 
flagellum make as the bacterium crosses a microscope’s field of 
view, which is 150@mm wide?

50. A square frame is made from four thin rods, each of length L 
and mass m. Calculate its rotational inertia about the three axes 
shown in Fig. 10.27.

51. A thick ring has inner radius 1
2R, outer radius R, and mass M. 

Find an expression for its rotational inertia. (Hint: Consult 
Example 10.7.)

52. A uniform rectangular flat plate has mass M and dimensions a by 
b. Use the parallel-axis theorem in conjunction with Table 10.2 to 
show that its rotational inertia about the side of length b is 13 Ma2.

53. The cellular motor driving the flagellum in E. coli (see Problem 49)  
exerts a typical torque of 400 pN #nm on the flagellum. If this 
torque results from a force applied tangentially to the outside of 
the 12-nm-radius flagellum, what’s the magnitude of that force?

54. Verify by direct integration Table 10.2’s entry for the rotational 
inertia of a flat plate about a central axis. (Hint: Divide the plate 
into strips parallel to the axis.)

55. You’re an astronaut in the first crew of a new space station. The 
station is shaped like a wheel 22 m in diameter, with essen-
tially all its 5 * 105@kg mass at the rim. When the crew arrives, 
it will be set rotating at a rate that requires an object at the rim 
to have radial acceleration g, thereby simulating Earth’s sur-
face gravity. This will be accomplished using two small rock-
ets, each with 100-N thrust, mounted on the station’s rim. Your 

job is to determine how long to fire the rockets and the number 
of revolutions the station will make during the firing.

56. (a) Estimate the rotational inertia of a 60-kg ice skater by con-
sidering her body to be a cylinder and making reasonable esti-
mates of the appropriate dimensions. Assume she’s holding her 
arms tight to her torso, so they don’t contribute significantly to 
her rotational inertia. (b) Then estimate the percentage increase 
in rotational inertia if she extends her arms fully. As you’ll see in 
Chapter 11, the ability to change rotational inertia is what allows 
the skater to spin rapidly.

57. A 2.4-kg block rests on a slope and is attached by a string of 
negligible mass to a solid drum of mass 0.85 kg and radius 5.0 
cm, as shown in Fig. 10.28. When released, the block accelerates 
down the slope at 1.6 m/s2. Find the coefficient of friction be-
tween block and slope.

58. You’ve got your bicycle upside down for repairs, with its 
66-cm-diameter wheel spinning freely at 230 rpm. The wheel’s 
mass is 1.9 kg, concentrated mostly at the rim. You hold a wrench 
against the tire for 3.1 s, applying a 2.7-N normal force. If the 
coefficient of friction between wrench and tire is 0.46, what’s the 
final angular speed of the wheel?

59. A potter’s wheel is a stone disk 90 cm in diameter with mass 120 
kg. If the potter’s foot pushes at the outer edge of the initially 
stationary wheel with a 75-N force for one-eighth of a revolution, 
what will be the final speed?

60. A ship’s anchor weighs 5.0 kN. Its cable passes over a roller of 
negligible mass and is wound around a hollow cylindrical drum 
of mass 380 kg and radius 1.1 m, mounted on a frictionless axle. 
The anchor is released and drops 16 m to the water. Use energy 
considerations to determine the drum’s rotation rate when the an-
chor hits the water. Neglect the cable’s mass.

61. Starting from rest, a hollow ball rolls down a ramp inclined at 
angle u to the horizontal. Find an expression for its speed after 
it’s gone a distance d along the incline.

62. A hollow ball rolls along a horizontal surface at 3.7 m/s when it 
encounters an upward incline. If it rolls without slipping up the 
incline, what maximum height will it reach?

63. As an automotive engineer, you’re charged with improving the 
fuel economy of your company’s vehicles. You realize that the 
rotational kinetic energy of a car’s wheels is a significant factor 
in fuel consumption, and you set out to lower it. For a typical car, 
the wheels’ rotational energy is 40% of their translational kinetic 
energy. You propose a redesigned wheel with the same radius but 
10% lower rotational inertia and 20% less mass. What do you 
report for the decrease in the wheel’s total kinetic energy at a 
given speed?

64. A solid ball of mass M and radius R starts at rest at height h above 
the bottom of the path in Fig. 10.26. It rolls without slipping down 
the left side. The right side of the path, starting at the bottom, is 
frictionless. To what height does the ball rise on the right?
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FIGURE 10.27 Problem 50

30°

FIGURE 10.28 Problem 57
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65. A disk of radius R has an initial mass M. Then a hole of radius 
R/4 is drilled, with its edge at the disk center (Fig. 10.29). Find 
the new rotational inertia about the central axis. (Hint: Find the 
rotational inertia of the missing piece, and subtract it from that 
of the whole disk. You’ll find the parallel-axis theorem helpful.)

66. A 50-kg mass is tied to a massless rope wrapped around a solid 
cylindrical drum, mounted on a frictionless horizontal axle. When 
the mass is released, it falls with acceleration a = 3.7 m/s2. Find 
(a) the rope tension and (b) the drum’s mass.

67. Each wheel of a 320-kg motorcycle is 52 cm in diameter and has 
rotational inertia 2.1 kg # m2. The cycle and its 75-kg rider are 
coasting at 85 km/h on a flat road when they encounter a hill. If 
the cycle rolls up the hill with no applied power and no signifi-
cant internal friction, what vertical height will it reach?

68. A solid marble starts from rest and rolls without slipping on the 
loop-the-loop track in Fig. 10.30. Find the minimum starting 
height from which the marble will remain on the track through 
the loop. Assume the marble’s radius is small compared with R—
but that doesn’t mean you can neglect it altogether!

69. A disk of radius R and thickness w has a mass density that in-
creases from the center outward, given by r = r0 r/R, where r is 
the distance from the disk axis. Calculate (a) the disk’s total mass 
M and (b) its rotational inertia about its axis in terms of M and R. 
Compare with the results for a solid disk of uniform density and 
for a ring.

70. The disk in Fig. 10.29 is rotating freely about a frictionless hori-
zontal axle. Since the disk is unbalanced, its angular speed varies 
as it rotates. If the maximum angular speed is vmax, find an ex-
pression for the minimum speed. (Hint: How does potential en-
ergy change as the wheel rotates?)

71. A solid disk of mass M and radius R has a thickness that’s neg-
ligible compared with R. Calculate the rotational inertia of this 
disk about an axis coinciding with a diameter.

72. A lighter car requires less power for a given acceleration. 
Consider a car of mass M, including its four wheels. You can ap-
proximate the wheels, with tires, as solid disks, each of mass m. 
(a) Derive an expression for power as the rate of change of the 
total kinetic energy. Your answer should contain M, m, the car’s 
acceleration a, and the car’s speed v. Next, consider a car with 

total mass 1780 kg, including four 15.8-kg wheels. Suppose you 
reduce this car’s total mass by 10.0 kg. By what percentage does 
the power requirement decrease if you take this mass off (b) the 
nonrolling parts of the car or (c) off the wheels?

73. Calculate the rotational inertia of a solid, uniform right circular 
cone of mass M, height h, and base radius R about its axis.

74. A thick ring of mass M has inner radius R1 and outer radius R2. 
Show that its rotational inertia is given by 12 M1R 2

1 + R 2
2 2.

75. In the well and bucket of Example 10.9, suppose you want to turn 
the crank to lift the bucket with upward acceleration a. Derive 
an expression for the power you need to apply, as a function of a 
and the instantaneous speed v of the bucket.

76. The local historical society has asked your assistance in writing 
the interpretive material for a display featuring an old steam lo-
comotive. You have information on the torque on a flywheel but 
need to know the force applied by means of an attached horizon-
tal rod. The rod joins the wheel with a flexible connection 95 cm 
from the wheel’s axis. The maximum torque the rod produces on 
the flywheel is 10.1 kN # m. What force does the rod apply?

77. You’re skeptical about a new hybrid car that stores energy in a 
flywheel. The manufacturer claims the flywheel stores 12 MJ of 
energy and can supply 40 kW of power for 5 minutes. You dig 
deeper and find that the flywheel is a 39-cm-diameter ring with 
mass 48 kg that rotates at 30,000 rpm. Are the specs correct?

78. Figure 10.31 shows an object of mass M with one axis through 
its center of mass and a parallel axis through an arbitrary point 
A. Both axes are perpendicular to the page. The figure shows an 
arbitrary mass element dm and vectors connecting the center of 
mass, the point A, and dm. (a) Use the law of cosines (Appendix A)  
to show that r2 = r2

cm + h2 - 2 h
S # rScm .  (b) Use this result in 

I = 1r2 dm to calculate the object’s rotational inertia about the 
axis through A. Each term in your expression for r2 leads to 
a separate integral. Identify one as the rotational inertia about 
the CM, another as the quantity Mh2, and argue that the third 
is zero. Your result is a statement of the parallel-axis theorem 
(Equation 10.17).

79. Figure 10.32 shows an apparatus used to measure rotational in-
ertias of various objects, in this case spheres of varying masses 
M and radii R. The spheres are made of different materials, and 
some are hollow while others are solid. To perform the experi-
ment, a sphere is mounted to a vertical axle held in a frame with 
essentially frictionless bearings. A spool of radius b = 2.50 cm 
is also mounted to the axle, and a string is wrapped around the 
spool. The string runs horizontally over an essentially massless, 
frictionless pulley and is tied to a mass m = 77.8 g. As the mass 
falls, the string imparts a torque to the spool/axle/disk combi-
nation, resulting in angular acceleration. The mass of the string 
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Answers to Chapter Questions 195

is negligible, but the combination of axle and spool has non- 
negligible rotational inertia I0 whose value isn’t known in ad-
vance. In each experimental run, the mass m is suspended a 
height h = 1.00 m above the floor and the rotating system is ini-
tially at rest. The mass is released, and experimenters measure 
the time to reach the floor. Results are given in the tables be-
low. Determine an appropriate function of the time t which, when 
plotted against other quantities in-
cluding M and R, should yield two 
straight lines—one for the hollow 
spheres and one for the solid ones. 
Plot your data, establish best-fit 
lines, and use the resulting slopes 
to verify the numerical factors 2/5 
and 2/3 in the expressions for the 
rotational inertias of spheres given 
in Table 10.2. You should also find 
a value for the rotational inertia of 
the axle and drum together.

Sphere mass M (g) 783 432 286 677 347

Sphere radius R (cm) 6.25 3.86 9.34 9.42 9.12

Fall time t (s) 2.36 1.22 2.72 3.24 2.91

Sphere mass M (g) 947 189 821 544 417

Sphere radius R (cm) 6.71 5.45 6.55 4.67 9.98

Fall time t (s) 2.75 1.41 2.51 1.93 3.47

Passage Problems
Centrifuges are widely used in biology and medicine to separate cells 
and other particles from liquid suspensions. Figure 10.33 shows top 
and side views of two centrifuge designs. In both designs, the round 
holes are for tubes holding samples to be separated; the side views 
show two tubes in place. The total mass and radius of the rotating 
structure are the same for both, the sample-hole tubes are at the same 
radius, and the sample tubes are identical.

80. Which design has greater rotational inertia?
a. design A
b. design B
c. Both have the same rotational inertia.

81. If both centrifuges are made thicker in the vertical direction, 
without changing their masses or mass distribution, their rota-
tional inertias will
a. remain the same.
b. increase.
c. decrease.

82. If the sample tubes are made longer, the rotational inertia of the 
centrifuges with sample tubes inserted will
a. remain the same.
b. increase.
c. decrease.

83. While the centrifuges are spinning, the net force on samples in 
the tubes is
a. outward.
b. inward.
c. zero.

84. If a centrifuge’s radius and mass are both doubled without other-
wise changing the design, its rotational inertia will
a. double.
b. quadruple.
c. increase by a factor of 8.
d. increase by a factor of 16.

Answers to Chapter Questions

Answer to Chapter Opening Question
The blade mass should be concentrated toward the rotation axis, thus 
lowering the turbine’s rotational inertia—the rotational analog of 
mass.

Answers to GOT IT? Questions
10.1  (c) The linear speed v increases linearly with time, and the radial 

acceleration increases as v2. Tangential acceleration is constant 
because it’s proportional to angular acceleration, which we’re 
told is constant.

10.2  (1) 10.5b; (2) 10.5a.
10.3  (1) (b) rotational inertia with axis at the center, 1mL2/22;  

(2) (a) rotational inertia with the axis at the end, 1mL22
10.4 The mass of the shell is farther from the rotation axis.
10.5  (a) There must be a net torque acting to increase the pulley’s 

clockwise angular velocity. The difference in the two tension 
forces provides that torque.

10.6  (b) because the wheel’s rotational kinetic energy, and hence the 
work required, increases as the square of its rotational speed.

10.7 (c)

M

R

b

m

FIGURE 10.32 Problem 79

(a)

Top view

Side view

(b)

FIGURE 10.33 Two centrifuge designs, shown from the top and the 
side (Passage Problems 80–84).
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Earth isn’t quite round. How does this affect 
its rotation axis, and what’s this got to do with 
ice ages? (The deviation from roundness is 
 exaggerated in this photo.)

Rotational Vectors and Angular Momentum

10
Rotational Motion

9
Systems of  

Particles

12
Static Equilibrium

13
Oscillatory 

Motion11

Summer, fall, winter, spring: The cycle of the seasons is ultimately deter-
mined by the vector direction of Earth’s angular velocity. The changing 

angular velocity of protons in living tissue produces MRI images that give 
physicians a noninvasive look inside the human body. Rising and rotating, 
moist, heated air forms itself into the ominous funnel of a tornado. You ride 
your bicycle, the rotating wheels helping stabilize what seems a precarious 
balance. These examples all involve rotational motion in which not only the 
magnitude but also the direction matters. They’re best understood in terms 
of the rotational analog of Newton’s law, which we introduce here in full 
vector form involving a rotational analog of momentum. The transition from 
Chapter 10 to Chapter 11 is analogous to the leap from Chapter 2’s one- 
dimensional description of motion to the full vector description in Chapter 3.  
Here, as there, we’ll find a new richness of phenomena involving motion.

11.1  Angular Velocity and 
Acceleration Vectors

LO 11.1 Identify rotational quantities as vectors and 
determine their directions.

So far we’ve ascribed direction to rotational motion using the terms clockwise 
and counterclockwise. But that’s not enough: To describe rotational motion 
fully we need to specify the direction of the rotation axis. We therefore define 
 angular velocity v

!
 as a vector whose magnitude is the angular speed v and whose 

direction is parallel to the rotation axis. There’s an ambiguity in this definition, 
since there are two possible directions parallel to the axis. We resolve the am-
biguity with the right-hand rule: If you curl the fingers of your right hand to 
follow the rotation, then your right thumb points in the direction of the angu-
lar velocity (Fig. 11.1). This refinement means that v

!
 not only gives the angular 

speed and the direction of the rotation axis but also distinguishes what we would 
have described previously as clockwise or counterclockwise rotation.

Skills & Knowledge You’ll Need
■■ Rotational analogs of one- 

dimensional position, velocity, and 
acceleration (Section 10.1)

■■ Rotational analogs of force, mass, 
and Newton’s second law (Sections 
10.2–10.3)

■■ Rotational energy (Section 10.4)

Learning Outcomes
After finishing this chapter you should be able to:

LO 11.1 Identify rotational quantities as vectors and determine their 
directions.

LO 11.2 Calculate vector cross products.

LO 11.3 Determine the angular momentum of a system.

LO 11.4 Solve problems involving conservation of angular momentum.

LO 11.5 Explain precession and determine its direction.
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11.2 Torque and the Vector Cross Product 197
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u

FIGURE 11.1 The right-hand rule gives the 
direction of the angular velocity vector.

ru
a
u

v
u

t
uF

S

u

FIGURE 11.3 The torque vector is 
 perpendicular to r

!
 and F

S
 and in the same 

direction as the angular acceleration. 
Here F

S
 lies in the plane of the disk.

By analogy with the linear acceleration vector, we define angular acceleration as the 
rate of change of the angular velocity vector:

 a
!

= lim
∆tS0

 
∆ v

!

∆t
=

d v
!

dt
   1angular acceleration vector2 (11.1)

where, as with Equation 10.4, we get the average angular acceleration if we don’t take the limit.
Equation 11.1 says that angular acceleration points in the direction of the change in 

angular velocity. If that change is only in magnitude, then v
!
 simply grows or shrinks, and 

a
!
 is parallel or antiparallel to the rotation axis (Fig. 11.2a, b). But a change in direction is 

also a change in angular velocity. When the angular velocity v
!
 changes only in direction, 

then the angular acceleration vector is perpendicular to v
!
 (Fig. 11.2c). More generally, both 

the  magnitude and direction of v
!
 may change; then a

!
 is neither parallel nor perpendicular 

to v
!
. These cases are exactly analogous to the situations we treated in Chapter 3, where ac-

celeration parallel to velocity changes only the speed, while acceleration perpendicular to 
velocity changes only the direction of motion.

a
u

a
u

a
u

vfinal
u

vfinal
u

vfinal
u

vinitial
uvinitial

u

vinitial
u

(a) (b) (c)

FIGURE 11.2  Angular acceleration can (a) increase or (b)  decrease the 
magnitude of the angular velocity, or (c) change its direction.

11.2 Torque and the Vector Cross Product
LO 11.2 Calculate vector cross products.

Figure 11.3 shows a wheel, initially stationary, with a force applied at its rim. The torque 
associated with this force sets the wheel rotating in the direction shown; applying the 
right-hand rule, we see that angular velocity vector v

!
 points upward. Since the angular 

speed is increasing, the angular acceleration a
!
 also points upward. So that our rotational 

analog of Newton’s law—angular acceleration proportional to torque—will hold for direc-
tions as well as magnitudes, we’d like the torque to have an upward direction, too.

We already know the magnitude of the torque: From Equation 10.10, it’s t = rF sin u, 
where u is the angle between the vectors r

!
 and F

S
 in Fig. 11.3. We define the direction of 

the torque as being perpendicular to both r
!
 and F

S
, as given by the right-hand rule shown in 

Fig. 11.4. You can verify that this rule gives an upward direction for the torque in Fig. 11.3.

The Cross Product
The magnitude of the torque, t = rF sin u, is determined by the magnitudes of the vec-
tors r

!
 and F

S
and the angle between them; the direction of the torque is determined by the 

11.1 You’re standing on the sidewalk watching a car go by on the adjacent road, 
moving from left to right. The direction of the angular velocities of the car’s wheels 
is (a) toward the sidewalk; (b) in the direction of the car’s forward motion; (c)  toward 
the back of the car; (d) vertically upward; (e) away from the sidewalk; (f) different 
for each of the four wheels.

G
O

T 
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?

The angular acceleration  
vector aS …

… is the rate of change of the angular velocity vS.
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t (out of page)u

F
S

Start with the
vectors tail to
tail.

Curl your fingers in a
direction that rotates
the first vector (r )
onto the second (F ).

Then your
thumb points
in the direction
of t = r * F.

u

uu

S

S

FIGURE 11.4 The right-hand rule for the 
direction of torque.

11.2 The figure shows four pairs of force and radius vectors and eight torque vec-
tors. Which numbered torque vector goes with each pair of force–radius vectors? 
Consider only direction, not magnitude.
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u
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u
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u
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u
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vectors r
!
 and F

S
 through the right-hand rule. This operation—forming from two vectors A

S

and B
S

 a third vector C
S

 of magnitude C = AB sin u and direction given by the right-hand 
rule—occurs frequently in physics and is called the cross product:

The cross product C
S

 of two vectors A
S

 and B
S

 is written

C
S

= A
S

* B
S

and is a vector with magnitude AB sin u, where u is the angle between A
S

 and B
S

, and 
where the direction of C

S
 is given by the right-hand rule of Fig. 11.4.

Torque is an instance of the cross product, and we can write the torque vector simply as

 t
!

= r
!

* F
S
  1torque vector2 (11.2)

Both direction and magnitude are described succinctly in this equation.

Tactics 11.1 MULTIPLYING VECTORS

The cross product A
S

* B
S

 is the second way of multiplying vectors that you’ve encountered. The first was 
the scalar product A

S # B
S

= AB cos u introduced in Chapter 6 and also called the dot product. Both depend 
on the product of the vector magnitudes and on the angle between them. But where the dot product depends on 
the cosine of the angle and is therefore maximum when the two vectors are parallel, the cross product depends 
on the sine and is therefore maximum for perpendicular vectors. There’s another crucial distinction between 
dot product and cross product: The dot product is a scalar—a single number, with no direction—while the 
cross product is a vector. That’s why AB cos u completely specifies the dot product, but AB sin u gives only the 
magnitude of the cross product; it’s also necessary to specify the direction via the right-hand rule.

The cross product obeys the usual distributive rule: A
S

* 1B
S

+ C
S2 = A

S
* B

S
+ A

S
* C

S
, but it’s not 

commutative; in fact, as you can see by rotating F
S

onto r
!
 instead of r

!
 onto F

S
in Fig. 11.4, B

S
* A

S
= - A

S
* B

S
.

With the vectors A
S

 and B
S

 in component form, we developed Equation 6.4 to express the dot product in 
terms of components, as you can show in Problem 51:

A
S

* B
S

= 1Ay Bz - Az By2 in + 1Az Bx - Ax Bz2 jn + 1Ax By - Ay Bx2kn

This expression is more complicated than Equation 6.4 for the dot product because the cross product is a vector, 
and also because that vector is perpendicular to both A

S
 and B

S
.

Torque is a vector 
quantity…

…given by the cross product of 
vectors rS and F

S
.

rS is a vector from an arbitrary point 
to the point where the force is applied.

F
S

 is the force that 
produces the torque.
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11.3 Angular Momentum 199

A particle of mass m moves counterclockwise at speed v around a cir-
cle of radius r in the x9y plane. Find its angular momentum about 
the center of the circle, and express the answer in terms of its angular 
velocity.

INTERPRET We’re given the motion of a particle—namely, uniform 
motion in a circle—and asked to find the corresponding angular mo-
mentum and its relation to angular velocity.

DEVELOP Figure 11.5 is our sketch, showing the particle in its circu-
lar path. We added an xyz coordinate system with the circular path in 
the x9y plane. Equation 11.3, L

S
= r

!
* p

!
, gives the angular momen-

tum in terms of the position vector r
!
 and the linear momentum p

!
. We 

know that linear momentum is the product mv
!
, so we have everything 

we need to apply Equation 11.3. We’ll then express our result in terms 
of angular velocity using v = vr.

EVALUATE Figure 11.5 shows that the linear momentum mv
!
 is per-

pendicular to r
!
, so sin u = 1 in the cross product, and the magnitude 

of the angular momentum becomes L = mvr. Applying the right-
hand rule shows that L

S
 points in the z-direction, so we can write 

L
S

= mvrkn. But v = vr, and the right-hand rule shows that v
!
, too, 

points in the z-direction. So we can write

L
S

= mvrkn = mr2v kn = mr2 v
!

ASSESS Make sense? The faster the particle is going, the more linear 
momentum it has. But angular momentum depends on linear momen-
tum and distance from the rotation axis, so at a given angular speed, 
the angular momentum scales as the square of the radius.

EXAMPLE 11.1 Calculating Angular Momentum: A Single Particle
Worked Example with Variation Problems

v is perpendicular
to r.

u

u

FIGURE 11.5 Finding the angular momentum L
S

 of a particle moving 
in a circle.

11.3 Angular Momentum
LO 11.3 Determine the angular momentum of a system.

We first used Newton’s law in the form F
S

= ma
!
, but later found the momentum form 

F
S

= d p
!
/dt especially powerful. The same is true in rotational motion: To explore fully 

some surprising aspects of rotational dynamics, we need to define angular momentum 
and develop a relation between its rate of change and the applied torque. Once we’ve done 
that, we’ll be able to answer questions like why a gyroscope doesn’t fall over and how 
spinning protons yield MRI images of your body’s innards.

Like other rotational quantities, angular momentum is always specified with respect to 
a given point or axis. We begin with the angular momentum L

S
of a single particle:

If a particle with linear momentum p
!
 is at position r

!
 with respect to some point, then its 

angular momentum L
S

about that point is defined as

 L
S

= r
!

* p
!
  1angular momentum2 (11.3)

L
S

 is the angular momentum 
vector for a single particle.

It’s given by the cross product 
of vectors rS and pS.

r
!
 is the particle’s position relative 

to an arbitrary point or axis.

pS is the particle’s linear 
momentum mv

!
.
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200 Chapter 11 Rotational Vectors and Angular Momentum

Angular momentum is the rotational analog of linear momentum p
!

= mv
!
. Since ro-

tational inertia I is the analog of mass m, and angular velocity v
!
 is the analog of linear 

velocity v
!
, you might expect that we could write

 L
S

= I v
!
 (11.4)

The rotational inertia of a single particle is mr2, so you can see that the result of Example 
11.1 can indeed be written L

S
= I v

!
. Equation 11.4 also holds for symmetric objects like 

a wheel or sphere rotating about a fixed axis. But in more complicated cases, Equation 
11.4 may not hold; surprisingly, L

S
and v

!
 can even have different directions. We’ll leave 

such cases for more advanced courses.
We emphasize again that angular momentum isn’t absolute, but—as with other rota-

tional quantities—it depends on your choice of rotation axis. If that arbitrariness bothers 
you, note that there’s an analogous arbitrariness to linear momentum. If an object has 
velocity v

!
 with respect to you, then it’s got linear momentum p

!
= mv

!
—but only as mea-

sured by you or others at rest with respect to you. Jump into another reference frame, 
where the object is moving with some other velocity v

!
′, and now its momentum has the 

different value mv
!
′—which might even be zero if you’re at rest with respect to the object. 

No problem; you just have to know what reference frame you’re working in. Analogously, 
with angular momentum, you have to know what rotation axis or point you’re considering 
as you calculate L

S
.

Torque and Angular Momentum
We’re now ready to develop the full vector analog of Newton’s law in the form F

S
= dP

S
/dt. 

Recall that F
S

here is the net external force on a system, and P
S

 is the system’s momentum—
the vector sum of the momenta of its constituent particles. Can we write, by analogy, 
t
!

= dL
S

/dt? To see that we can, we write the angular momentum of a system as the sum of 
the angular momenta of its constituent particles:

L
S

= a  L
S

i = a  1r
!
i * p

!
i2

where the subscript i refers to the ith particle. Differentiating gives

dL
!

dt
= a  ar

!
i *

d p
!
i

dt
+

d r
!
i

dt
* p

!
ib

where we’ve applied the product rule for differentiation, being careful to preserve the or-
der of the cross product since it’s not commutative. But dr

!
i /dt is the velocity of the ith 

particle, so the second term in the sum is the cross product of velocity v
!
 and momentum 

p
!

= mv
!
. Since these two vectors are parallel, their cross product is zero, and we’re left 

with only the first term in the sum:

dL
!

dt
= a  ar

!
i *

d p
!
i

dt
b = a  1r

!
i * F

S
i2

where we’ve used Newton’s law to write d p
!
i /dt = F

S
i. But r

!
i * F

S
i is the torque t

!
i on the 

ith particle, so

dL
!

dt
= a  t

!
i

The sum here includes both external and internal torques—the latter due to interactions 
among the particles of the system. Newton’s third law assures us that internal forces cancel 
in pairs, but what about torques? They’ll cancel, too, provided the internal forces act along 
lines joining pairs of particles. This condition is stronger than Newton’s third law alone, 
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v
u

v
u

Arms and leg
far from axis:
large I, small v

Mass closer to
axis:  small I,
large v, same
L = Iv

(a)

(b)

FIGURE 11.6 As the skater’s rotational 
inertia decreases, her angular speed in-
creases to conserve angular momentum.
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1

2

R

P3

v2
u

v3
u

v1
u 11.3 The figure shows three particles with the same mass m, all moving with the 

same constant speed v. Particle (1) moves in a circle of radius R about the point P, 
 particle (2) in a straight line whose closest approach to point P is the same as the 
 circle’s radius R, and particle (3) in a straight line that passes through P. Which of 
these statements correctly describes the magnitudes of the particles’ angular momenta?

(a) L1 = L2 = L3 ≠ 0;
(b) L1 7 0, L2 = L3 = 0;

(c) L1 7 L2 7 L3 = 0;
(d) L2 = L1 ≠ 0, L3 = 0

and it usually but not always holds. When it does, the sum of torques reduces to the net 
external torque, and we have

 dL
!

dt
= t

!
  a rotational analog,

Newton>s second lawb  (11.5)

where t
!
 is the net external torque. Thus our analogy between linear and rotational motion 

holds for momentum as well as for the other quantities we’ve discussed.

dL
!>dt is the rate of change of a 

system’s angular momentum. It’s 
analogous to the rate of change 
of linear momentum, dP

!>dt.

t
!
 is the net external 

torque applied to the 
 system. It’s analogous to 
the net external force F

S
.

11.4 Conservation of Angular Momentum
LO 11.4 Solve problems involving conservation of  angular momentum.

When there’s no external torque on a system, Equation 11.5 tells us that angular momen-
tum is constant. This statement—that the angular momentum of an isolated system cannot 
change—is of fundamental importance in physics, and applies to systems ranging from sub-
atomic particles to galaxies. Because a composite system can change its configuration—
and hence its rotational inertia I—conservation of angular momentum requires that angular 
speed increase if I decreases, and vice versa. The classic example is a figure skater who 
starts spinning relatively slowly with arms and leg extended and then pulls in her limbs to 
spin rapidly (Fig. 11.6). A more dramatic example is the collapse of a star at the end of its 
lifetime, explored in the next example.

A star rotates once every 45 days. At the end of its life, it undergoes 
a supernova explosion, hurling much of its mass into the interstel-
lar medium. But the inner core of the star, whose radius is initially 
20 Mm, collapses into a neutron star only 6 km in radius. As it ro-
tates, the neutron star emits regular pulses of radio waves, making 
it a pulsar. Calculate the rotation rate, which is the same as the 
pulse rate that radio astronomers detect. Consider the core to be a 
uniform sphere, and assume that no external torques act during the 
collapse.

INTERPRET Here we’re given the radius and rotation rate of the stel-
lar core before collapse and asked for the rotation rate afterward. That 

kind of “before and after” question often calls for the application of a 
conservation law. In this case there’s no external torque, so it’s angular 
momentum that’s conserved.

DEVELOP The magnitude of the angular momentum is Iv, so our 
plan is to write this expression before and after collapse, and then 
equate the two to find the new rotation rate: I1v1 = I2v2. We need 
to use Table 10.2’s expression for the rotational inertia of a solid 
sphere: I = 2

5 MR2.

EVALUATE Given I, our statement of angular momentum conserva-
tion becomes 25 MR1

2v1 = 2
5 MR2

2v2, or

EXAMPLE 11.2
Conservation of Angular Momentum: Pulsars
Worked Example with Variation Problems

(continued )
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v2 = v1a
R1

R2
b

2

= a 1 rev
45 day

ba2 * 107 m

6 * 103 m
b

2

= 2.5 * 105 rev/day

ASSESS Our answer is huge, about 3 revolutions per second. But that 
makes sense. This neutron star is a fantastic thing—an object with 

more mass than the entire Sun, crammed into a diameter of about 
8 miles. It’s because of that dramatic reduction in radius—and thus in 
rotational inertia—that the pulsar’s rotation rate is so high. Note that 
in a case like this, where v appears on both sides of the equation, it 
isn’t necessary to convert to radian measure.

  ANGULAR MOMENTUM IN STRAIGHT-LINE MOTION You don’t have to be rotating to 
have angular momentum. The girl in Conceptual Example 11.1 was running in a straight 
line, yet she had nonzero angular momentum with respect to the merry-go-round’s rotation 
axis. Problem 40 explores this point further.

CONCEPTUAL EXAMPLE 11.1 On the Playground

A merry-go-round is rotating freely when a boy runs radially inward, 
straight toward the merry-go-round’s center, and leaps on. Later, a girl 
runs tangent to the merry-go-round’s edge, in the same direction the 
edge is moving, and also leaps on. Does the merry-go-round’s angular 
speed increase, decrease, or stay the same in each case?

EVALUATE Because the merry-go-round is rotating freely, the 
only torques are those exerted by the children as they leap on. If 
we consider a system consisting of the merry-go-round and both 
children, then those torques are internal, and the system’s angular 
momentum is conserved. In Fig. 11.7 we’ve sketched the situation, 
before either child leaps onto the merry-go-round and after both 
are on board.

The boy, running radially, carries no angular momentum (his linear 
momentum and the radius vector are in the same direction, making L

S

zero), so you might think he doesn’t change the merry-go-round’s an-
gular speed. Yet he does, because he adds mass and therefore rotational 
inertia. At the same time, he doesn’t change the angular momentum, so 
with I increased, v must therefore drop.

Running in the same direction as the merry-go-round’s tangen-
tial velocity, the girl adds angular momentum to the system—an 
 addition that would tend to increase the angular speed. But she also 
adds mass, and thus increases the rotational inertia—which, as in the 
boy’s case, tends to decrease angular speed. So which wins out? That 
depends on her speed. Without knowing that, we can’t tell whether 
the merry-go-round speeds up or slows down.

ASSESS The angular momentum the girl adds is the product of her 
linear momentum mv and the merry-go-round’s radius R, while she 
increases the rotational inertia by mR2. With small m and large v, she 
could add a lot of angular momentum without increasing the rotational 
inertia significantly. That would increase the merry-go-round’s rotation 
rate. But with a large m and small v—giving the same additional angu-
lar momentum—the increase in rotational inertia would more than off-
set the angular momentum added, and the  merry-go-round would slow 
down. We can’t answer the question about the  merry-go-round’s an-
gular speed without knowing the numbers. “Making the Connection,” 
right column, solves this example for a particular set of values, and you 
can explore a similar situation more generally in Problem 55.

Running straight
toward the axis, the
boy carries no
angular momentum.

Running tangentially, the
girl carries additional
angular momentum.

FIGURE 11.7 Our diagrams for Conceptual Example 11.1.

MAKING THE CONNECTION Take the merry-go-round’s radius to be 
R = 1.3 m, its rotational inertia I = 240 kg #  m2, and its initial angular 
speed vinitial = 11 rpm. The boy’s and girl’s masses are, respectively, 
28 kg and 32 kg, and they run, respectively, at 2.5 m/s and 3.7 m/s. Find 
the merry-go-round’s angular speed vfinal after both children are on board.

EVALUATE Following the conceptual example, take the system to in-
clude the merry-go-round and the two children. Before the children 
leap on, both the merry-go-round itself and the girl carry angular mo-
mentum; afterward, with children and merry-go-round rotating with 
a common angular speed, they all do. Thus conservation of angular 
momentum reads

Ivinitial + mgvg R = Ivfinal + mbR
2vfinal + mgR

2vfinal

Solving with the given numbers yields vfinal = 12 rpm. That’s not 
much change, so the girl’s effect must have been a speed increase, 
but only a little more than enough to overcome the boy’s slowing ef-
fect. Note that the boy’s speed didn’t matter, since it didn’t contribute 
to angular momentum or rotational inertia. And be careful with units: 
You’ve got to express all angular momenta in the same units. That 
means converting angular speeds to radians per second or expressing 
the girl’s angular momentum mgvgR in unusual units, kg #  m2 #  rpm.
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In a popular demonstration, a student stands on a stationary turntable holding a wheel 
rotating about a vertical axis. The student flips the wheel upside down, and the turntable 
starts rotating. Figure 11.8 shows how angular momentum conservation explains this be-
havior. Once again, though, mechanical energy isn’t conserved. In this case the student 
does work, exerting forces that result in torques on her body and the turntable. The end 
result is a greater rotational kinetic energy than was initially present. Ltotal = Lwheel

Lwheel

Lts

Ltotal

The student stands on a
stationary turntable holding a
wheel that spins counterclockwise;
the wheel’s angular momentum
points upward.

She flips the spinning
wheel, reversing its angular 
momentum.  The total angular
momentum is conserved, so 
turntable and student (ts) must 
rotate the other way.

(a)

(b)

S S

S

S

S

FIGURE 11.8 A demonstration of angu-
lar momentum conservation.

11.5 Gyroscopes and Precession
LO 11.5 Explain precession and determine its direction.

Angular momentum—a vector quantity with direction as well as magnitude—is con-
served in the absence of external torques. For symmetric objects, angular momentum 
has the same direction as the rotation axis, so the axis can’t change direction unless 
an external torque acts. This is the principle behind the gyroscope—a spinning object 
whose rotation axis remains fixed in space. The faster a gyroscope spins, the larger its 
angular momentum and thus the harder it is to change its orientation. Gyroscopes are 
widely used for navigation, where their direction-holding capability provides an alterna-
tive to the magnetic compass. More sophisticated gyroscope systems guide missiles and 
submarines and stabilize ships in heavy seas. Space telescopes start and stop gyroscopic 
wheels oriented along three perpendicular axes; to conserve angular momentum, the 
entire telescope reorients itself to point toward a desired astronomical object. This ap-
proach avoids rocket exhaust that would foul the telescope’s superb viewing and ensures 
that there’s no fuel to run out. Instead, solar-generated electricity operates the wheels’ 
drive motors.

If you have a modern smartphone, it, too, contains gyroscopes. They’re used to deter-
mine the phone’s orientation in space; among other uses, they tell the phone how to orient 
its display. You can even get applications that access data from these gyroscopes directly 
(Fig. 11.9a). Smartphone gyroscopes are microelectromechanical systems (MEMS) de-
vices, and they’re based on vibrating rather than rotating structures (Fig. 11.9b). Similar 
MEMS gyroscopes are used in computer mice and video game consoles, and MEMS gy-
ros stabilize the Segway Human Transporter.

Precession
If an object does experience a net external torque, then, according to the rotational ana-
log of Newton’s law (Equation 11.5, dL

S
/dt = t

!
), its angular momentum must change. 

For rapidly rotating objects, the result is the surprising phenomenon of precession—a 
continual change in the direction of the rotation axis, which traces out a circle. You 
may have seen a toy gyroscope or top precess instead of simply falling over as you 
might expect.

Figure 11.10 shows why procession occurs. Here a spinning gyroscope is tilted, so 
there’s a gravitational torque acting on it. Yet it doesn’t fall over. Why not? Apply the 
right-hand rule to the vector r

!
 and the gravitational force vector F

S
g shown in the figure, 

and you’ll see that the torque t
!
 points into the page. So, by t

!
= dL

S
/dt, that must also 

be the direction of the change in the angular momentum L
S

. And that’s just what’s hap-
pening: The change ∆L

S
 in the angular momentum vector is indeed into the page. So the 

11.4 You step onto an initially nonrotating turntable like the one in Fig. 11.8, holding 
a nonrotating wheel with its axis vertical. You’re careful not to exert any torques so that 
the turntable remains stationary as you step on. (1) If you then spin the wheel coun-
terclockwise as viewed from above, will you and the turntable rotate (a) clockwise or 
(b) counterclockwise? (2) If you now turn the spinning wheel upside down, will your 
rotation rate (a) increase, (b) decrease, or (c) remain the same? (3) As you turn the 
wheel upside down, will the direction of rotation (a) remain unchanged or (b) reverse?

G
O

T 
IT

?
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axis of the gyroscope—which coincides with the angular momentum  
vector—moves into the page. Repeat this argument, and you’ll see that 
the change ∆L

S
 is always perpendicular to L

S
; as a result, the  angular 

momentum vector describes a circular path, continually changing in 
direction but not magnitude.

So is there something special about a rotating gyroscope? 
Wouldn’t a nonrotating gyroscope also obey the rotational analog of 
Newton’s law? It would, and you can see that by applying the argu-
ment of the previous paragraph, now assuming that the gyroscope 
in Fig. 11.10 isn’t rotating. The gravitational force and torque are 
still the same, with the torque into the page. The rotational analog 
of Newton’s second law still holds, so the change ∆L

S
 in angular 

momentum is still into the page. But here’s the difference: In this 
case the initial angular momentum is zero, so the gyroscope needs 
to acquire an angular momentum that points into the page. It does 
that by falling over, rotating about its pivot as it does so. Apply the 
right-hand rule to the gyroscope as it falls, and the result is an angu-
lar momentum pointing into the page. Again, the rotational analog 
of Newton’s law is satisfied. If you’re bothered that the gyroscope 
doesn’t rotate about its shaft as before, note that there’s nothing in 
the rotational analog of Newton’s law that says how or about what 

axis something has to rotate. Its falling over is a perfectly good rotational motion— 
although it will end when the gyroscope hits the f loor and nongravitational torques 
 begin to act.

The difference between the rotating and nonrotating gyroscope is like the difference 
between a satellite in circular orbit and a ball that’s simply dropped from rest. Newton’s 
law, F

S
= dp

!
/dt, governs both cases, and says that the change in linear momentum is in 

the direction of the gravitational force. The satellite already has momentum, and since it’s 
going at the right speed for a circular orbit, this change amounts to a change in direction 
only. The ball has no initial momentum, so it acquires a momentum in the direction of 
the force—namely, downward. Substitute “rotating gyroscope” for “satellite,” “nonrotat-
ing gyroscope” for “ball,” “angular momentum” for “linear momentum,” and “torque” for 
“force,” and you’ve got the analogous explanations for the two gyroscope situations.

What determines the rate of precession? You can explore that question qualitatively in 
Question 10, and quantitatively in Problem 61.

Precession on the atomic scale helps explain the medical imaging technique MRI (mag-
netic resonance imaging). Protons in the body’s abundant hydrogen precess because of 
torque resulting from a strong magnetic field. The MRI imager detects signals emitted at 
the precession frequency. By spatially varying the magnetic field, the device localizes the 
precessing protons and thus constructs high-resolution images of the body’s interior.

On a much larger scale, Earth itself precesses. Because of its rotation, the planet 
bulges slightly at the equator. Solar gravity exerts a torque on the equatorial bulge, caus-
ing Earth’s rotation axis to precess with a period of about 26,000 years (Fig. 11.11). The 
axis now points toward Polaris, which for that reason we call the North Star, but it won’t 
always do so. This precession, in connection with deviations in Earth’s orbit from a per-
fect circle, results in subtle climatic changes that are believed to be partly responsible for 
the onset of ice ages.

(a) (b)

FIGURE 11.9 (a) Smartphone displaying data from its internal 
gyroscopes, indicating the phone’s orientation and its rate 
of change. Graph at top shows that the phone was recently 
reoriented. (b) Micro photo of a MEMS gyro like those used in 
smartphones. The entire structure is only about 0.5 mm across.

t
u

r
u

L
S

Fg
S

Change ∆L is also into the page,
so the gyroscope precesses, its tip
describing a circle.

Gravity exerts
a torque about the
pivot;  t = r * F is
into the page.

t points into
the page.

∆L
S

u

u u

S

S

FIGURE 11.10 Why doesn’t the spinning 
gyroscope fall over?

L
S

F2
S

F1
S

Near side is closer
to Sun, so F1 7 F2;
the result is a
torque.

Torque causes axis
to precess.

Earth
Sun

Now 13,000 years
in future

FIGURE 11.11 Earth’s precession. The equa-
torial bulge is highly exaggerated.

G
O

T 
IT

? 11.5 You push horizontally at right angles to the shaft of a 
spinning gyroscope, as shown in the figure. Does the shaft 
move (a) upward, (b) downward, (c) in the direction of 

your push, or (d) opposite the direction of your push?

M11_WOLF8559_04_SE_C11.indd   204 13/11/18   12:32 PM



Summary 205

The rotational analog of Newton’s second law helps explain why bicycles don’t 
tip over. The photo shows why. If the bicycle is perfectly vertical, the gravi-
tational force exerts no torque. But if it tips to the rider’s left, as in the photo, 
then there’s a torque t

!
= r

!
* F

S
g toward the rear. A stationary bicycle, with 

no angular momentum, would respond by tipping further left, rotating about a 
front-to-back axis and gaining angular momentum toward the rear. That’s just as 
Newton requires: a change in angular momentum in the direction of the torque. 
But a moving bicycle already has angular momentum L

S
of its rotating wheels; 

as the photo shows, that angular momentum points generally to the rider’s left. 
A rearward change in angular momentum then requires just a slight turn of the 
front wheel to the left. The rider subconsciously makes that turn, at once satisfy-
ing Newton and helping to keep the bicycle stable.

The physics of cycling is a complicated subject, and the role of angular momen-
tum described here is only one of several effects that contribute to bicycle stability.

APPLICATION  Bicycling

Chapter 11 Summary

Big Idea
The big idea of this chapter is that rotational quantities can be described as vectors, with the vector 
direction at right angles to the plane in which the action—motion, acceleration, or effects associated 
with torque—is occurring. The direction is given by the right-hand rule. A new concept, angular 
momentum, is the rotational analog of linear momentum. The rotational analog of Newton’s law 
equates the net torque on a system with the rate of change of its angular momentum. In the absence 
of a net torque, angular momentum is conserved.

v
u

Curl your fingers in
the direction of
rotation c

cthen your thumb
gives the direction
of the angular velocity.

The vector cross product is a way of multiplying two vectors A
S

and B
S

to produce a third vector C
S

of magnitude C = AB sin u and direction at right angles to the other two, as given by the right-hand 
rule. It’s written as

C
S

= A
S

* B
S

Torque is a vector defined as the cross product of the radius vector r
!
 from a given axis to the point 

where a force F
S

is applied:

t
!

= r
!

* F
S

r
u

F
S

t (out of page)

Start with the
vectors tail to
tail.

Curl your fingers in a
direction that rotates
the first vector (r )
onto the second (F ).

Then your
thumb points
in the direction
of t = r * F.

u

u

u

S

Su

t
u

L
S

r
u

Fg
S

r
u

Fg
S

Wheel turns to 
rider’s left,
changing 
angular
momentum 
vector in
direction of 
torque.

Gravitational
torque is toward
back of bicycle,
into page.

Key Concepts and Equations

(continued )
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Angular momentum L
S

is the rotational analog of linear momentum p
!
. It’s always defined with respect to a particular axis. For a point particle at 

position r
!
 with respect to the axis, moving with linear momentum p

!
= mv

!
, the angular momentum is defined as

L
S

= r
!

* p
!

For a symmetric object with rotational inertia I rotating with angular velocity v
!
, angular momentum becomes L

S
= I v

!
. In terms of angular 

 momentum, the rotational analog of Newton’s law states that the rate of change of angular momentum is equal to the net external torque:

dL
!

dt
= t

!
net

If the external torque on a system is zero, then its angular momentum cannot change.

t
u

r
u

L
S

Fg
S

The axis of the precessing 
gyroscope traces out a circle.

∆L

t points into
the page.

u

S

Applications
Conservation of angular momentum explains the action of gyroscopes—spinning objects whose rotation 
axis remains fixed in the absence of a net external torque. If an external torque is applied, the rotation 
axis undergoes a circular motion known as precession. Precession occurs in systems ranging from sub-
atomic particles to tops and gyroscopes and on to planets.
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Learning Outcomes After finishing this chapter you should be able to:

LO 11.1 Identify rotational quantities as vectors and determine their 
directions.
For Thought and Discussion Questions 11.1, 11.2, 11.3; 
Exercises 11.11, 11.12, 11.13, 11.14

LO 11.2 Calculate vector cross products.
For Thought and Discussion Question 11.4; Exercises 
11.15, 11.16, 11.17; Problems 11.35, 11.36, 11.37, 11.38, 
11.42, 11.51, 11.52, 11.64

LO 11.3 Determine the angular momentum of a system.
For Thought and Discussion Questions 11.7, 11.8;  
Exercise 11.18, 11.21; Problems 11.39, 11.40, 11.41, 11.43, 
11.44, 11.45, 11.54, 11.56, 11.60, 11.63, 11.64

LO 11.4 Solve problems involving conservation of angular 
momentum.
For Thought and Discussion Questions 11.5, 11.6; Problems 
11.46, 11.47, 11.48, 11.49, 11.50, 11.53, 11.55, 11.57, 11.58, 
11.62

LO 11.5 Explain precession and determine its direction.
For Thought and Discussion Questions 11.9, 11.10; 
Problem 11.61

For Thought and Discussion

1. Does Earth’s angular 
velocity vector point 
north or south?

2. Figure 11.12 shows 
four forces acting on 
a body. In what direc-
tions are the associated 
torques about point O? 
About point P?

3. You stand with your right arm extended horizontally to the 
right. What’s the direction of the gravitational torque about your 
shoulder?

4. What’s the angle between two vectors if their dot product is equal 
to the magnitude of their cross product?

5. Why does a tetherball move faster as it winds up its pole?
6. A group of polar bears is standing around the edge of a slowly 

rotating ice floe. If the bears all walk to the center, what happens 
to the rotation rate?

7. Tornadoes in the northern hemisphere rotate counterclockwise as 
viewed from above. A far-fetched idea suggests that driving on the 
right side of the road may increase the frequency of tornadoes. Does 
this idea have any merit? Explain in terms of the angular momen-
tum imparted to the air as two cars pass going in opposite directions.

F2
S

F1
S

F3
S

F4
S

O
P

FIGURE 11.12 For Thought and 
Discussion 2
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the wheel, where it sticks 46.0 cm from the rotation axis. What’s 
the wheel’s subsequent angular speed?

24. A 3.0-m-diameter merry-go-round with rotational inertia 
120 kg#m2 is spinning freely at 0.50 rev/s. Four 25-kg children 
sit suddenly on the edge of the merry-go-round. (a) Find the new 
angular speed, and (b) determine the total energy lost to friction 
between children and merry-go-round.

25. A uniform, spherical cloud of interstellar gas has mass 
2.0 * 1030 kg, has radius 1.0 * 1013 m, and is rotating with 
period 1.4 * 106 years. The cloud collapses to form a star 
7.0 * 108 m in radius. Find the star’s rotation period.

26. A skater has rotational inertia 4.2 kg#m2 with his fists held to 
his chest and 5.7 kg#m2 with his arms outstretched. The skater 
is spinning at 3.0 rev/s while holding a 2.5-kg weight in each 
outstretched hand; the weights are 76 cm from his rotation axis. 
If he pulls his hands in to his chest, so they’re essentially on his 
rotation axis, how fast will he be spinning?

Example Variations
The following problems are based on two worked examples from the 
text. Each set of four problems is designed to help you make connec-
tions that enhance your understanding of physics and to build your 
confidence in solving problems that differ from ones you’ve seen be-
fore. The first problem in each set is essentially the example problem 
but with different numbers. The second problem presents the same sce-
nario as the example but asks a different question. The third and fourth 
problems repeat this pattern but with entirely different scenarios.

27. Example 11.1: A 2150-kg SUV going at 65 km/h rounds a circu-
lar turn of radius 175 m on a horizontal road. What’s the magni-
tude of its angular momentum?

28. Example 11.1: A 1150-kg car rounds a circular turn of radius 125 
m, toward the left, on a horizontal road. Its angular momentum about 
the center of the turn has magnitude 2.86 * 106 kg#m2>s. What are 
(a) the direction of the car’s angular momentum, (b) its speed, and 
(c) the magnitude of its angular momentum about the center of the 
turn, once it’s exited the turn and is on a straight stretch of the road?

29. Example 11.1: You attach a 58.2-g tennis ball to a string and 
whirl it around over your head in a horizontal circle of radius 
84.3 cm, with speed 5.87 m/s. From your perspective, looking 
up at the ball, it’s going counterclockwise. Find (a) the magni-
tude and (b) direction of the ball’s angular momentum about the 
 center of the circular path.

30. Example 11.1: A 58.2-g tennis ball is attached to a 1.00-m-long 
string and whirled around in a horizontal circle with angular 
 momentum of magnitude 0.347 kg#m2>s about the center of 
the circular path. Find (a) the angle the string makes with the 
 horizontal and (b) the ball’s speed. Hint: Consult Example 5.5.

31. Example 11.2: A star is rotating with a period of 34.4 days. At 
the end of its lifetime it sheds its outermost layers, leaving a core 
of radius 4.96 * 108 m. The core then collapses into a white 
dwarf of radius 4.21 * 106 m. Assuming that no torques have 
acted on the core, find its rotation period after the collapse.

32. Example 11.2: Astronomers observe a neutron star of radius 
7.10 km and determine that it’s rotating at 21.9 rpm. If the stellar 
core that collapsed to form the neutron star was originally rotat-
ing with a period of 49.3 days, what was its radius?

33. Example 11.2: The skater in Fig. 11.6a is spinning at 1.66 rev/s. 
With her arms outstretched and leg extended (Fig. 11.6a), her ro-
tational inertia is 3.56 kg#m2. When she pulls in her arms and leg 
(Fig. 11.6b), her rotational inertia drops to 1.21 kg#m2. What’s 
her final spin rate?

COMP

8. Does a particle moving at constant speed in a straight line have 
angular momentum about a point on the line? About a point not 
on the line? In either case, is its angular momentum constant?

9. Why is it easier to balance a basketball on your finger if it’s 
spinning?

10. If you increase the rotation rate of a precessing gyroscope, will 
the precession rate increase or decrease?

Exercises and Problems

Exercises

Section 11.1 Angular Velocity and Acceleration Vectors
11. A car is headed north at 70 km/h. Give the magnitude and direc-

tion of the angular velocity of its 62-cm-diameter wheels.
12. If the car of Exercise 11 makes a 90° left turn lasting 25 s, deter-

mine the average angular acceleration of the wheels.
13. A wheel is spinning at 45 rpm with its axis vertical. After 15 s, 

it’s spinning at 60 rpm with its axis horizontal. Find (a) the mag-
nitude of its average angular acceleration and (b) the angle the 
average angular acceleration vector makes with the horizontal.

14. A wheel is spinning about a horizontal axis with angular speed 140 
rad/s and with its angular velocity pointing east. Find the magni-
tude and direction of its angular velocity after an angular acceler-
ation of 35 rad/s2, pointing 68° west of north, is applied for 5.0 s.

Section 11.2 Torque and the Vector Cross Product
15. A 12-N force is applied at the point x = 3 m, y = 1 m. Find the 

torque about the origin if the force points in (a) the x-direction, 
(b) the y-direction, and (c) the z-direction.

16. A  fo rce  F
S

= 1.3in + 2.7jn N  i s  app l i ed  a t  t he  po in t 
x = 3.0 m, y = 0 m. Find the torque about (a) the origin and (b) the 
point x = -1.3 m, y = 2.4 m.

17. When you hold your arm 
outstretched, it’s supported 
primarily by the deltoid 
muscle. Figure 11.13 
shows a case in which the 
deltoid exerts a 67-N force 
at 15° to the horizontal. If 
the force-application point 
is 18 cm horizontally from the shoulder joint, what torque does the 
deltoid exert about the shoulder?

Section 11.3 Angular Momentum
18. Express the units of angular momentum (a) using only the funda-

mental units kilogram, meter, and second; (b) in a form involving 
newtons; (c) in a form involving joules.

19. Use data from Appendix E to make an order-of-magnitude esti-
mate for the angular momentum of our Solar System about the 
galactic center.

20. A gymnast of rotational inertia 62 kg #  m2 is tumbling head over heels 
with angular momentum 470 kg #  m2/s. What’s her angular speed?

21. A 640-g hoop 90 cm in diameter is rotating at 170 rpm about its 
central axis. What’s its angular momentum?

22. A 7.4-cm-diameter baseball has mass 145 g and is spinning at 
2000 rpm. Treating the baseball as a uniform solid sphere, what’s 
its angular momentum?

Section 11.4 Conservation of Angular Momentum
23. A potter’s wheel with rotational inertia 6.40 kg #  m2 is spinning 

freely at 19.0 rpm. The potter drops a 2.70-kg lump of clay onto 

BIO

18 cm

15°

F = 67 N
Deltoid muscle

FIGURE 11.13 Exercise 17
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find (a) its angular 
momentum about 
the pivot P and (b) 
the constant torque 
applied about  P 
to achieve this an-
gular momentum in 0.25 s. (Hint : Remember the parallel-axis 
theorem.)

45. As an automotive engineer, you’re charged with redesigning a 
car’s wheels with the goal of decreasing each wheel’s angular mo-
mentum by 30% for a given linear speed of the car. Other design 
considerations require that the wheel diameter go from 38 cm to 
35 cm. If the old wheel had rotational inertia 0.32 kg #  m2, what 
do you specify for the new rotational inertia?

46. A turntable of radius 25 cm and rotational inertia 0.0154 kg #  m2 
is spinning freely at 22.0 rpm about its central axis, with a 19.5-g 
mouse on its outer edge. The mouse walks from the edge to the 
center. Find (a) the new rotation speed and (b) the work done by 
the mouse.

47. A 17-kg dog is standing on the edge of a stationary, frictionless 
turntable of rotational inertia 95 kg #  m2 and radius 1.81 m. The 
dog walks once around the turntable. What fraction of a full cir-
cle does the dog’s motion make with respect to the ground?

48. A physics student is standing on an initially motionless, frictionless 
turntable with rotational inertia 0.31 kg #  m2. She’s holding a wheel 
with rotational inertia 0.22 kg #  m2 spinning at 130 rpm about a ver-
tical axis, as in Fig. 11.8. When she turns the wheel upside down, 
student and turntable begin rotating at 70 rpm. (a) Find the stu-
dent’s mass, considering her to be a 30-cm-diameter cylinder. (b) 
Neglecting the distance between the axes of the turntable and wheel, 
determine the work she did in turning the wheel upside down.

49. You’re choreographing your school’s annual ice show. You call 
for eight 60-kg skaters to join hands and skate side by side in a 
line extending 12 m. The skater at one end is to stop abruptly, so 
the line will rotate rigidly about that skater. For safety, you don’t 
want the fastest skater to be moving at more than 8.0 m/s, and 
you don’t want the force on that skater’s hand to exceed 300 N. 
What do you determine is the greatest speed the skaters can have 
before they execute their rotational maneuver?

50. A day on Mars lasts 1.03 Earth days, which is inconvenient be-
cause Mars time keeps slipping behind Earth time. Suppose that 
residents of a future Martian settlement decide to solve this prob-
lem by launching a huge projectile horizontally off the Martian 
equator, in such a direction as to increase the planet’s rotation 
rate just enough to make the length of the Martian day equal to 
that of Earth’s day. If their technology can achieve a launch speed 
of 2.44 Mm/s, what mass of projectile will give the desired re-
sult? You can approximate Mars as a uniform solid sphere.

51. S h o w  t h a t  t h e  c r o s s  p r o d u c t  o f  t w o  v e c t o r s 
A
S

= Ax in + Ay jn + Azkn and B
S

= Bx in + By jn + Bzkn is given by 
A
S

* B
S

= 1AyBz - AzBy2 in + 1AzBx - AxBz2 jn + 1AxBy - AyBx2kn

. (Hint: You’ll need to work out cross products of all possible 
pairs of the unit vectors in, jn, and kn—including with themselves.)

52. If you’re familiar with determinants, show that the cross product 
can be written as a determinant:

A
S

* B
S

= †
in jn kn

Ax Ay Az

Bx By Bz

†

(Hint: See the preceding problem.)
53. Jumbo is back! Jumbo is the 4.8-Mg elephant from Example 9.4. 

This time he’s standing at the outer edge of a 15-Mg turntable of 

CH

34. Example 11.2: A skater has rotational inertia 5.31 kg#m2 with his 
arms outstretched and a baseball glove on each hand; the pocket 
of each glove is 123 cm from his rotation axis. He’s spinning 
with angular velocity pointing upward and with magnitude 0.950 
rev/s. He catches a 146-g baseball moving at 24.7 m/s perpen-
dicular to his arms and heading straight toward the pocket of his 
glove. Find his subsequent spin rate if he catches the ball with (a) 
his left hand and (b) his right hand.

Problems
35. You slip a wrench over a bolt. Taking the origin at the bolt, the 

other end of the wrench is at x = 18 cm, y = 5.5 cm. You apply 
a force F

S
= 88in - 23jn N to the end of the wrench. What’s the 

torque on the bolt?
36. Vector A

S
points 30° counterclockwise from the x-axis. Vector B

S

has twice the magnitude of A
S

. Their product A
S

* B
S

has magni-
tude A2 and points in the negative z-direction. Find the direction 
of vector B

S
.

37. A baseball player extends his arm straight up to catch a 145-g 
baseball moving horizontally at 42 m/s. It’s 63 cm from the play-
er’s shoulder joint to the point the ball strikes his hand, and his 
arm remains stiff while it rotates about the shoulder during the 
catch. The player’s hand recoils 5.00 cm horizontally while he 
stops the ball. What average torque does the player’s arm exert 
on the ball?

38. Show that A
S # 1A

S
* B

S2 = 0 for any vectors A
S

 and B
S

.
39. A thin rod of length a and mass m is rotating about a perpendic-

ular axis through its center. The rotation rate is such that the ends 
of the rod move with speed v. Find an expression for the rod’s 
angular momentum about its rotation axis.

40. A particle of mass m moves in a straight line at constant speed 
v. Show that its angular momentum about a point located a per-
pendicular distance b from its line of motion is mvb regardless of 
where the particle is on the line.

41. Two identical 1800-kg cars are traveling in opposite directions at 
83 km/h. Each car’s center of mass is 3.2 m from the center of the 
highway (Fig. 11.14). What are the magnitude and direction of 
the angular momentum of the system consisting of the two cars, 
about a point on the centerline of the highway?

42. The dot product of two vectors is half the magnitude of their 
cross product. What’s the angle between the two vectors?

43. Biomechanical engineers have developed micromechanical de-
vices for measuring blood flow as an alternative to dye injection 
following angioplasty to remove arterial plaque. One experimen-
tal device consists of a 300@µm@diameter, 2.0@µm@thick silicon 
rotor inserted into blood vessels. Moving blood spins the rotor, 
whose rotation rate provides a measure of blood flow. This de-
vice exhibited an 800-rpm rotation rate in tests with water flows 
at several m/s. Treating the rotor as a disk, what was its angular 
momentum at 800 rpm? (Hint: You’ll need to find the density of 
silicon.)

44. Figure 11.15 shows the dimensions of a 880-g wooden base-
ball bat whose rotational inertia about its center of mass is 
0.048 kg #  m2. If the bat is swung so its far end moves at 50 m/s, 

BIO

BIO

3.2 m
3.2 m

FIGURE 11.14 Problem 41

43 cm 31 cm

P CM
⊗

FIGURE 11.15 Problem 44
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60. A time-dependent torque given by t = a + b sin ct is applied to 
an object that’s initially stationary but is free to rotate. Here a, b, 
and c are constants. Find an expression for the object’s angular 
momentum as a function of time, assuming the torque is first ap-
plied at t = 0.

61. Consider a rapidly spinning gyroscope whose axis is precessing 
uniformly in a horizontal circle of radius r, as shown in Fig. 11.10. 
Apply t

!
= dL

S
/dt to show that the angular speed of precession 

about the vertical axis through the center of the circle is mgr/L.
62. When a star like our Sun exhausts its fuel, thermonuclear reac-

tions in its core cease, and it collapses to become a white dwarf. 
Often the star will blow off its outer layers and lose some mass 
before it collapses. Suppose a star with the Sun’s mass and radius 
is rotating with period 25 days and then it collapses to a white 
dwarf with 60% of the Sun’s mass and a rotation period of 131 s. 
What’s the radius of the white dwarf? Compare your answer with 
the radii of Sun and Earth.

63. Pulsars—the rapidly rotating neutron stars described in Example 
11.2—have magnetic fields that interact with charged particles 
in the surrounding interstellar medium. The result is torque that 
causes the pulsar’s spin rate and therefore its angular momentum 
to decrease very slowly. The table below gives values for the ro-
tation period of a given pulsar as it’s been observed at the same 
date every 5 years for two decades. The pulsar’s rotational inertia 
is known to be 1.12 * 1038 kg # m2. Make a plot of the pulsar’s 
angular momentum over time, and use the associated best-fit 
line, along with the rotational analog of Newton’s law, to find the 
torque acting on the pulsar.

Year of observation 1995 2000 2005 2010 2015

Angular momentum 
(1037 kg # m2/s)

7.844 7.831 7.816 7.799 7.787

64. A system has total angular mo-
mentum L

S
about an axis O. Show 

that the system’s angular mo-
mentum about a parallel axis O′ 
is given by L

S
′ = L - h

!
* p

!
,  

where p
!
 is the system’s linear 

momentum and h
!
 is a vector 

from O to O′ (see Fig. 11.20, 
which also shows vectors r

!
i and 

r
!
i
′ from each axis to the system’s 

ith mass element mi).

Passage Problems
Figure 11.21 shows a demonstration gyroscope, consisting of a solid 
disk mounted on a shaft. The disk spins about the shaft on essentially 
frictionless bearings. The shaft is mounted on a stand so it’s free to 

DATA

CH

radius 8.5 m, rotating with angular velocity 0.15 s- 1 on friction-
less bearings. Jumbo then walks to the center of the turntable. 
Treating Jumbo as a point mass and the turntable as a solid disk, 
find (a) the angular velocity of the turntable once Jumbo reaches 
the center and (b) the work Jumbo does in walking to the center.

54. An anemometer for measur-
ing wind speeds consists of 
four small cups, each with 
mass 124 g, mounted a pair 
of 32.6-cm-long rods with 
mass 75.7 g each, as shown 
in Fig. 11.16. Find the  angular 
momentum of the anemom-
eter when it’s spinning at 
12.4 rev/s. You can treat the 
cups as point masses.

55. A turntable has rotational inertia I 
and is rotating with angular speed 
v about a frictionless vertical axis. 
A wad of clay with mass m is 
tossed onto the turntable and sticks 
a distance d from the rotation axis. 
The clay hits horizontally with its 
velocity v

!
 at right angles to the 

turntable’s radius, and in the same 
direction as the turntable’s rotation (Fig. 11.17). Find expressions 
for v that will result in (a) the turntable’s angular speed dropping 
to half its initial value, (b) no change in the turntable’s angular 
speed, and (c) the angular speed doubling.

56. About 99.9% of the solar system’s total mass lies in the Sun. 
Using data from Appendix E, estimate what fraction of the solar 
system’s angular momentum about its center is associated with 
the Sun. Where is most of the rest of the angular momentum?

57. You’re a civil engineer for an advanced civilization on a solid 
spherical planet of uniform density. Running out of room for the 
expanding population, the government asks you to redesign your 
planet to give it more surface area. You recommend reshaping the 
planet, without adding any material or angular momentum, into 
a hollow shell whose thickness is one-fifth its outer radius. How 
much will your design increase the surface area, and how will it 
change the length of the day?

58. In Fig. 11.18, the lower 
disk, of mass 440 g 
and radius 3.5 cm, is 
rotating at 180 rpm 
on a frictionless shaft 
of negligible radius. 
The upper disk,  of 
mass 270 g and radius 
2.3 cm, is initially not 
rotating. It drops freely 
down onto the lower 
disk, and frictional forces bring the two disks to a common rota-
tional speed. Find (a) that common speed and (b) the fraction of 
the initial kinetic energy lost to friction.

59. A solid ball of mass M and radius R is spinning with angular ve-
locity v0 about a horizontal axis. It drops vertically onto a sur-
face where the coefficient of kinetic friction with the ball is m

k
 

(Fig. 11.19). Find expressions for (a) the final angular velocity 
once it’s achieved pure rolling motion and (b) the time it takes to 
achieve this motion.

CH

CH

CH

32.6 cm

FIGURE 11.16 Problem 54

v
u

d

FIGURE 11.17 Problem 55

Initial Final

FIGURE 11.18 Problem 58

Initial Final

v0

v

FIGURE 11.19 Problem 59

O′
O

ri′
u

ri
u

h
u

mi

FIGURE 11.20 Problem 64
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210 Chapter 11 Rotational Vectors and Angular Momentum

68.  If the system is precessing, and only the 
disk’s rotation rate is increased, the preces-
sion rate will
a. decrease.
b. increase.
c. stay the same.
d. become zero.

Answers to Chapter Questions

Answer to Chapter Opening Question
The rotation axis precesses—changes orientation—over a 26,000-
year cycle. This alters the relation between sunlight intensity and 
seasons, triggering ice ages.

Answers to GOT IT? Questions
11.1 (e)
11.2 (1) t

!
3; (2) t

!
5; (3) t

!
1; (4) t

!
4

11.3 (d)
11.4  (1) (a) to keep the total angular momentum at 0; 

(2) (c) so L
total

 remains 0; (3) (b)
11.5 (a)

pivot both horizontally and vertically. A weight 
at the far end of the shaft balances the disk, so in 
the configuration shown there’s no torque on the 
system. An arrowhead mounted on the disk end 
of the shaft indicates the direction of the disk’s 
angular velocity.
65. If you push on the shaft between the arrow-

head and the disk, pushing horizontally away 
from you (i.e., into the page in Fig. 11.21), 
the arrowhead end of the shaft will move
a. away from you (i.e., into the page).
b. toward you (i.e., out of the page).
c. downward.
d. upward.

66. If you push on the shaft between the arrowhead and the disk, 
pushing directly upward on the bottom of the shaft, the arrow-
head end of the shaft will move
a. away from you (i.e., into the page).
b. toward you (i.e., out of the page).
c. downward.
d. upward.

67. If an additional weight is hung on the left end of the shaft, the 
arrowhead will
a. pivot upward until the weighted end of the shaft hits the base.
b. pivot downward until the arrowhead hits the base.
c. precess counterclockwise when viewed from above.
d. precess clockwise when viewed from above.

Nonspinning
weight

Disk spinning
on frictionless
bearing

Arrowhead

Stand
Base

Shaft

Shaft can pivot
horizontally and
vertically.

You push in
this region.

FIGURE 11.21 A gyroscope (Passage 
Problems 65–68)

M11_WOLF8559_04_SE_C11.indd   210 13/11/18   12:32 PM



211

The Alamillo Bridge in Seville, Spain, is the work 
of architect Santiago Calatrava. What conditions 
must be met to ensure the stability of this dra-
matic structure?

11
Rotational Vectors 

and Angular 
Momentum

13
Oscillatory Motion

14
Wave Motion12

Static Equilibrium

10
Rotational  

Motion

Skills & Knowledge You’ll Need
■■ Newton’s second law (Section 4.2) and 

its use in two dimensions (Section 5.1)

■■ Torque and how to calculate it 
(Sections 10.2, 11.2)

■■ Your calculus knowledge of second 
derivatives

Learning Outcomes
After finishing this chapter you should be able to:

LO 12.1   Describe quantitatively the conditions for static equilibrium.

LO 12.2    Locate the center of gravity of a system and calculate 
 gravitational torques.

LO 12.3   Solve problems involving static equilibrium.

LO 12.4   Distinguish stable from unstable equilibria.

Architect Santiago Calatrava envisioned the boldly improbable bridge 
shown here. But it took engineers to make sure that the bridge would 

be stable in the face of what looks like an obvious tendency to topple to 
the left. The key to the engineers’ success is static equilibrium—the con-
dition in which a structure or system experiences neither a net force nor 
a net torque. Engineers use the principles of static equilibrium to design 
buildings, bridges, and aircraft. Scientists apply equilibrium principles at 
scales from molecular to astrophysical. Here we explore the conditions for 
static equilibrium required by the laws of physics.

12.1 Conditions for Equilibrium
LO 12.1 Describe quantitatively the conditions for static equilibrium.

A body is in equilibrium when the net external force and torque on it are both 
zero. In the special case when the body is also at rest, it’s in static equilibrium. 
Systems in static equilibrium include not only engineered structures but also 
trees, molecules, and even your bones and muscles when you’re at rest.

We can write the conditions for static equilibrium mathematically by set-
ting the sums of all the external forces and torques both to zero:

 a F
S

i = 0
!
 (12.1)

 a t
!
i = a 1r

!
i * F

S
i2 = 0

!
 (12.2)

Here the subscripts i label the forces F
S

 acting on an object, the positions r
!
 of 

the force-application points, and the associated torques t
!
.

In Chapters 10 and 11, we noted that torque depends on the choice of a 
rotation axis. Actually, the issue is not so much an axis but a single point—the 

The net external force on a system… … must be 0
!
 for static equilibrium.

The net external torque must also be 0
!
.

M12_WOLF8559_04_SE_C12.indd   211 11/13/18   11:55 PM



212 Chapter 12 Static Equilibrium

point of origin of the vectors r
!
 that enter the expression t

!
= r

!
* F

S
. In this chapter, where 

we have objects in equilibrium so they aren’t rotating, we’ll talk of this “pivot point” rather 
than a rotation axis. So the torque t

!
= r

!
* F

S
 depends on the choice of pivot point. Then 

there seems to be an ambiguity in Equation 12.2, since we haven’t specified a pivot point.
For an object to be in static equilibrium it can’t rotate about any point, so Equation 12.2 

must hold no matter what point we choose. Must we then check every possible point? 
Fortunately, no. If the first equilibrium condition holds—that is, if the net force on an object is 
zero—and if the net torque about some point is zero, then the net torque about any other point 
is also zero. Problem 57 leads you through the proof of this statement.

In solving equilibrium problems, we’re thus free to choose any convenient point about 
which to evaluate the torques. An appropriate choice is often the application point of one 
of the forces; then r

!
= 0

!
 for that force, and the associated torque r

!
* F

S
 is zero. This 

leaves Equation 12.2 with one term fewer than it would otherwise have.

EXAMPLE 12.1 Choosing the Pivot: A Drawbridge

The raised span of the drawbridge shown in Fig. 12.1a has its 
 11,000-kg mass distributed uniformly over its 14-m length. Find the 
magnitude of the tension in the supporting cable.

INTERPRET Because the drawbridge is at rest, it’s in static equilibrium.

DEVELOP Here we’ll demonstrate how a sensible choice of the 
pivot point can make solving static-equilibrium problems easier. 
Figure 12.1b is a simplified diagram of the bridge, showing the three 
forces acting on it. These forces must satisfy both Equations 12.1 

and 12.2, but we aren’t asked about the hinge force F
S

h, so it makes 
sense to choose the pivot at the hinge. We can then focus on Equation 
12.2, g  t

!
i = 0

!
, in which the only torques are due to gravity and 

tension. Gravity acts at the center of mass, half the bridge length L 
from the pivot (we’ll prove this shortly). Therefore, it exerts a torque 
tg = -1L/22 mg sin u1, where u1 is the angle between the gravitational 
force and a vector from the pivot. This torque is into the page, or in 
the negative z-direction—hence the negative sign. Similarly, the ten-
sion force, applied at the full length L, exerts a torque tT = LT sin u2. 
Equation 12.2 then becomes

-
L
2

 mg  sin u1 + LT  sin u2 = 0

EVALUATE We solve for the tension T:

T =
mg  sin u1

2  sin u2
=

111,000 kg219.8 m/s221sin 120°2
1221sin 165°2 = 180 kN

ASSESS This tension force is considerably larger than the approxi-
mately 110-kN weight of the bridge because the tension acts at a small 
angle to produce a torque that balances the torque due to gravity.

One point of this example is that a wise choice of the pivot point 
can eliminate a lot of work—in this case, allowing us to solve the prob-
lem using only Equation 12.2. If we had chosen a different pivot, then 
the force Fh would have appeared in the torque equation, and we would 
have had to eliminate it using the force equation, Equation 12.1 (see 
Exercise 11).

30°
15°

14 m

(a)

(b)

We don’t know
the exact direction
of the hinge force.

Tension force
acts at 15° below
the horizontal.

Gravity acts
downward.

FIGURE 12.1 (a) A drawbridge. (b) Our sketch 
showing forces supporting the bridge.

A2
S

B2
S

C2
S

A1
S

B1
S

C1
S

12.1 The figure shows three pairs of forces 
acting on an object. Which pair, acting as 
the only forces on the object, results in static 
equilibrium? Explain why the others don’t.

G
O

T 
IT

?
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12.2 Center of Gravity 213

12.2 Center of Gravity
LO 12.2 Locate the center of gravity of a system and calculate gravitational 

torques.

In Fig. 12.1b we drew the gravitational force acting at the center of mass of the bridge. 
That seems sensible, but is it correct? After all, gravity acts on all parts of an object. How 
do we know that the resulting torque is equivalent to the torque due to a single force act-
ing at the center of mass? To see that it is, consider the gravitational forces on all parts of 
an object of mass M. The vector sum of those forces is Mg

!
, but what about the torques? 

 Figure 12.2 shows the ingredients we need to calculate the torque t
!

= r
!

* F
S

 associated 
with one mass element; summing gives the total torque:

t
!

= a  r
!
i * F

S
i = a  r

!
i * mi g

!
= 1a  mi r

!
i2 * g

!

We can rewrite this equation by multiplying the right-hand side by M/M, with M the  
total mass:

t
!

= a a  mi r
!
i

M
b * M g

!

The term in parentheses is the position of the center of mass (Section 9.1), and the right-
hand term is the total weight. Therefore, the net torque on the body due to gravity is that 
of the gravitational force Mg

!
 acting at the center of mass. In general, the point at which 

the gravitational force seems to act is called the center of gravity. We’ve just proven 
an important point: The center of gravity coincides with the center of mass when the 
gravitational field is uniform.

ri
u

Fi = mig

mi

O

uS

FIGURE 12.2 The gravitational 
force F

S
i on the mass element 

mi produces a torque about 
point O.

CONCEPTUAL EXAMPLE 12.1 Finding the Center of Gravity

Explain how you can find an object’s center of gravity by suspending 
it from a string.

EVALUATE Suspend an object from a string and it will quickly come 
to equilibrium, as shown in Figs. 12.3a and b. In equilibrium there’s 
no torque on the object and so, as Fig. 12.3b shows, its center of 
gravity (CG) must be directly below the suspension point. So far all 
we know is that the CG lies on a vertical line extending from the 
suspension point. But two intersecting lines determine a point, so all 
we have to do is suspend the object from a different point. In its new 
equilibrium, the CG again lies on a vertical line from the suspension 
point. Where the two lines meet is the center of gravity (Fig. 12.3c).

ASSESS Here’s a quick, easy, and practical way to find the center of 
gravity—at least for two-dimensional objects.

MAKING THE CONNECTION Do the experiment! Determine the center 
of gravity of an isosceles triangle made from material of uniform density.

EVALUATE Cut a triangle of cardboard or wood and follow the 
 procedure described here. You should get good agreement with 
 Example 9.3: The triangle’s CG (which is the same as its center of 
mass) lies two-thirds of the way from the apex to the base.

r
u

r
u

Fg
S

Fg
S

There’s a net
torque because
the CG isn’t
directly below
the suspension
point c

cso the 
object swings
until the CG
is below the 
suspension
point.

Line from 
first suspension
point c

cand
from second
point

CG

CG CG

(a) (b) (c)

FIGURE 12.3 Finding the center of gravity.
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214 Chapter 12 Static Equilibrium

12.3 Examples of Static Equilibrium
LO 12.3 Solve problems involving static equilibrium.

It’s frequently the case that all the forces acting on a system lie in a plane, so Equation 12.1— 
the statement that there’s no net force in static equilibrium—becomes two equations for the 
two force components in that plane. And with all the forces in a plane, the torques are all 
at right angles to that plane, so Equation 12.2—the statement that there’s no net torque— 
becomes a single equation. We’ll restrict ourselves to such cases in which the conditions for 
static equilibrium reduce to three scalar equations. Sometimes, as in Example 12.1, the torque 
equation alone will give what we’re looking for, but often that’s not the case.

Solving static-equilibrium problems is much like solving Newton’s law problems; after 
all, the equations for static equilibrium are Newton’s law and its rotational analog, both 
with acceleration set to zero. Here we adapt our Newton’s law strategy from Chapter 4 to 
problems of static equilibrium. The examples that follow illustrate the use of this strategy.

A B

C

INTERPRET Interpret the problem to be sure it’s about static equilibrium, and identify the 
object that you want to keep in equilibrium. Next, identify all the forces acting on the object.

DEVELOP Draw a diagram showing the forces acting on your object. Since you’ve got torques 
to calculate, it’s important to show where each force is applied. So don’t represent your ob-
ject as a single dot but show it semirealistically with the force-application points. This is a  
static-equilibrium problem, so Equations 12.1, g F

S
i = 0

!
, and 12.2, g  t

!
i = 0

!
, apply. Develop 

your solution by choosing a coordinate system that will help resolve the force vectors into 
components and choose its origin at an appropriate pivot point—usually the application point 
of one of the forces. In some problems the unknown is itself a force; in that case, draw a force 
vector that you think is appropriate and let the algebra take care of the signs and angles.

EVALUATE At this point the physics is done, and you’re ready to evaluate your answer. Begin 
by writing the two components of Equation 12.1 in your coordinate system. Then evaluate the 
torques about your chosen origin, and write Equation 12.2 as a single scalar equation showing 
that the torques sum to zero. Now you’ve got three equations, and you’re ready to solve. Since 
there are three equations, there will be three unknowns even if you’re asked for only one final 
answer. You can use the equations to eliminate the unknowns you don’t want.

ASSESS Assess your solution to see whether it makes sense. Are the numbers reasonable? 
Do the directions of forces and torques make sense in the context of static equilibrium? What 
happens in special cases—for example, when a force or mass goes to zero or gets very large, 
or for special values of angles among the various vectors?

PROBLEM-SOLVING STRATEGY 12.1 Static-Equilibrium Problems

A ladder of mass m and length L is leaning against a wall, as shown in 
Fig. 12.4a (next page). The wall is frictionless, and the coefficient of 
static friction between ladder and ground is m. Find an expression for 
the minimum angle f at which the ladder can lean without slipping.

INTERPRET This problem is about static equilibrium, and the ladder 
is the object we want to keep in equilibrium. We identify four forces 
acting on the ladder: gravity, normal forces from the floor and wall, 
and static friction from the ground.

EXAMPLE 12.2
Static Equilibrium: Ladder Safety
Worked Example with Variation Problems

12.2 The dancer in the figure is balanced; that is, she’s in 
static equilibrium. Which of the three lettered points could 
be her center of gravity?

G
O

T 
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?
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12.3 Examples of Static Equilibrium 215

Figure 12.5a shows a human arm holding a pumpkin, with masses and 
distances marked. Find the magnitudes of the biceps tension and the 
contact force at the elbow joint.

INTERPRET This problem is about static equilibrium, with the arm 
and pumpkin together being the object in equilibrium. We identify 
four forces: the weights of the arm and the pumpkin, the biceps ten-
sion, and the contact force at the elbow.

DEVELOP Figure 12.5b shows the four forces, including the elbow 
contact force F

S
c, whose exact direction we don’t know. We can read 

the horizontal and vertical components of Equation 12.1, the force 
balance equation, from the diagram:

 Force, x:      Fcx - T cos u = 0

 Force, y:  T sin u - Fcy - mg - Mg = 0

Choosing the elbow as the pivot eliminates the contact force from the 
torque equation, giving

Torque:  x1T sin u - x2 mg - x3 Mg = 0

where the x values are the coordinates of the three force-application points.

EVALUATE We begin by solving the torque equation for the biceps tension:

T =
1x2 m + x3 M2g

x1 sin u
= 500 N

EXAMPLE 12.3 Static Equilibrium: In the Body

DEVELOP Figure 12.4b shows the four forces and the unknown an-
gle f. We’ll get the minimum angle when static friction is greatest: 
fs = mn1. Since we’re dealing with static equilibrium, Equations 
12.1 and 12.2 apply. In a horizontal/vertical coordinate system, 
Equation 12.1 has the two components:

Force, x:     mn1 - n2 = 0
Force, y:     n1 - mg = 0

Now for the torques: If we choose the bottom of the ladder as the 
pivot, we eliminate two forces from the torque equation. That leaves 

only the gravitational torque and the torque due to the wall’s nor-
mal force; both involve the unknown angle f. The gravitational 
torque is into the page, or the negative z-direction, so it’s given by 
tg = -1L/22mg sin190° - f2 = -1L/22mg cos f. The torque due 
to the wall is out of the page: tw = Ln2 

sin1180° - f2 = Ln2 

sin f. 
We used two trig identities here: sin190° - f2 = cos f  and 
sin1180° - f2 = sin f. Then Equation 12.2 becomes

Torque:  Ln2 sin f -
L
2

 mg cos f = 0

EVALUATE We have three unknowns: n1, n2, and f. The y-component 
of the force equation gives n1 = mg, showing that the ground sup-
ports the ladder’s weight. Using this result in the x-component of the 
force equation gives n2 = mmg. Then the torque equation becomes 
mmgL sin f - 1L/22mg cos f = 0. The term mgL cancels, giving 
m sin f - 1

2  cos f = 0. We solve for the unknown angle f by form-
ing its tangent:

tan f =
sin f

cos f
=

1
2m

ASSESS Make sense? The larger the frictional coefficient, the more 
horizontal force holding the ladder in place, and the smaller the  angle 
at which it can safely lean. On the other hand, a very small frictional 
coefficient makes for a very large tangent—meaning the angle ap-
proaches 90°. With no friction, you could stand the ladder only if it 
were strictly vertical. A word of caution: We worked this example with 
no one on the ladder. With the extra weight of a person, especially 
near the top, the minimum safe angle will be a lot larger. Problem 35 
 explores this situation.

L

f

(a) (b)

FIGURE 12.4 (a) At what angle will the ladder slip? 
(b) Our sketch.

  WATCH THAT ANGLE! Just because there’s an angle marked in a diagram doesn’t 
necessarily mean that’s the angle whose sine you use in calculating torques. In Example 12.2, 
for instance, the angle f isn’t the angle between any of the vector pairs r

!
 and F

S
. As Fig. 

12.4b shows, in fact, one of those angles is 90° - f and the other is 180° - f. Trig identities 
let us write the appropriate sine in terms of f. In the case of the gravitational torques, that 
gives cos f, while for the torque associated with the wall force, it gives sin f. So don’t assume 
that just because you have an angle, it’s the one whose sine goes into calculating the torque!

(continued )

M12_WOLF8559_04_SE_C12.indd   215 11/13/18   11:55 PM



216 Chapter 12 Static Equilibrium

12.4 Stability
LO 12.4 Distinguish stable from unstable equilibria.

If a body is disturbed from equilibrium, it generally experiences nonzero torques or 
forces that cause it to accelerate. Figure 12.6 shows two very different possibilities 
for the subsequent motion of two cones initially in equilibrium. Tip the cone on the 
left slightly, and a torque develops that brings it quickly back to equilibrium. Tip the 
cone on the right, and over it goes. The torque arising from even a slight displacement 
swings the cone permanently away from its original equilibrium. The former situation 
is an example of stable equilibrium, the latter of unstable equilibrium. Nearly all the 
equilibria we encounter in nature are stable, since a body in unstable equilibrium won’t 
remain so. The slightest disturbance will set it in motion, bringing it to a very different 
equilibrium state.

where we used the values in Fig. 12.5 to evaluate the numerical an-
swer. The force equations then give the components of the elbow con-
tact force:

Fcx = T cos u = 87 N and Fcy = T sin u - 1m + M2g = 420 N

The magnitude of the contact force at the elbow then becomes

Fc = 2872 + 4202 N = 430 N.

ASSESS These answers may seem huge—both the biceps tension 
and the elbow contact force are roughly 10 times the weight of the 
pumpkin, on the order of 100 pounds. But that’s because the biceps 
muscle is attached so close to the elbow; given this small lever arm, 
it takes a large force to balance the torque from the weight of pump-
kin and arm. This example shows that the human body routinely 
experiences forces substantially greater than the weights of objects 
it’s lifting.

(a)

(b)

3.6 cm

m = 2.7 kg M = 4.5 kg

14 cm

32 cm

Biceps

Humerus

Elbow pivot 80°
CM
⊗

FIGURE 12.5 (a) Holding a pumpkin. (b) Our sketch.

12.3 The figure shows a person in static equilibrium leaning 
against a wall. Which of the following must be true? (a) There 
must be a frictional force at the wall but not necessarily at the 
f loor. (b) There must be a frictional force at the f loor but not 
necessarily at the wall. (c) There must be frictional forces at both 
f loor and wall.

G
O

T 
IT

?

FIGURE 12.6 Stable (left) and unstable 
(right) equilibria.
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12.4 Stability 217

Figure 12.7 shows a ball in four different equilibrium situations. Situation (a) is stable and 
(b) is unstable. Situation (c) is neither stable nor unstable; it’s called neutrally stable. But 
what about (d)? For small disturbances, the ball will return to its original state, so the equi-
librium is stable. But for larger disturbances—large enough to push the ball over the highest 
points on the hill—it’s unstable. Such an equilibrium is conditionally stable or metastable.

A system disturbed from stable equilibrium can take a while to return to equilibrium. In 
Fig. 12.7a, for example, displacing the ball results in its rolling back and forth. Eventually 
friction dissipates its energy, and it comes to rest at equilibrium. Back-and-forth motion is 
common to many systems—from nuclei and atoms to skyscrapers and bridges—that are 
displaced from stable equilibrium. Such motion is the topic of the next chapter.

Stability is closely associated with potential energy. Because gravitational potential energy 
is directly proportional to height, the shapes of the hills and valleys in Fig. 12.7 are in fact  
potential-energy curves. In all cases of equilibrium, the ball is at a minimum or maximum of the 
potential-energy curve—at a place where the force (i.e., the derivative of potential energy with 
respect to position) is zero. For the stable and metastable equilibria, the potential energy at equi-
librium is a local minimum. A deviation from equilibrium requires that work be done against the 
force that tends to restore the ball to equilibrium. The unstable equilibrium, in contrast, occurs 
at a maximum in potential energy. Here, a deviation from equilibrium results in lower potential 
energy and in a force that accelerates the ball farther from equilibrium. For the neutrally stable 
equilibrium, there’s no change in potential energy as the ball moves; consequently it experiences 
no force. Figure 12.8 gives another example of equilibria in the context of potential energy.

We can sum up our understanding of equilibrium and potential energy in two simple 
mathematical statements. First, the force must be zero; that requires a local maximum or 
minimum in potential energy:

 
dU
dx

= 0  1equilibrium condition2 (12.3)

where U is the potential energy of a system and x is a variable describing the system’s 
configuration. For the simple systems we’ve been considering, x measures the position or 

APPLICATION Vehicle Stability Control

Today’s cars and SUVs increasingly include electronic stability control sys-
tems (ECS), which monitor speed, tilt angle, and steering wheel position and ap-
ply brakes to individual wheels so as to prevent rollover; ECS may also throttle 
back the engine as needed. Studies show that ECS can reduce SUV accidents by 
two-thirds and fatal rollovers by as much as 80%. Extensive use of ECS in re-
cent SUVs has actually made late-model SUVs less likely to experience rollover 
than non-ECS cars.

Our simple analysis doesn’t take into account factors like the vehicle’s sus-
pension and the deformation of its tires—both of which can exacerbate rollover 
danger by allowing the vehicle to tilt even before its tires leave the road.

But wait! A vehicle rounding a curve is hardly in static equilibrium; after all, 
it’s both moving and, more importantly, accelerating. But our analysis never-
theless applies, provided we recognize that the nonzero net force means we can 
no longer conclude that zero torque about one point implies zero torque about 
all other points. In this case, though, rotation tends to begin about the center of 
gravity, so our analysis involving that point is what’s relevant here.

To center
of turn

h

t

Center 
of gravity

Normal
force

Frictional 
force

Inside wheels just
lifting off road

n
u

f
u

CG

mg
u

When a car or other vehicle rounds a curve, the force of static friction between 
road and wheels provides the centripetal acceleration that keeps the car in its cir-
cular path. These frictional forces act at the road, and so they exert a torque that 
tends to rotate the vehicle about its center of gravity (see drawing). The effect is 
to increase the normal force on the wheels at the outside of the turn and decrease 
it on the wheels at the inside of the turn. In extreme cases, the inside wheels may 
leave the road—a condition that can rapidly worsen and lead to a rollover.

Consider the case of a vehicle whose inside wheels are just about to leave 
the road, so there’s neither a normal force nor a frictional force on the wheels 
at the inside of the turn. Applying Newton’s second law to the remaining forces 
(see the drawing) gives f = mv2/r in the horizontal direction and n = mg in 
the vertical direction. Meanwhile, the torques associated with these two forces 
are fh and nt/2, where h is the height of the center of gravity above the road and 
t is the width between the wheels. The drawing shows that these torques are in 
opposite directions; setting the net torque to zero and substituting for the two 
forces then gives the rollover condition:

v2

rg
=

t
2h

The term on the right depends only on the geometry of the vehicle (including 
how it’s loaded with passengers and cargo), and is called the static stability 
factor (SSF). The equation shows that if v2/rg exceeds the SSF, the vehicle’s 
inner tires will leave the road, setting the stage for a rollover. The equation 
also shows that the wider the tire spacing t, the higher the SSF and the more 
stable the vehicle. But the higher the center of gravity, as given by h, the lower 
the SSF and the less stable the vehicle. That’s why SUVs and vans have had 
high rates of rollover accidents—among the most serious of single-vehicle 
accidents.

(c)

(d)

(a)

(b)

FIGURE 12.7 (a) Stable, (b) unstable, 
(c) neutrally stable, and (d) metasta-
ble equilibria.
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218 Chapter 12 Static Equilibrium

orientation of an object, but for more complicated systems, it could 
be another quantity such as the system’s volume or even its com-
position. For a stable equilibrium, we require a local minimum, so 
the potential-energy curve is concave upward. (See Tactics 12.1 to 
review the relevant calculus.) Mathematically,

 
d2U

dx2 7 0  1stable equilibrium2 (12.4)

This condition applies to metastable equilibria as well because 
they’re locally stable. In contrast, unstable equilibrium occurs 
where the potential energy has a local maximum, or

 
d2U

dx2 6 0  1unstable equilibrium2 (12.5)

The intermediate case d2U/dx2 = 0 corresponds to neutral stability.

This block is in
stable equilibrium;
its potential energy
can’t get any lower.

This block is in
metastable equilibrium;
it takes a little energy
to tip it on edge, but
then it would fall over.

FIGURE 12.8 Identical blocks in stable and metastable equilibria.

Tactics 12.1 FINDING MAXIMA AND MINIMA

1. Begin by sketching a plot of the function, which will give a visual check for your numerical answers.
2. Next, take the function’s first derivative and set it to zero. As Fig. 12.7 suggests, a hill (maximum) or valley 

(minimum) is level right at its top or bottom. So by setting the first derivative to zero, you’re requiring that 
its slope be zero and therefore requiring the function to be at a maximum or minimum.

3. Find the sign of the function’s second derivative at the points where you found the first derivative is zero. 
Your sketch should show this; where the curve is concave upward, as in Figs. 12.7a and d, the second de-
rivative is positive and the point is a minimum. Where it’s concave downward, as in Fig. 12.7b, d2U/dx2 is 
negative and you’ve got a maximum. If it wasn’t obvious how to sketch the function, you can use calculus 
to determine the second derivative and then find its sign at the equilibrium points.

4. Check that the values you found for maxima and minima agree with your plot of the function.

Physicists develop a new semiconductor device in which the poten-
tial energy associated with an electron’s being at position x is given 
by U1x2 = ax2 - bx4, where x is in nm, U is the potential energy in 
aJ 110-18 J2, and constants a and b are 8 aJ/nm2 and 1 aJ/nm4, respec-
tively. Find the equilibrium positions for the electron, and describe 
their stability.

INTERPRET This problem is about stability in the context of a given 
potential-energy function. We’re interested in the electron, and we’re 
asked to find the values of x where it’s in equilibrium and then exam-
ine their stability.

DEVELOP The potential-energy curve gives us insight into this prob-
lem, so we’ve drawn it by plotting the function U1x2 in Fig. 12.9. 
Equation 12.3, dU/dx = 0, determines the equilibria, while Equa-
tions 12.4, d2U/dx2 7 0, and 12.5, d2U/dx2 6 0, determine the sta-
bility. Our plan is first to find the equilibrium positions using Equation 
12.3 and then to examine their stability.

EVALUATE Equation 12.3 states that equilibria occur where the po-
tential energy has a maximum or minimum—that is, where its deriva-
tive is zero. Taking the derivative of U and setting it to zero gives

0 =
dU
dx

= 2ax - 4bx3 = 2x1a - 2bx22
This equation has solutions when x = 0 and when a = 2bx2 or 
x = {2a/2b = {2 nm. We could take second derivatives to 

evaluate the stability, but the situation is evident from our plot: x = 0 
lies at a local minimum of the potential-energy curve, so this equilibrium 
is metastable. The other two equilibria, at maxima of U, are unstable.

ASSESS Do our numerical answers make sense? Yes: The potential-energy 
curve has zero slope at the points x = -2 nm, x = 0, and x = 2 nm, so 
we’ve found all the equilibria. Note that the equilibrium at x = 0 is only 
metastable; given enough energy, an electron disturbed from this position 
could make it all the way over the peaks and never return to x = 0.

EXAMPLE 12.4 Stability Analysis: Semiconductor Engineering
Worked Example with Variation Problems

Equilibria occur
where the curve is flat c

cbut only this
equilibrium is stable c

cand it’s only
metastable because
the curve goes
lower.

FIGURE 12.9 Our sketch of the potential-energy curve  
for Example 12.4.
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Stability considerations apply to the overall arrangements of matter. A mixture of 
hydrogen and oxygen, for example, is in metastable equilibrium at room temperature. 
Lighting a match puts some atoms over the maxima in their potential-energy curves, at 
which point they rearrange into a state of lower potential energy—the state we call H2O. 
Similarly, a uranium nucleus is at a local minimum of its potential-energy curve, and a 
little excess energy can result in its splitting into two smaller nuclei whose total potential 
energy is much lower. That transition from a less stable to a more stable equilibrium de-
scribes the basic physics of nuclear fission.

Potential-energy curves for complex structures like molecules or skyscrapers can’t be 
described fully with one-dimensional graphs. If potential energy varies in different ways 
when the structure is altered in different directions, then in order to determine stability 
we need to consider all possible ways potential energy might vary. For example, a snow-
ball sitting on a mountain pass—or any other system with a saddle-shaped potential- 
energy curve—is stable against displacements in one direction but not another  
(Fig. 12.10). Stability analysis of complex physical systems, ranging from nuclei and  
molecules to bridges and buildings and machinery, and on to stars and galaxies, is an im-
portant part of contemporary work in engineering and science.

Point P is stable
in this direction c

cbut not this one.

P

FIGURE 12.10 Equilibrium on a saddle- 
shaped potential-energy curve.

12.4 Which of the labeled points in the 
figure are stable, metastable, unstable, or 
neutrally stable equilibria?G
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Stable equilibria occur at minima of U and unstable equilibria at 
maxima.

Unstable

x

U(x)
Metastable

Stable

Metastable:  Locally
stable, but a large
enough disturbance
could result in a 
transition to the stable
equilibrium at left.

Applications
The center of gravity of a system is the point where the 
force of gravity appears to act. When the gravitational 
field is uniform over the system, the center of gravity co-
incides with the center of mass. This provides a handy 
way to locate the center of mass.

Four different types of equilibrium are stable, unstable, neutrally stable, and 
metastable.

⊗

Suspend the
object from 
any point; the
CM lies
somewhere
directly
below.

The same is
true for any
other point,
so the CM is
where the
lines cross.

The lowest point
in a valley is stable.

The highest point
on a hill is unstable.

A level surface
is neutrally stable.

This point is 
metastable.

Note that the
hill goes lower
over here.

Key Concepts and Equations
Static equilibrium requires that there be no net force and no net 
torque on a system; mathematically:

a  F
S

i = 0
!

and

a  t
!
i = a  1r

!
i * F

S
i2 = 0

!

where the sums include all the forces applied to the system. Solving 
an equilibrium problem involves identifying all the forces F

S
i acting on 

the system, choosing an appropriate origin about which to evaluate the 
torques, and requiring that forces and torques sum to zero.

Equilibria occur where a system’s potential energy U1x2 has a 
maximum or a minimum:

 
dU
dx

= 0  (equilibrium condition)

 
d2U

dx2 7 0  (stable equilibrium)

 
d2U

dx2 6 0  (unstable equilibrium)

⊗

Torque due to gravity
tends to rotate the
crane this way.

Torque due to the horizontal cable 
counters the gravitational torque.

The normal force
of the rock
counters 
gravity.

50°

CM

The big idea here is static equilibrium—the state in which a system at rest remains at rest because 
there’s no net force to accelerate it and no net torque to start it rotating. An equilibrium is stable if  
a disturbance of the system results in its returning to the original equilibrium state.

Big Idea

Chapter 12 Summary
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Exercises and Problems 221

14. Repeat the preceding problem for the equilateral triangle in 
Fig. 12.12b, which has side L.

15. A 23-m-long log of irregular cross section lies horizontally, 
supported by a wall at one end and a cable attached 4.0 m from 
the other end, as shown in Fig. 12.13. The log weighs 7.5 kN, 
and the tension in the cable is 6.2 kN. Find the log’s center of 
gravity.

F2
S

F2
S

F1
SF1

S

(b)(a)

2

1

-1

-2

x (m) x (m)
-2-2 -1 -1 1 21 2

1

y (m) y (m)

2

-1

-2

FIGURE 12.11 Exercise 12

Section 12.2 Center of Gravity
13. Figure 12.12a  shows a 

thin, uniform square plate 
of mass m and side L. The 
plate is in a vertical plane. 
Find the magnitude of the 
gravitational torque on the 
plate about each of the three 
points shown.

(a) (b)

A

C

B

A

B

C

FIGURE 12.12 Exercises 13 and 14

4.0 m

23 m

FIGURE 12.13 Exercise 15

Mastering Physics Go to www.masteringphysics.com to access assigned homework and self-study tools such as 
Dynamic Study Modules, practice quizzes, video solutions to problems, and a whole lot more!
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Learning Outcomes After finishing this chapter you should be able to:

LO 12.1 Describe quantitatively the conditions for static equilibrium.
For Thought and Discussion Question 12.1; Exercises 
12.10, 12.11, 12.12; Problem 12.57

LO 12.2 Locate the center of gravity of a system and calculate gravita-
tional torques.
For Thought and Discussion Questions 12.2, 12.3, 12.4, 
12.9; Exercises 12.13, 12.14, 12.15; Problem 12.65

LO 12.3 Solve problems involving static equilibrium.
For Thought and Discussion Questions 12.5, 12.6, 12.7; 

Exercises 12.16, 12.17, 12.18, 12.19; Problems 12.30, 12.31, 
12.32, 12.33, 12.34, 12.35, 12.36, 12.37, 12.38, 12.39, 12.40, 
12.42, 12.46, 12.47, 12.48, 12.51, 12.52, 12.53, 12.58, 12.59, 
12.60, 12.61, 12.62, 12.63, 12.64, 12.66

LO 12.4 Distinguish stable from unstable equilibria.
For Thought and Discussion Question 12.8; Exercises 
12.20, 12.21; Problems 12.41, 12.43, 12.44, 12.45, 12.49, 
12.50,, 12.54, 12.55, 12.56, 12.67

For Thought and Discussion

1. Give an example of an object on which the net force is zero, but 
that isn’t in static equilibrium.

2. The best way to lift a heavy weight is to squat with your back 
vertical, rather than to lean over. Why?

3. Pregnant women often assume a posture with their shoulders 
held far back from their normal position. Why?

4. When you carry a bucket of water with one hand, you instinc-
tively extend your opposite arm. Why?

5. Is a ladder more likely to slip when you stand near the top or the 
bottom? Explain.

6. Does choosing a pivot point in an equilibrium problem mean that 
something is necessarily going to rotate about that point?

7. If you take the pivot point at the application point of one force in a 
static-equilibrium problem, that force doesn’t enter the torque equa-
tion. Does that make the force irrelevant to the problem? Explain.

8. A short dog and a tall person are standing on a slope. If the slope 
angle increases, which will fall over first? Why?

9. A stiltwalker is standing motionless on one stilt. What can you 
say about the location of the stiltwalker’s center of mass?

Exercises and Problems

Exercises

Section 12.1 Conditions for Equilibrium
10. A body is subject to three forces: F

S
1 = 1in + 2jn N, applied 

at the point x = 2 m, y = 0 m; F
S

2 = -2in - 5jn N, applied 
a t  x = -1 m, y = 1 m;  and F

S
3 = 1in + 3jn N ,  applied  a t 

x = -2 m, y = 5 m. Show that (a) the net force and (b) the net 
torque about the origin are both zero.

11. To demonstrate that the choice of pivot point doesn’t matter, 
show that the torques in Exercise 10 sum to zero when evaluated 
about the points (3 m, 2 m) and (-7 m, 1 m).

12. In Fig. 12.11 the forces shown all have the same magnitude F. 
For each case shown, is it possible to place a third force so as 
to meet both conditions for static equilibrium? If so, specify the 
force and a suitable application point. If not, why not?
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222 Chapter 12 Static Equilibrium

CG

w

FIGURE 12.16 Problem 24 and 25

25. Example 12.2: Suppose the 
angle f in Fig. 12.16 is 26°.  
Will the climber in the preced-
ing problem be able to get to 
the right-hand end of the log 
without it slipping? Assume 
the same log mass and fric-
tional coefficient as in the 
preceding problem. If your an-
swer is “no,” how far along the 
log can the climber get? If it’s 
“yes,” how massive a climber 
could make it to the log’s end?

26. Example 12.4: Consider the potential-energy curve in Example 12.4,  
but now with a = -8 aJ/nm2 and b unchanged at 1 aJ/nm4.  
Determine the locations and stability of the corresponding 
equilibria.

27. Example 12.4: With the constant b in Example 12.4 unchanged at 
b = 1 aJ/nm4, (a) find a value for a that results in unstable equilib-
ria at x = {3 nm. (b) Is there still a stable equilibrium at x = 0?

28. Example 12.4: A potential-energy curve is given by U1x2 =
sin x>1x2 + 102. Use graphical or numerical techniques to find 
any equilibria between x = 0 and x = 10, and determine their 
stability.

29. Example 12.4: A potential-energy function in two dimensions is 
given by U1x2 = a1x2 - y22, where x and y measure position 
in m and a is a positive constant with the units of J/m2. (a) Show 
that this function has an equilibrium at x = 0, y = 0. (b) Is the 
equilibrium stable against small displacements in the x-direction? 
What about the y-direction?

Problems
30. You’re a highway safety 

engineer, and you’re asked 
to specify bolt sizes so the 
traffic signal in Fig. 12.17 
won’t fall over. The figure 
indicates the masses and 
positions of the structure’s 
various parts. The struc-
ture is mounted with two 
bolts, located symmetri-
cally about the vertical 
member’s centerline, as 
shown. What tension force 
must the left-hand bolt be 
capable of withstanding?

COMP

8.22 m

3.60 m

76.0 cm

64.7 kg

321 kg

Bolts

175 kg

CM
⊗

FIGURE 12.17 Problem 30

Section 12.3 Examples of Static Equilibrium
16. A 60-kg uniform board 2.4 m long is supported by a pivot 80 cm 

from the left end and by a scale at the right end (Fig. 12.14). How far 
from the left end should a 40-kg child sit for the scale to read zero?

FIGURE 12.14 Exercises 16 and 17

17. Where should the child in Fig. 12.14 sit if the scale is to read (a) 
100 N and (b) 300 N?

18. A 4.2-m-long beam is supported by a cable at its center. A 65-
kg steelworker stands at one end of the beam. Where should a 
 190-kg bucket of concrete be suspended for the beam to be in 
static equilibrium?

19. Figure 12.15 shows how a scale with a capacity of only 250 N can 
be used to weigh a heavier person. The 3.4-kg board is 3.0 m long 
and has uniform density. It’s free to pivot about the end  farthest 
from the scale. Assume that the beam remains essentially hori-
zontal. What’s the weight of the person shown squatting 1.2 m  
from the pivot end if the scale reads 210 N?

0 250 N

Board

1.2 m

3.0 m

FIGURE 12.15 Exercise 19

Section 12.4 Stability
20. A portion of a roller-coaster track is described by the equation 

h = 0.94x - 0.010x2, where h and x are the height and horizon-
tal position in meters. (a) Find a point where the roller-coaster 
car could be in static equilibrium on this track. (b) Is this equilib-
rium stable or unstable?

21. The potential energy associated with a particle at position x is 
given by U = 2x3 - 2x2 - 7x + 10, with x in meters and U in 
joules. Find the positions of any stable and unstable equilibria.

Example Variations
The following problems are based on two worked examples from the text. 
Each set of four problems is designed to help you make connections that 
enhance your understanding of physics and to build your confidence 
in solving problems that differ from ones you’ve seen before. The first 
problem in each set is essentially the example problem but with different 
numbers. The second problem presents the same scenario as the example 
but asks a different question. The third and fourth problems repeat this 
pattern but with entirely different scenarios.

22. Example 12.2: A construction worker leans a uniform board 
against a frictionless wall. Its bottom end rests on a concrete 
driveway where the coefficient of friction between board and 

driveway is 0.483. What’s the minimum angle the board can 
make with the horizontal if it’s not to slip?

23. Example 12.2: A 4.00-m, 6.47-kg ladder rests against a wall, in-
clined at 70.0° to the horizontal. The wall is frictionless, while 
the coefficient of friction between the bottom of the ladder and 
the ground is 0.265. How far up the ladder can a person with 
mass 68.8 kg climb before the ladder starts to slip?

24. Example 12.2: Climbers attempting to cross a stream place a 
224-kg log against a vertical, frictionless ice cliff, as shown in 
Fig. 12.16. The center of gravity of the log is one-third of the 
way along its length, and the frictional coefficient between log 
and ground is 0.982. Find the lowest value for the angle f for 
which the log won’t slip when a 77.3-kg climber is standing as 
shown, halfway across the log.
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37. A uniform board of length L and weight W is suspended between two 
vertical walls by ropes of length L/2 each. When a weight w is placed 
on the left end of the board, it assumes the configuration shown in 
Fig. 12.23. Find the weight w in terms of the board weight W.

CH

32. A uniform sphere of radius R is supported by 
a rope attached to a vertical wall, as shown in 
Fig. 12.19. The rope joins the sphere at a point 
where a continuation of the rope would inter-
sect a horizontal line through the sphere’s cen-
ter a distance 12 R beyond the center, as shown. 
What’s the smallest possible value for the co-
efficient of friction between wall and sphere?

33. You work for a garden equipment company, 
and you’re designing a new garden cart. 
Specifications to be listed include the hori-
zontal force that must be applied to push the 
fully loaded cart (mass 55 kg, 60-cm-diameter 
wheels) up an abrupt 8.0-cm step, as shown in 
Fig. 12.20. What do you specify for the force?

CH

BIO

1
2

30°

R
R

FIGURE 12.19  
Problem 32

F
S

8.0 cm60 cm

FIGURE 12.20 Problem 33

34. Figure 12.21 shows the foot and lower leg of a person standing  
on the ball of one foot. Three forces act to maintain this equilibrium: 
the tension force T

S
 in the Achilles tendon, the contact force F

S
c at 

the ankle joint, and the normal force n
!
 that supports the person’s 

697-N weight. The application points for these forces are shown in 
Fig. 12.21. The person’s center of gravity is directly above the con-
tact point with the ground, and you can treat the mass of the foot 

n
uFc

S

T
S

11.6 cm

4.55 cm

25°

Ankle
joint

Achilles
tendon

FIGURE 12.21 Problem 34

35. A uniform 5.0-kg ladder is leaning against a frictionless vertical 
wall, with which it makes a 15° angle. The coefficient of friction 
between ladder and ground is 0.26. Can a 65-kg person climb 
to the top of the ladder without it slipping? If not, how high can 
that person climb? If so, how massive a person would make the 
ladder slip?

36. The boom in the crane of Fig. 12.22 is free to pivot about point 
P and is supported by the cable attached halfway along its 18-m 
length. The cable passes over a pulley and is anchored at the back 
of the crane. The boom has mass 1700 kg distributed uniformly 
along its length, and the mass hanging from the boom is 2200 
kg. The boom makes a 50° angle with the horizontal. Find the 
tension in the cable.

m

50°

P

18 m

FIGURE 12.22 Problem 36

L
2

35°

9.2°
L

60°

w

L
2

FIGURE 12.23 Problem 37

⊗

(a)

(b)

18 cm

15°

6.0 kg
15°

CG

21 cm

56 cm

Deltoid muscle

5.0°

FIGURE 12.18 Problem 31

31. Figure 12.18a shows an outstretched arm with mass 4.2 kg. The 
arm is 56 cm long, and its center of gravity is 21 cm from the 
shoulder. The hand at the end of the arm holds a 6.0-kg mass. 
(a) Find the torque about the shoulder due to the weight of the 
arm and the 6.0-kg mass. (b) If the arm is held in equilibrium by 
the deltoid muscle, whose force on the arm acts at 5° below the 
horizontal at a point 18 cm from the shoulder joint (Fig. 12.18b), 
what’s the force exerted by the muscle?

itself as being negligible. Find the magnitudes of (a) the tension in 
the Achilles tendon and (b) the contact force at the ankle joint.
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50°

CM
⊗

FIGURE 12.26 Problem 42

42. A crane in a marble quarry 
is mounted on the quarry’s 
rock walls and is support-
ing a 2500-kg marble slab 
as shown in Fig. 12.26. The 
center of mass of the 830-kg 
boom is located one-third of 
the way from the pivot end 
of its 15-m length, as shown. 
Find the tension in the hor-
izontal cable that supports 
the boom.

43. A rectangular block measures w * w * L, where L is the longer 
dimension. It’s on a horizontal surface, resting on its long side. 
Use geometrical arguments to find an expression for the angle 
through which you would have to tilt it in order to put it in an 
unstable equilibrium, resting on a short edge.

44. The potential energy as a function of position for a particle is 
given by

U1x2 = U0 a
x3

x 3
0

+ a 
x2

x 2
0

+ 4 
x
x0
b

where x0 and a are constants. For what values of a will there be two 
static equilibria? Comment on the stability of these equilibria.

45. A rectangular block of mass m measures w * w * L, where L 
is the longer dimension. It’s on a horizontal surface, resting on 
its long side, as in the left-hand block in Fig. 12.8. (a) Taking 
the zero of potential energy when the block is lying on its long 
side, find an expression for its potential energy as a function of 
the angle u that the long dimension of the block makes with the 
horizontal, starting with u = 0 in the left-hand configuration of 
Fig. 12.8 and continuing through the upright position shown at 
the right (u = 90°). (b) Use calculus to find the angle u where 
your function has a maximum, and check that it agrees with the 
answer to Problem 43. (c) Use calculus to show that this is a 
point of unstable equilibrium.

46. A 160-kg highway sign of uniform density is 2.3 m wide and 
1.4 m high. At one side it’s secured to a pole with a single bolt, 
mounted a distance d from the top of the sign. The only other 
place where the sign contacts the pole is at its bottom corner. If 
the bolt can sustain a horizontal tension of 2.1 kN, what’s the 
maximum permissible value for the distance d?

47. In Example 12.2, consider the ladder to be wider and therefore 
heavier at the bottom, so its center of mass lies only two-fifths of 
the way along its length. Find a new expression for the minimum 
angle f for which the ladder won’t slip.

48. If the biceps and tendon in Example 12.3 can tolerate a maxi-
mum tension of 760 N without injury, what’s the maximum mass 
that could replace the pumpkin in that example?

49. A uniform, solid cube of mass m and side s is in stable equilib-
rium when sitting on a level tabletop. How much energy is re-
quired to bring it to an unstable equilibrium where it’s resting on 
its corner?

50. An isosceles triangular block of mass m and height h is in sta-
ble equilibrium, resting on its base on a horizontal surface. How 
much energy does it take to bring it to unstable equilibrium, rest-
ing on its apex?

51. You’re investigating ladder safety for the Consumer Product 
Safety Commission. Your test case is a uniform ladder of mass 
m leaning against a frictionless vertical wall with which it makes 
an angle u. The coefficient of static friction at the floor is m. Your 
job is to find an expression for the maximum mass of a person 
who can climb to the top of the ladder without its slipping. With 
that result, you’re to show that anyone can climb to the top if 
m Ú tan u but that no one can if m 6 1

2 tan u.
52. A 2.0-m-long rod has density l in kilograms per meter of length 

described by l = a + bx, where a = 1.0 kg/m, b = 1.0 kg/m2, 
and x is the distance from the left end of the rod. The rod rests 
horizontally with each end supported by a scale. What do the two 
scales read?

CH
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38. Figure 12.24 shows a 1250-kg car that has slipped over an em-
bankment. People are trying to hold the car in place by pulling on 
a horizontal rope. The car’s bottom is pivoted on the edge of the 
embankment, and its center of mass lies farther back, as shown. 
If the car makes a 34° angle with the horizontal, what force must 
the people apply to hold it in place?

34°

1.8 m
2.4 m

CM
⊗

FIGURE 12.24 Problem 38

39. Repeat Example 12.2, now assuming 
that the coefficient of friction at the 
ground is m1 and at the wall is m2. 
Show that the minimum angle at which 
the ladder won’t slip is now given 
by  f = tan-13(1 - m1m2)/2m14 . 
Assume that both frictional forces 
take their maximum possible values.

40. You are headwaiter  a t  a  new 
restaurant, and your boss asks you 
to hang a sign for her. You’re to 
hang the sign, whose mass is 66 
kg, in the configuration shown in 
Fig. 12.25. A uniform horizontal 
rod of mass 8.2 kg and length 2.3 
m holds the sign. At one end the rod is attached to the wall 
by a pivot; at the other end it’s supported by a cable that can 
withstand a maximum tension of 800 N. You’re to determine 
the minimum height h above the pivot for anchoring the cable 
to the wall.

41. A cylindrical pipe of mass M, length L, and diameter D is stand-
ing vertically, resting on one end. In this configuration it’s in a 
metastable equilibrium. Find an expression for the energy needed 
to bring the pipe to the adjacent unstable equilibrium, from which 
it can fall into the more stable configuration where it’s lying on 
its side.

CH

2.3 m

h

FIGURE 12.25 Problem 40
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53. What horizontal force ap-
plied at its highest point is 
necessary to keep a wheel of 
mass M from rolling down a 
slope inclined at angle u to 
the horizontal?

54. A rectangular block twice as 
high as it is wide is resting 
on a board. The coefficient of 
static friction between board 
and incline is 0.63. If the 
board’s inclination angle u 
(shown in Fig. 12.27) is grad-
ually increased, will the block first tip over or first begin sliding?

55. What condition on the coefficient of friction in Problem 54 will 
cause the block to slide before it tips?

56. A uniform solid cone of height h and base diameter 13 h sits on the 
board of Fig. 12.27. The coefficient of static friction between the 
cone and incline is 0.63. As the slope of the board is increased, will 
the cone first tip over or first begin sliding? (Hint : Start with an inte-
gration to find the center of mass.)

57. Prove the statement in Section 12.1 that the choice of pivot point 
doesn’t matter when applying conditions for static equilibrium. 
Figure 12.28 shows an object on which the net force is assumed 
to be zero. The net torque about the point O is also zero. Show 
that the net torque about any other point P is also zero. To do 
so, write the net torque about P as t

!
P = a  r

!
Pi * F

S
i, where 

the vectors r
!
P go from P to the 

force-application points, and 
the index i labels the different 
forces. In Fig. 12.28, note that 
r
!
Pi = r

!
Oi + R

S
, where R

S
 is a 

vector from P to O. Use this 
result in your expression for t

!
P 

and apply the distributive law 
to get two separate sums. Use 
the assumptions that F

S
net = 0

!
 

and t
!
O = 0

!
 to argue that both 

terms are zero. This completes 
the proof.

58. Three identical books of length L are stacked over the edge 
of a table as shown in Fig. 12.29. The top book overhangs the  
middle one by L/2, so it just barely avoids falling. The middle 
book overhangs the bottom one by L/4. How much of the bot-
tom book can overhang the edge of the table without the books 
falling?
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FIGURE 12.27 Problems 54, 55, 
and 56
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u
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F1
S

O

P

FIGURE 12.28 Problem 57
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L

?

FIGURE 12.29 Problem 58

u

M

FIGURE 12.30 Problems 59 and 60

59. A uniform pole of mass M is at rest on an incline of angle u 
secured by a horizontal rope as shown in Fig. 12.30. Find the 
minimum frictional coefficient that will keep the pole from 
slipping.

CH

61. Figure 12.31 shows a popular sys-
tem for mounting bookshelves. 
An aluminum bracket is mounted 
on a vertical aluminum support 
by small tabs inserted into ver-
tical slots. Contact between the 
bracket and support occurs only 
at the upper tab and at the bottom 
of the bracket, 4.5 cm below the 
upper tab. If each bracket in the 
shelf system supports 32 kg of 
books, with the center of gravity 
12 cm out from the vertical sup-
port, what is the horizontal com-
ponent of the force exerted on the 
upper bracket tab?

62. The nuchal ligament is a thick, 
cordlike structure that supports 
the head and neck in animals 
like horses. Figure 12.32 shows 
the nuchal ligament and its at-
tachment points on a horse’s 
skeleton, along with an approxi-
mation to the spine as a rigid rod. 

BIO

Fg
S

Shelf

Bracket 4.5 cm

12 cm

FIGURE 12.31 Problem 61

76 cm

28 cm

CMhead

CMneck

50°

27°

nuchal ligament

⊗

FIGURE 12.32 Problem 62

⊗
CM

28 cm
9 cm

7.2 cm

FIGURE 12.33 Problem 63

Centers of mass of head and neck are also shown. If the masses of 
head and neck are 29 kg and 68 kg, respectively, what’s the tension 
in the nuchal ligament? (Note: Your answer will be an overestimate 
because muscles also provide support.)

60. For what angle does the situation in Problem 59 require the 
greatest coefficient of friction?

63. A 4.2-kg plant hangs from the 
bracket shown in Fig. 12.33. 
The bracket’s mass is 0.85 kg, 
and its center of mass lies 9.0 
cm from the wall. A single 
screw holds the bracket to the 
wall, as shown. Find the hor-
izontal tension in the screw. 
(Hint : Imagine that the bracket 
is slightly loose and pivoting 
about its bottom end. Assume 
the wall is frictionless.)
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Passage Problems
You’ve been hired by your state’s 
environmental agency to monitor 
carbon dioxide levels just above 
rivers, with the goal of understand-
ing whether river water acts as 
a source or sink of CO2. You’ve 
constructed the apparatus shown 
in Fig. 12.36, consisting of a boom 
mounted on a pivot, a vertical sup-
port, and a rope with pulley for 
raising and lowering the boom so its end can extend different distances 
over the river. In addition, there’s a separate rope and pulley for drop-
ping the sampling apparatus so it’s just above the river.
68. When the boom rope is horizontal, it can’t exert any vertical 

force. Therefore,
a. it’s impossible to hold the boom with the boom rope horizontal.
b. the boom rope tension becomes infinite.
c. the pivot supplies the necessary vertical force.
d. the boom rope exerts no torque.

69. The tension in the boom rope will be greatest when
a. the boom is horizontal.
b. the boom rope is horizontal.
c. the boom is vertical.
d. in some orientation other than (a), (b), or (c).

70. If you secure the boom at a fixed angle and lower the sampling 
apparatus at constant speed, the boom rope tension will
a. increase.
b. decrease.
c. remain the same.
d. increase only if the sampling apparatus is more massive than 

the boom.
71. If you pull the boom rope with constant speed, the angle the 

boom makes with the horizontal will
a. increase at a constant rate.
b. increase at an increasing rate.
c. increase at a decreasing rate.
d. decrease.

Boom
ropeSampling

rope
Pulley

Sampling
apparatus

Boom

Pulley

Pivot

FIGURE 12.36 Passage Problems 
68–71

64. The wheel in Fig. 12.34 has 
mass M  and is  weighted 
with an additional mass m as 
shown. The coefficient of fric-
tion is sufficient to keep the 
wheel from sliding; however, 
it might still roll.
Show that it won’t roll only if 

m 7
M sin u

1 - sin u
.

65. An interstellar spacecraft 
from an advanced civilization 
is hovering above Earth, as 
shown in Fig. 12.35. The ship 
consists of two pods of mass 
m separated by a rigid shaft of 
negligible mass and one Earth 
radius (RE) long. Find (a) the 
magnitude and direction of 
the net gravitational force on 
the ship and (b) the net torque 
about the center of mass. (c) 
Show that the ship’s center of 
gravity is displaced approxi-
mately 0.083RE from its cen-
ter of mass.
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FIGURE 12.34 Problem 64

m m

RE

RE

2RE

Earth

FIGURE 12.35 Problem 65

66. You’ll need to study the Application on page 216 to do this problem. 
An SUV without ECS has SSF = 1.12 with its two passengers on 
board. (a) Can it successfully negotiate an 85-m-radius turn on a flat 
road, going at the speed limit of 100 km/h? (b) With its passengers, 
the SUV’s total mass is 1940 kg, and the left-to-right spacing be-
tween its tires is 1.71 m. If a 315-kg load of cargo is secured to the 
roof, with its center of gravity 2.1 m above the road, what’s the maxi-
mum safe speed on the same road?

67. Engineers designing a new semiconductor device measure the po-
tential energy that results when they move an electron to different  
positions within their device. The device is one-dimensional,  
so the positions all lie along a line. The table below gives the 
 resulting data. Plot these data and from your plot, determine the 
approximate positions of any equilibria and whether such equilib-
ria are stable or unstable.

DATA

Position x (nm) 0 3.26 5.85 6.41 7.12 9.37 10.5 12.2 14.0 14.5 15.3 17.2

Potential energy U (aJ) 1.5 0.65 0.30 0.47 0.85 2.7 3.3 2.1 -0.47 -0.86 -0.72 3.2

Answers to Chapter Questions

Answer to Chapter Opening Question
Both the net force and the net torque on all parts of the bridge must 
be zero.

Answers to GOT IT? Questions
12.1  Pair C; pair A produces nonzero net force, while pair B produces 

nonzero net torque
12.2  B; It’s located directly over the point of contact with the floor, 

ensuring there’s no gravitational torque.
12.3  (b) A frictional force at the floor is necessary to balance the nor-

mal force from the wall.
12.4 D: stable; B: metastable; A and C: unstable; E: neutrally stable
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PART ONESummaryMechanics

The big idea of Part One is Newton’s realization that forces—pushes 
and pulls—don’t cause motion but instead cause changes in motion. 
Newton’s second law quantifies this idea. With momentum p

!
 =   mv

!
 

as Newton’s measure of “quantity of motion,” the second law equates 
the net force on an object to the rate of change of its momentum: 
F
S  

=   d p
!
/dt or, for constant mass, F

S
=   ma

!
. The second law encom-

passes the first law, also called the law of inertia: In the absence of 
a net force, an object continues in uniform motion, unchanging in 
speed or direction—a state that includes the special case of being 
at rest. Newton’s third law rounds out the picture, providing a fully 
consistent description of motion with its statement that forces come 
in pairs: If object A exerts a force on B, then B exerts a force of equal 
magnitude but opposite direction on A.

Universal gravitation describes the attractive force be-
tween all matter in the universe.

F =
Gm1m2

r2

F21
S

F12
S

m1 m2

r

Momentum is conserved in a system that’s not subject to external forces.

Initial state Final state

 Initial momentum =  Final momentum

P
S

i = Σ  mi v
!
i = m1 v

!
1i  1 P

S
f = Σ  mf v

!
f = m1 v

!
1f + m2 v

!
2f + m3 v

!
3f

Rotational motion is described by quantities analogous to those of 
linear motion.

 v
! S v

!

 a
! S a

!

 p
! S L

S

 F
S S t

!

 m S I

F
S

= ma
!

  S   t
!

= Ia
!

 K = 1
2 mv2  S   K = 1

2 Iv2

A system is in static equilibrium when the net force and the net 
torque on the system are both zero:

F
S

net = 0
!

and

t
!
net = 0

!v
u

Stable
equilibrium

Unstable
equilibrium

Part One Challenge Problem
A solid ball of radius R is set spinning with angular speed v about a horizontal axis. The ball is then 
lowered vertically with negligible speed until it just touches a horizontal surface and is released (see 
figure). If the coefficient of kinetic friction between the ball and the surface is m, find (a) the linear 
speed of the ball once it achieves pure rolling motion, (b) the distance it travels before it achieves this 
motion, and (c) the fraction of the ball’s initial rotational kinetic energy that’s been lost to friction.

v
u

v

Newton’s laws provide a full description of motion.
Newton’s first law: Force causes a change in motion.
Newton’s second law: F

S  
=   d p

!
/dt or, for constant mass, F

S  
=   ma

!

Newton’s third law: F
S

AB = - F
S

BA

a
u

FAB
S

FBA
S

Book pushes
on hand
with force
FBA.

Hand pushes on
book with force FAB.

S

u

With mass m the book
accelerates with magnitude
a = FAB>m.

S
S

Energy and work are related concepts; work is a mechanical means 
of transferring energy.
Work: W = F

S # ∆r
!
 or, for a varying

force, W = L F
S # dr

!

Work–kinetic energy theorem: 
∆K = W  wi th  kinet ic  energy 
K = 1

2 mv2

For conservative forces, energy that gets transferred by doing work 
is stored as potential energy U. Then K +  U = constant.

K UK U

From the concept of force and Newton’s laws follow the essential 
ideas of energy and work, including kinetic and potential energy and 
the conservation of mechanical energy in the absence of noncon-
servative forces like friction. One important force is gravity, which 
Newton described through his law of universal gravitation and ap-
plied to explain the motions of the planets. Application of Newton’s 
laws to systems comprising multiple objects gives us the concept of 
center of mass and lets us describe the interactions of colliding ob-
jects. Finally, Newton’s laws explain circular and rotational motion, 
the latter through the analogy between force and torque. That, in 
turn, gives us the tools needed to determine static equilibrium—the 
state in which an object at rest remains at rest, subject neither to a 
net force nor to a net torque.
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PART TWO

Oscillations, Waves, 
and Fluids

OVERVIEW

High-speed photo shows complex fluid behavior and spreading circular waves on water.

A tsunami crashes on shore, dissipating energy 
that has traveled across thousands of kilome-
ters of open ocean. Near the epicenter of the 

earthquake that spawned the tsunami, a skyscraper 
sways in response but suffers no damage thanks to a 
carefully engineered system that counters quake- 
induced vibrations. An electric guitar sounds loud 
during a rock concert, the sound waves follow-
ing the vibrations of the guitar strings. Inside your 
smartphone, a tiny quartz crystal undergoes mil-
lions of vibrations each second to help time the 
GPS signals that determine your location. A radar-
equipped police officer waits around the next turn in 

the highway ready to ticket your speeding car, while 
astrophysicists use the same principle to measure the 
expansion of the universe. A rafting party enters a 
narrow gorge, getting a wild ride as the river’s speed 
increases. A plane cruises far overhead, supported by 
the force of air on its wings. All these examples in-
volve the collective motion of many particles. In the 
next three chapters, we first explore the repetitive 
motion called oscillation and then show how oscilla-
tions in many-particle systems lead to wave motion. 
Finally, we apply the laws of motion to reveal the 
fascinating and sometimes surprising behavior of 
fluids like air and water.
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Displace a system from stable equilibrium, and forces or torques tend 
to restore that equilibrium. But, like the ball in Fig. 13.1, the system 

often overshoots its equilibrium and goes into oscillatory motion back and 
forth about equilibrium. In the absence of friction, this oscillation would 
continue forever; in reality, the system eventually settles into equilibrium.

Oscillatory motion occurs throughout the physical world. A uranium 
nucleus oscillates before it fissions. Water molecules oscillate to heat the 
food in a microwave oven. Carbon dioxide molecules in the atmosphere 
oscillate, absorbing energy and thus contributing to global warming. A 
watch—whether an old-fashioned mechanical one or a modern quartz 
timepiece—is a carefully engineered oscillating system. Buildings and 
bridges undergo oscillatory motion, sometimes with disastrous results. 
Even stars oscillate. And waves—from sound to ocean waves to seismic 
waves in the solid Earth—ultimately involve oscillatory motion.

Learning Outcomes
After finishing this chapter you should be able to:

LO 13.1  Characterize oscillatory motion by its amplitude, frequency, 
and period.

LO 13.2 State the physical conditions that result in simple harmonic 
motion.

LO 13.3 Describe simple harmonic motion quantitatively in a mass–
spring system.

LO 13.4 Describe other simple harmonic motion systems, including 
torsional oscillators and pendulums.

LO 13.5 Relate simple harmonic motion to circular motion.

LO 13.6 Outline energy exchanges in simple harmonic motion.

LO 13.7 Explain why simple harmonic motion is ubiquitous through-
out the universe.

LO 13.8 Describe the effect of damping on simple harmonic motion.

LO 13.9 Explain resonance in driven oscillatory systems.

Skills & Knowledge You’ll Need
■■ Newton’s second law (Section 4.2)

■■ Force and energy in springs (Sections 
4.6 and 7.2)

■■ Calculus, including derivatives of trig 
functions

Essential University Physics 4e
Wolfson
Pearson Education
9780134988559
Fig 13.01
Pickup: 9885513003
Troutt Visual Services
tb    03/17/18    12p5 x 5p7  

Here the ball
is in stable 
equilibrium.

Disturb the ball,
and it oscillates about 
its equilibrium
position.

FIGURE 13.1 Disturbing a system results in 
oscillatory motion.

A tiny quartz tuning fork sets the timekeeping of 
a quartz watch. It oscillates at 32,768 Hz. What 
does this mean, and why this number?
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230 Chapter 13 Oscillatory Motion

Oscillatory motion is universal because systems in stable equilibrium naturally tend 
to return toward equilibrium when they’re displaced. And it’s not just the qualitative 
phenomenon of oscillation that’s universal: Remarkably, the mathematical description 
of oscillatory motion is the same for systems ranging from atoms and molecules to 
cars and bridges and on to stars and galaxies.

13.1 Describing Oscillatory Motion
LO 13.1 Characterize oscillatory motion by its amplitude, frequency, and period.

Figure 13.2 shows two quantities that characterize oscillatory motion: Amplitude is the 
maximum displacement from equilibrium, and period is the time it takes for the motion to 
repeat itself. Another way to express the time aspect is frequency, or number of oscilla-
tion cycles per unit time. Frequency f  and period T  are complementary ways of conveying 
the same information, and mathematically they’re inverses:

 f =
1
T

 (13.1)

The unit of frequency is the hertz (Hz), named after the German Heinrich Hertz (1857–
1894), who was the first to produce and detect radio waves. One hertz is equal to one 
oscillation cycle per second.

1
T

Both motions have
the same period T
(and therefore 
frequency f =   ).

They also
have the same
amplitude A.

0

0

A

A

Po
si

tio
n

Time

Po
si

tio
n

Time

Period

Period

FIGURE 13.2 Position–time graphs 
for two oscillatory motions with the 
same amplitude A and period T (and 
therefore frequency).

Amplitude, Period, Frequency: An Oscillatory Distraction

Tired of homework, a student holds one end of a flexible plastic ruler 
against a desk and idly strikes the other end, setting it into oscillation 
(Fig. 13.3). The student notes that 28 complete cycles occur in 10 s 
and that the end of the ruler moves a total distance of 8.0 cm. What are 
the amplitude, period, and frequency of this oscillatory motion?

INTERPRET We’ve got a case of oscillatory motion, and we’re 
asked to describe it quantitatively in terms of amplitude, period, and 
frequency.

DEVELOP We can work from the definitions of these quantities: 
Amplitude is the maximum displacement from equilibrium, period is 
the time to complete a full oscillation, and frequency is the inverse of 
the period (Equation 13.1).

EVALUATE The ruler moves a total of 8.0 cm from one extreme to 
the other. Since the motion takes it to both sides of its equilibrium 
position, the amplitude is 4.0 cm. With 28 cycles in 10 s, the time per 
cycle, or the period, is

T =
10 s
28

= 0.36 s

The frequency is the inverse of the period: f = 1/T = 1/0.36 s =  
2.8 Hz. We can also get this directly: 28 cycles/10 s = 2.8 Hz.

ASSESS Make sense? With a period that’s less than 1 s, the frequency 
must be more than 1 cycle per second or 1 Hz. Our definition of am-
plitude as the maximum displacement from equilibrium led to our 
 4.0-cm amplitude; the full 8.0 cm between extreme positions is called 
the peak-to-peak amplitude.

EXAMPLE 13.1

8.0 cm

FIGURE 13.3 A ruler undergoing oscillatory 
motion.

Amplitude and frequency don’t provide all the details of oscillatory motion, since two 
quite different motions can have the same frequency and amplitude (Fig. 13.2). The differ-
ences reflect the restoring forces that return systems to equilibrium. Remarkably, though, 
restoring forces in many physical systems have the same mathematical form—a form we 
encountered before, when we introduced the force of an ideal spring in Chapter 4.

13.1 A typical human heart rate is about 65 beats per minute. The corresponding 
period and frequency are (a) period just over 1 s and frequency just under 1 Hz; 
(b) period just under 1 s and frequency just under 1 Hz; (c) period just under 1 s and 
frequency just over 1 Hz; or (d) period just over 1 minute and frequency of 70 Hz.G

O
T 
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?
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13.2 Simple Harmonic Motion 231

k
m

FIGURE 13.4 A mass attached to a 
spring undergoes simple harmonic 
motion.

13.2 Simple Harmonic Motion
LO 13.2 State the physical conditions that result in simple harmonic motion.

LO 13.3 Describe simple harmonic motion quantitatively in a mass–spring system.

In many systems, the restoring force that develops when the system is displaced from 
equilibrium increases approximately in direct proportion to the displacement—meaning 
that if you displace the system twice as far from equilibrium, the force tending to restore 
equilibrium becomes twice as great. In the rest of this chapter, we therefore consider the 
case of a restoring force directly proportional to displacement. This is an approximation 
for most real systems, but often a very good approximation, especially for small displace-
ments from equilibrium.

The type of motion that results from a restoring force proportional to displacement is 
called simple harmonic motion (SHM). Mathematically, we describe such a force by 
writing

 F = -kx  1restoring force in SHM2 (13.2)

k is the spring constant (or 
analogous quantity for  
other systems).

F is the force that 
tends to restore a  
system to 
equilibrium.

x is the displacement from 
equilibrium.

SHM results whenever  
the restoring force is  
directly proportional to the 
displacement.

The minus sign shows that  
F is a restoring force, directed  
opposite the displacement.

where F is the force, x is the displacement, and k is a constant of proportionality between 
them. The minus sign in Equation 13.2 indicates a restoring force: If the object is dis-
placed in one direction, the force is in the opposite direction, so it tends to restore the 
equilibrium.

You’ve seen Equation 13.2 before: It’s the force exerted by an ideal spring of spring 
constant k. So a system consisting of a mass attached to a spring undergoes simple har-
monic motion (Fig. 13.4). Many other systems—including atoms and molecules—can be 
modeled as miniature mass–spring systems.

How does a body in simple harmonic motion actually move? We can find out by apply-
ing Newton’s second law, F = ma, to the mass–spring system of Fig. 13.4. Here the force 
on the mass m is -kx, so Newton’s law becomes -kx = ma, where we take the x-axis 
along the direction of motion, with x = 0 at the equilibrium position. Now, the accelera-
tion a is the second derivative of position, so we can write our Newton’s law equation as

 m 
d2x

dt2  = -kx  1Newton>s second law for SHM2 (13.3)

d2x>dt2 is acceleration…
The right-hand side is the  
net force F, given by 
Equation 13.2.

…so this term is ma from 
Newton’s second law.

The solution to this equation is the position x as a function of time. What sort of func-
tion might it be? We expect periodic motion, so let’s try periodic functions like sine and 
cosine. Suppose we pull the mass in Fig. 13.4 to the right and, at time t = 0, release it. 
Since it starts with a nonzero displacement, cosine is the appropriate function [recall that 
cos102 = 1, and sin102 = 0]. We don’t know the amplitude or frequency, so we’ll try a 
form that has two unknown constants:

 x1t2 = A cos vt (13.4)

¯̆ ˙
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232 Chapter 13 Oscillatory Motion

A full cycle occurs
as vt increases from
0 to 2p.

The displacement x swings
between A and -A.

1 cycle

T
2t = 

vt = p
Time, t

D
is

pl
ac

em
en

t, 
x

A

-A

t = T
vt = 2p

FIGURE 13.5 The function A cos vt.

 WHY RADIANS? Here, as in 
Chapter 10, we use the angular 
quantity v because it provides the 
simplest mathematical description 
of the motion. In fact, the relation-
ship between angular frequency 
and frequency in hertz is the same 
as Chapter 10’s relationship be-
tween angular speed in radians 
per second and in revolutions per 
second. We’ll explore this similar-
ity further in Section 13.4.

Because the cosine function itself varies between +1 and -1, A in Equation 13.4 is the 
amplitude—the greatest displacement from equilibrium (Fig. 13.5). What about v? The 
cosine function undergoes a full cycle as its argument increases by 2p radians, or 360°, as 
shown in Fig. 13.5. In Equation 13.4, the argument of the cosine is vt. Since the time for a 
full cycle is the period T, the argument vt must go from 0 to 2p as the time t goes from 0 
to T. So we have vT = 2p, or

 T =
2p
v

 (13.5)

The frequency of the motion is then

 f =
1
T

=
v

2p
 (13.6)

Equation 13.6 shows that v is a measure of the frequency, although it differs from the fre-
quency f  by the factor 2p. The quantity v is called the angular frequency, and its units 
are radians per second or, since radians are dimensionless, simply inverse seconds 1s-12.

Writing the displacement x in the form 13.4 doesn’t guarantee that we have a solution; 
we still need to see whether this form satisfies Equation 13.3. With x1t2 given by Equation 
13.4, its first derivative is

dx
dt

=
d
dt

 1A cos vt2 = -Av sin vt

where we’ve used the chain rule for differentiation (see Appendix A). Then the second 
derivative is

d2x

dt2 =
d
dt

 adx
dt

b =
d
dt

 1-Av sin vt2 = -Av2 cos vt

We can now try out our assumed solution for x (Equation 13.4) and its second derivative in 
Equation 13.3. Substituting x1t2 and d2x/dt2 in the appropriate places gives

m1-Av2 cos vt2 ≟ -k1A cos vt2
where the ? indicates that we’re still trying to find out whether this is indeed an equality. 
If it is, the equality must hold for all values of time t. Why? Because Newton’s law holds 
at all times, and we derived our questionable equality from Newton’s law. Fortunately, the 
time-dependent term cos vt appears on both sides of the equation, so we can cancel it. Also, 
the amplitude A and the minus sign cancel from the equation, leaving only mv2 = k, or

 v = A k
m
  1angular frequency, simple harmonic motion2 (13.7a)

v is the angular frequency of a 
mass–spring system, measured  
in rad/s or simply s–1.

…and m is the mass.

k is the spring constant…
Equations 13.7b and c express this alternatively 
in terms of frequency f  and period T .

Thus, Equation 13.4 is a solution of Equation 13.3, provided the angular frequency v is 
given by Equation 13.7a.

Frequency and Period in Simple Harmonic Motion
We can recast Equation 13.7a in terms of the more familiar frequency f  and period T using 
Equation 13.6, f = v/2p. This gives

 f =
v

2p
=

1
2p

 A k
m
 and T =

1
f

= 2p Am
k

 (13.7b,c)
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13.2 Simple Harmonic Motion 233

Do these relationships make sense? If we increase the mass m, it becomes harder to 
accelerate and we expect slower oscillations. This is reflected in Equations 13.7a and b, 
where m appears in the denominator. Increasing k, on the other hand, makes the spring 
stiffer and therefore results in greater force. That increases the oscillation frequency—as 
shown by the presence of k in the numerators of Equations 13.7a and b.

Physical systems display a wide range of m and k values and a correspondingly large 
range of oscillation frequencies. A molecule, with its small mass and its “springiness” 
provided by electric forces, may oscillate at 1014 Hz or more. A massive skyscraper, in 
contrast, typically oscillates at about 0.1 Hz.

Amplitude in Simple Harmonic Motion
The amplitude A canceled from our equations, so our analysis works for any value of A. 
This means that the oscillation frequency doesn’t depend on amplitude. Frequency that’s 
independent of amplitude is an essential feature of simple harmonic motion and arises be-
cause the restoring force is directly proportional to the displacement. When the restoring 
force does not have the simple form F = -kx, then frequency does depend on amplitude 
and the analysis of oscillatory motion becomes much more complicated. In many systems 
the relation F = -kx breaks down if the displacement x gets too big; for this reason, sim-
ple harmonic motion usually occurs only for small oscillation amplitudes.

Phase
Equation 13.4 isn’t the only solution to Equation 13.3; you can readily show that 
x = A sin vt works just as well. We chose the cosine because we took time t = 0 at the 
point of maximum displacement. Had we set t = 0 as the mass passed through its equilib-
rium point, sine would have been the appropriate function. More generally we can take the 
zero of time at some arbitrary point in the oscillation cycle. Then, as Fig. 13.6 shows, we 
can represent the motion by the form

where the phase constant f has the effect of shifting the cosine curve to the left (for 
f 7 0) or right 1f 6 02 but doesn’t affect the frequency or amplitude.

Velocity and Acceleration in Simple Harmonic Motion
Equation 13.4 (or, more generally, Equation 13.8) gives the position of an object in simple 
harmonic motion as a function of time, so its first derivative must be the object’s velocity:

 v1t2 =
dx
dt

=
d
dt

 1A cos vt2 = -vA sin vt (13.9)

Because the maximum value of the sine function is 1, this expression shows that the maxi-
mum velocity is vA. This makes sense because a higher-frequency oscillation requires that 
the object traverse the distance A in a shorter time—so it must move faster. Equation 13.9 
shows that the velocity v1t2 is a sine function when the displacement x1t2 is a cosine. Thus 
velocity is a maximum when displacement is zero, and vice versa; mathematically, we 
express this by saying that displacement and velocity differ in phase by p2  radians or 90°. 
Does this make sense? Sure, because at the extremes of its motion, the object is instan-
taneously at rest as it reverses direction: maximum displacement, zero speed. And when 

 x1t2 = A cos1vt + f2  1simple harmonic motion2 (13.8)

This is the most general 
 solution of Equation 13.3. 
It gives displacement x as a 
 function of time.

A is the amplitude—i.e., the 
maximum displacement.

f is the phase constant, which tells where  
the mass is at time t = 0. If f = 0, the mass  
is at its maximum displacement when t = 0.t is time.

The cosine—a periodic 
function—shows that the 
motion is periodic.

v is the angular 
frequency, given by 
Equation 13.7a.

p
4

p
2

f = 0

f = -
f = -

D
is

pl
ac

em
en

t, 
x

vt

FIGURE 13.6 A negative phase constant 
shifts the curve to the right.
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FIGURE 13.7 Displacement, velocity, and 
acceleration in simple harmonic motion.
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234 Chapter 13 Oscillatory Motion

The tuned mass damper in New York’s Citicorp Tower (see Application 
on page 235) consists of a 373-Mg concrete block that completes 
one oscillation in 6.80 s. The oscillation amplitude in a high wind is  
110 cm. Determine the spring constant and the maximum speed and 
acceleration of the block.

INTERPRET This is a problem involving simple harmonic motion, 
with the concrete block and spring making up the oscillating system. 
We’re given the period, mass, and amplitude.

DEVELOP Equation 13.7c, T = 2p1m/k, will give the spring con-
stant. Equations 13.9 and 13.10 show that the maximum speed and ac-
celeration are vmax = vA and amax = v2A, and we can get the angular 
frequency v from the period using Equation 13.5: v = 2p/T.

EVALUATE First we solve Equation 13.7c for the spring constant:

k =
4p2m

T2 =
14p2213.73 * 105 kg2

16.80 s22 = 3.18 * 105 N/m

The angular frequency is v = 2p/T = 0.924 s-1. Then we have vmax=  
vA = 10.924 s-1211.10 m2 = 1.02 m/s and amax = v2A = 0.939 m/s2.

ASSESS The large spring constant and relatively low velocity and 
acceleration make sense given the huge mass involved. Note that we 
had to convert the mass, given as 373 Mg 1373 * 106 g2, to kilograms 
before evaluating.

EXAMPLE 13.2 Simple Harmonic Motion: A Tuned Mass Damper
Worked Example with Variation Problems

13.3 Applications of Simple Harmonic Motion
LO 13.4 Describe other simple harmonic motion systems, including torsional 

oscillators and pendulums.

Simple harmonic motion occurs in any system where the tendency to return to equilibrium 
increases in direct proportion to the displacement from equilibrium. Analysis of such sys-
tems is like that of the mass–spring system we just considered but may involve different 
physical quantities.

The Vertical Mass–Spring System
A mass hanging vertically from a spring is subject to gravity as well as the spring force 
(Fig. 13.8). In equilibrium the spring stretches enough for its force to balance gravity: 
mg - kx1 = 0, where x1 is the new equilibrium position. Stretching the spring an addi-
tional amount ∆x increases the spring force by k ∆x, and this increased force tends to re-
store the equilibrium. So once again we have a restoring force that’s directly proportional 
to displacement. And here, with the same spring constant k and mass m, our previous 
analysis still applies and we get simple harmonic motion with frequency v = 1k/m. Thus 
gravity changes only the equilibrium position and doesn’t affect the frequency.

When a mass is added, its 
weight causes the spring 
to stretch this much c

cso the mass 
oscillates about
the new equilibrium.

(a) (b)

k

m

x1

FIGURE 13.8 A vertical mass–spring system 
oscillates about a new equilibrium position 
x1, with the same frequency v = 1k /m.

it passes through its equilibrium position, the object is going fastest. Figures 13.7a and b 
show graphically the relationship between displacement and velocity in simple harmonic 
motion.

Just as velocity is the derivative of position, so acceleration is the derivative of velocity, 
or the second derivative of position:

 a1t2 =
dv
dt

=
d
dt

 1-vA sin vt2 = -v2A cos vt (13.10)

Thus the maximum acceleration is v2A. Since acceleration is a cosine function if velocity 
is a sine, each reaches its maximum value when the other is zero (Figs. 13.7b, c).

13.2 Two identical mass–spring systems are displaced different amounts from 
equilibrium and then released at different times. Of the amplitudes, frequencies, 
 periods, and phase constants of the subsequent motions, which are the same for 
both systems, and which are different?G

O
T 
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13.3 Applications of Simple Harmonic Motion 235

The Torsional Oscillator
Figure 13.9 shows a disk suspended from a wire. Rotate the disk slightly, and a torque 
develops in the wire. Let go, and the disk oscillates by rotating back and forth. This is a 
torsional oscillator, and it’s best described using the language of rotational motion. The 
angular displacement u, restoring torque t, and torsional constant k relate the torque 
and displacement: t = -ku, where again the minus sign indicates that the torque is oppo-
site the displacement, tending to restore the system to equilibrium. The rotational analog 
of Newton’s law, t = Ia, describes the system’s behavior; here the rotational inertia I 
plays the role of mass. But the angular acceleration a is the second derivative of the angu-
lar position, so Newton’s law becomes

 I 
d2u

dt2 = -ku (13.11)

This is identical to Equation 13.3 for the linear oscillator, with I replacing m, u replacing x, 
and k replacing k. So we can immediately write u1t2 = A cos vt for the angular displace-
ment and, in analogy with Equation 13.7a,

 v = Ak

I
 (13.12)

for the angular frequency. Note that the units of k are N #m/rad.
Torsional oscillators constitute the timekeeping mechanism in mechanical watches, and 

they can provide accurate measures of rotational inertia.

The Pendulum
A simple pendulum consists of a point mass suspended from a massless string. Real 
systems approximate this ideal when a suspended object’s size is negligible compared 
with the suspension length and its mass is much greater than that of the suspension. The 
pendulum in a grandfather clock is essentially a simple pendulum. Figure 13.10 shows a 
pendulum of mass m and length L displaced slightly from equilibrium. The gravitational 
force exerts a torque given by t = -mgL sin u, where the minus sign indicates that the 

APPLICATION Swaying Skyscrapers

Skyscrapers are tall, thin, flexible structures. High winds and 
earthquakes can set them oscillating, much like the ruler of 
Example 13.1. Wind-driven oscillations are uncomfortable to 
occupants of a building’s upper floors, and earthquake-induced 
oscillations can be downright destructive.

Modern skyscrapers use so-called tuned mass dampers 
(TMDs) to counteract building oscillations. These devices are 
large mass–spring systems or pendulums mounted high in the 
building. They’re engineered to oscillate with the same frequency 
as the building (hence the term “tuned”) but 180° out of phase, 
thus reducing the amplitude of the building’s own oscillation. The 
result is increased comfort for the building’s occupants and im-
proved safety for buildings in earthquake-prone regions. TMDs 
also find applications in tall smokestacks, airport control towers, 
power-plant cooling towers, bridges, ski lifts, balconies, and even 
the Grand Canyon skywalk. By suppressing vibrations, tuned 
mass dampers enable architects and engineers to design structures 
that don’t need as much intrinsic stiffness, so they can be lighter 
and less expensive. The photos show the world’s largest tuned 
mass damper and the building that houses it, Taiwan’s Taipei 101 
skyscraper. The damper helps the building survive earthquakes 
and typhoons. Example 13.2 explores a different building’s TMD.

FIGURE 13.9 A torsional 
oscillator.

T
S

Pivot

u

u

L

There’s no torque
from the tension
because it acts 
along the line to
the pivot.

Gravitational force
produces a torque
of magnitude
mgL sinu.

mg
u

FIGURE 13.10 Forces on a pendulum.
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236 Chapter 13 Oscillatory Motion

torque tends to rotate the pendulum back toward equilibrium. The rotational analog of 
Newton’s law, t = Ia, then becomes

I 
d2u

dt2 = -mgL  sin u

where we’ve written the angular acceleration as the second derivative of the angular dis-
placement. This looks like Equation 13.11 for the torsional oscillator—but not quite, since 
the torque involves sin u rather than u itself. Thus the restoring torque is not directly pro-
portional to the angular displacement, and the motion is therefore not simple harmonic.

If, however, the amplitude of the motion is small, then it approximates simple harmonic 
motion. Figure 13.11 shows that for small angles, sin u and u are essentially equal. For a 
small-amplitude pendulum we can therefore replace sin u with u to get

I 
d2u

dt2 = -mgLu

This is essentially Equation 13.11, with mgL playing the role of k. So the small-amplitude 
pendulum undergoes simple harmonic motion, with its angular frequency given by Equation 
13.12 with k = mgL:

 v = AmgL

I
 (13.13)

For a simple pendulum, the rotational inertia I is that of a point mass m a distance L from 
the rotation axis, or I = mL2, as we found in Chapter 10. Then we have

 v = AmgL

mL2 = A g

L
  1simple pendulum2 (13.14)

or, from Equation 13.5,

 T =
2p
v

= 2pAL
g
  1simple pendulum2 (13.15)

These equations show that the frequency and period of a simple pendulum are independent 
of its mass, depending only on length and gravitational acceleration.

Tarzan stands on a branch as a leopard threatens. Fortunately, Jane 
is on a nearby branch of the same height, holding a 25-m-long vine 
attached directly above the point midway between her and Tarzan. She 
grasps the vine and steps off with negligible velocity. How soon does 
she reach Tarzan?

INTERPRET This is a problem about a pendulum, which we identify 
as consisting of Jane and the vine. The period of the pendulum is the 
time for a full swing back and forth, so the answer we’re after—the 
time to reach Tarzan—is half the period.

DEVELOP We sketched the situation in Fig. 13.12. Equation 13.15, 
T = 2p1L/g, determines the period, so we can use this equation to 
find the half-period.

EVALUATE Equation 13.15 gives

1
2

 T = a1
2
b12p2AL

g
= 1p2A 25 m

9.8 m/s2 = 5.0 s

ASSESS This seems a reasonable answer for a problem involving  
human-scale objects and many meters of vine. One caution: Jane’s 
rescue will be successful only if the vine is strong enough—not only 
to support her weight but also to provide the acceleration that keeps 
her moving in a circular arc. You can explore that issue in Problem 56.

A Pendulum: Rescuing TarzanEXAMPLE 13.3

p
2

p
2

u (radians)

u

1

0.5

0.50 1

sinu

At small angles,
u and sinu
are nearly
equal.

At larger angles
this approximation
fails.

FIGURE 13.11 For u much less than 1 
 radian, sin u and u are nearly equal.

FIGURE 13.12 Our sketch for Example 13.3. 
Vine length is not to scale.
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13.3 Applications of Simple Harmonic Motion 237

The Physical Pendulum
A physical pendulum is an object of arbitrary shape that’s free to swing (Fig. 13.14). 
It differs from a simple pendulum in that mass may be distributed over its entire length. 
Physical pendulums are everywhere: Examples include the legs of humans and other an-
imals (see Example 13.4), a skier on a chair lift, a boxer’s punching bag, a frying pan 

13.3 What happens to the period of a pendulum if (1) its mass is doubled; (2) it’s 
moved to a planet whose gravitational acceleration is one-fourth that of Earth; and 
(3) its length is quadrupled?G

O
T 
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?

CONCEPTUAL EXAMPLE 13.1 The Nonlinear Pendulum

A pendulum consists of a weight on the end of a rigid rod 
of negligible mass, hanging vertically from a frictionless 
pivot at the opposite end of the rod. For small-amplitude 
disturbances from equilibrium, the system constitutes a 
simple pendulum. But for larger disturbances it becomes 
a nonlinear pendulum, so named because the restoring 
torque is no longer proportional to the displacement. 
Quantitative analysis of a nonlinear pendulum is difficult, 
but you can still understand it conceptually.

(a) As the pendulum’s amplitude increases, how will its 
period change?

(b) If you start the pendulum by striking it when it’s 
hanging vertically, will it undergo oscillatory motion 
no matter how hard it’s hit?

EVALUATE 

(a) Before we made the small-amplitude approximation, 
we showed that a pendulum’s restoring torque is, in 
general, proportional to sin u. But Fig. 13.11 shows 
that sin u doesn’t increase as fast as u itself. So for 
large-amplitude swings, the restoring torque is less 
than it would be in the small-amplitude approxi-
mation. This suggests the pendulum should return 
more slowly toward equilibrium—and thus its period 
should increase.

(b) When you strike the pendulum, you give it kinetic 
energy. If that energy is insufficient to invert it com-
pletely, then the pendulum will swing to one side, 
eventually stop, and return, undergoing back-and-
forth oscillatory motion. But hit it hard enough, and 
it will go “over the top,” reaching its fully inverted 
position with kinetic energy to spare. Round and round it goes, 
executing motion that’s periodic and circular, but not oscillatory. 
This circular motion isn’t uniform, because it moves more slowly 
at the top and faster at the bottom.

ASSESS Make sense? Yes: Consider a pendulum with just a little 
less energy than it takes to go “over the top.” It will move very slowly 
near the top of its trajectory, so its period will be quite long. And its 
 angular-position-versus-time curve will be flatter than the sine curve of 
a simple pendulum. Give it just a little more energy, and it goes into 

(a)

(b)

(c)
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FIGURE 13.13 Conceptual Example 13.1: (a) Small-amplitude oscillations;  
(b) large-amplitude oscillations; (c) circular motion.

circular motion. Figure 13.13 illustrates all three situations. You can ex-
plore the nonlinear pendulum computationally in Problem 85.

MAKING THE CONNECTION If the pendulum has length L, what’s 
the minimum speed that will get it “over the top,” into periodic non-
uniform circular motion?

EVALUATE Potential energy at the top is U = mg12L2, so kinetic 
 energy K = 1

2 mv2 has to be at least this large. That gives v 7 21gL.
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238 Chapter 13 Oscillatory Motion

hanging from a rack, and a crane lifting any object of significant extent. In our analysis of 
the simple pendulum, we used the fact that mass was  concentrated at the bottom only in 
the final step, when we wrote mL2 for the rotational inertia. Our analysis before that step 
therefore applies to the physical pendulum as well.

In particular, a physical pendulum displaced slightly from equilibrium undergoes sim-
ple harmonic motion with frequency given by Equation 13.13. But how are we to interpret 
the length L in that equation? Because gravity—which provides the restoring torque for 
any pendulum—acts on an object’s center of gravity, L must be the distance from the pivot 
to the center of gravity, as marked in Fig. 13.14.

When walking, the leg not in contact with the ground swings forward, 
acting like a physical pendulum. Approximating the leg as a uniform 
rod, find the period of this pendulum motion for a leg of length 90 cm.

INTERPRET This problem is about a physical pendulum, here identi-
fied as a uniform rod approximating the leg.

DEVELOP Figure 13.15 is our drawing, showing the leg as a rod piv-
oting at the hip. The center of mass of a uniform rod is at its center, so 
the effective length L is half the leg’s length, or 45 cm. Equation 13.13, 
v = 1mgL/I, determines the angular frequency, from which we can 
get the period using Equation 13.5, T = 2p/v. We also need the rota-
tional inertia; from Table 10.2, that’s I = 1

3 M12L22, where we use 2L 
because Table 10.2’s expression involves the full length of the rod.

EVALUATE Putting this all together, we evaluate to get the answer:

T =
2p
v

= 2pA I
mgL

= 2pD 
1
3 m12L22

mgL
= 2pA4L

3g

Using L = 0.45 m gives T = 1.6 s.

ASSESS The leg swings forward to complete a full stride in half 
a period, or 0.8 s. This seems a reasonable value for the pace in 
walking.

A Physical Pendulum: WalkingEXAMPLE 13.4

Pivot

L

Center of
gravity

u

FIGURE 13.14 A physical pendulum.

A uniform rod
approximates the
leg.

The effective
length L is
half the
leg’s length.

FIGURE 13.15 A human leg treated 
as a pendulum.

13.4 Circular Motion and Harmonic Motion
LO 13.5 Relate simple harmonic motion to circular motion.

Look down on the solar system, and you see Earth in circular motion about the Sun 
(Fig. 13.16a). But look in from the plane of Earth’s orbit, and Earth appears to be moving 
back and forth (Fig. 13.16b). Figure 13.17 shows that this apparent back-and-forth motion 
is a single component of the actual circular motion, and that this component describes a si-
nusoidal function of time. Specifically, the position vector r

!
 for Earth or any other object in 

circular motion makes an angle that increases linearly with time: u = vt, where we measure 
u with respect to the x-axis and take t = 0 when the object is on the x-axis. Then the two 
components x = r cos u and y = r sin u of the object’s position become

x1t2 = r cos vt and y1t2 = r sin vt

These are the equations for two different simple harmonic motions, one in the x-direction 
and the other in the y-direction. Because one is a cosine and the other is a sine, they’re out 
of phase by p2  or 90°.
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13.5 Energy in Simple Harmonic Motion 239

R

x = -R x = Rx = 0

(a)

(b)

In the plane of Earth’s orbit,
we don’t see the component of
motion toward or away from us. 
Instead, we see Earth undergoing 
oscillatory motion with 
amplitude R. 

Looking down on Earth
and the Sun, we see Earth’s
orbit around the Sun as an
essentially circular path of
radius R.

FIGURE 13.16 Two views of Earth’s orbital 
motion.

So we can think of circular motion as resulting from perpendicular simple harmonic 
motions, with the same amplitude and frequency but 90° out of phase. This should help 
you to understand why we use the term angular frequency for simple harmonic motion 
even though there’s no angle involved. The argument vt in the description of simple har-
monic motion is the same as the physical angle u in the corresponding circular motion. 
The time for one cycle of simple harmonic motion is the same as the time for one revolu-
tion in the circular motion, so the values of T and therefore v are exactly the same.

You can verify that two mutually perpendicular simple harmonic motions of the same 
amplitude and frequency sum vectorially to give circular motion (see Problem 53). If the 
amplitudes or frequencies aren’t the same, then interesting complex motions occur, as 
shown in Fig. 13.18.

r
u

(a)

(c)

(b)

x

vt

p

2p

0 r-r

x

y y

u = vt
x = r cosu

y = r sinu

0

r

-r

p 2p vt

FIGURE 13.17 As the position vector r
!
 traces out a circle, its 

x- and y-components are sinusoidal functions of time.

13.4 Figure 13.18 shows the paths traced in the horizontal plane by two pendulums 
swinging with different frequencies in two perpendicular directions. What’s the ratio 
of x-direction frequency to y-direction frequency for (1) path (a) and (2) path (b)?G

O
T 
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?

13.5 Energy in Simple Harmonic Motion
LO 13.6 Outline energy exchanges in simple harmonic motion.

LO 13.7 Explain why simple harmonic motion is ubiquitous throughout the universe.

Displace a mass–spring system from equilibrium, and you do work as you build up poten-
tial energy in the spring. Release the mass, and it accelerates toward equilibrium, gaining 
kinetic energy at the expense of potential energy. It passes through its equilibrium position 
with maximum kinetic energy; at that point there’s no potential energy in the system. The 
mass then slows and potential energy builds as the mass compresses the spring. If there’s 
no energy loss, this process continues indefinitely. In oscillatory motion, energy is con-
tinuously transferred back and forth between its kinetic and potential forms (Fig. 13.19).

For a mass–spring system, the potential energy is given by Equation 7.4: U = 1
2 kx2, 

where x is the displacement from equilibrium. Meanwhile, the kinetic energy is K = 1
2 mv2. 

(a)

x

y

(b)

FIGURE 13.18 Complex paths 
resulting from different 
 frequencies in different direc-
tions. Can you determine the 
frequency ratios?
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240 Chapter 13 Oscillatory Motion

We can illustrate explicitly the interchange of kinetic and potential energy in simple har-
monic motion by using x from Equation 13.4 and v from Equation 13.9 in the expressions 
for potential and kinetic energy. Then we have

U = 1
2 kx2 = 1

2 k1A cos vt22 = 1
2 kA2 cos2 vt

and
K = 1

2 mv2 = 1
2 m1-vA sin vt22 = 1

2 mv2A2 sin2 vt = 1
2 kA2 sin2 vt

where we used v2 = k/m. Both energy expressions have the same maximum value— 
1
2 kA2— equal to the initial potential energy of the stretched spring. But the potential energy is 
a maximum when the kinetic energy is zero, and vice versa. What about the total energy? It’s

E = U + K = 1
2 kA2 cos2 vt + 1

2 kA2 sin2 vt = 1
2 kA2

where we used sin2 vt + cos2 vt = 1.
Our result is a statement of the conservation of mechanical energy—the principle we 

introduced in Chapter 7—applied to a simple harmonic oscillator. Although the kinetic 
and potential energies K and U both vary with time, their sum—the total energy E—does 
not (Fig. 13.20).

p

2

3p

2

U K

U K

U K

U K

U K

U K

U K

U K

U K

vt = 

vt = 0

vt = p

vt = 2p

vt = 

v = 0

v = 0

v = 0

Equilibrium
x = 0

FIGURE 13.19 Kinetic and potential en-
ergy in simple harmonic motion. Dashed 
curve is the position of the mass; straight 
dashed line marks the equilibrium posi-
tion x = 0. 

Total energy E is constant c

cwhile potential energy U 
and kinetic energy K oscillate.

U

K

E
ne
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2p

E = U + K

vt

pp

2

3p

2

FIGURE 13.20 Energy of a simple harmonic oscillator.

A mass–spring system undergoes simple harmonic motion with angu-
lar frequency v and amplitude A. Find its speed at the point where the 
kinetic and potential energies are equal.

INTERPRET This example involves the concept of energy conserva-
tion in simple harmonic motion. We’re asked to find a speed, which is 
related to kinetic energy.

DEVELOP When the kinetic energy equals the potential energy, each 
must be half the total energy. What is that total? The speed is at its 
maximum, vmax = vA from Equation 13.9, when the energy is all 
kinetic. Thus the total energy is E = 1

2 mvmax
2 = 1

2 mv2A2. The speed 

v we’re after occurs when the kinetic energy has half this value, or 
K = 1

2 mv2 = 1
211

2 mv2A22 = 1
4 mv2A2.

EVALUATE Solving for v gives our answer:

v =
vA12

ASSESS Make sense? Yes: The speed at this point must be less 
than the maximum speed, since half the energy is tied up as poten-
tial  energy in the spring. And because kinetic energy depends on the 
square of the speed, it’s lower not by a factor of 2 but of 12.

EXAMPLE 13.5 Energy in Simple Harmonic Motion
Worked Example with Variation Problems

Potential-Energy Curves and Simple Harmonic Motion
We arrived at the expression U = 1

2 kx2 for the potential energy of a spring by integrating 
the spring force, -kx, over distance. Since every simple harmonic oscillator has a restor-
ing force or torque proportional to displacement, integration always results in a potential 
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13.6 Damped Harmonic Motion 241

energy proportional to the square of the displacement—that is, in a parabolic potential- 
energy curve. Conversely, any system with a parabolic potential-energy curve exhibits sim-
ple harmonic motion. The simplest mathematical approximation to a smooth curve near a 
minimum is a parabola, and for that reason potential-energy curves for complex systems 
often approximate parabolas near their stable equilibrium points (Fig. 13.21). Small dis-
turbances from these equilibria therefore result in simple harmonic motion, and that’s why 
simple harmonic motion is so common throughout the physical world.

13.5 Two different mass–spring systems are oscillating with the same amplitude and 
frequency. If one has twice as much total energy as the other, how do (1) their masses 
and (2) their spring constants compare? (3) What about their maximum speeds?G
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“Best fit” parabola

Displacement

FIGURE 13.21 Near their minima, 
 potential-energy curves often 
 approximate parabolas. This results in 
simple harmonic motion.

13.6 Damped Harmonic Motion
LO 13.8 Describe the effect of damping on simple harmonic motion.

In real oscillating systems, forces such as friction or air resistance normally dissipate the 
oscillation energy. This energy loss causes the oscillation amplitude to decrease, and the 
motion is said to be damped.

If dissipation is sufficiently weak that only a small fraction of the system’s energy is 
lost in each oscillation cycle, then we expect that the system should behave essentially as 
in the undamped case, except for a gradual decrease in amplitude (Fig. 13.22).

In many systems the damping force is approximately proportional to the velocity and in 
the opposite direction:

Fd = -bv = -b 
dx
dt

where b is a constant giving the strength of the damping. We can write Newton’s law as 
before, now including the damping force along with the restoring force. For a mass–spring 
system, we have

 m 
d2x

dt2 = -kx - b 
dx
dt

 (13.16)

We won’t solve this equation, but simply state its solution:

 x1t2 = Ae-bt/2m cos1vt + f2 (13.17)

This equation describes sinusoidal motion whose amplitude decreases exponentially 
with time. How fast depends on the damping constant b and mass m: When t = 2m/b, 
the amplitude has dropped to 1/e of its original value. When the damping is so weak 
that only a small fraction of the total energy is lost in each cycle, the frequency v in 
Equation 13.17 is essentially equal to the undamped frequency 1k/m. But with stron-
ger damping, the damping force slows the motion, and the frequency becomes lower. 
As long as oscillation occurs, the motion is said to be underdamped (Fig. 13.23a). 
For sufficiently strong damping, though, the effect of the damping force is as great 
as that of the spring force. Under this condition, called critical damping, the system 
returns to its equilibrium state without undergoing any oscillations (Fig. 13.23b). If 
the damping is made still stronger, the system becomes overdamped. The damping 
force now dominates, so the system returns more slowly to equilibrium (Fig. 13.23c).

Many physical systems, from atoms to the human leg, can be modeled as damped 
oscillators. Engineers often design systems with specific amounts of damping. 
Automobile shock absorbers, for example, coordinate with the springs to give critical 
damping. This results in rapid return to equilibrium while absorbing the energy im-
parted by road bumps.

The object still oscillates
sinusoidally c

cbut the amplitude decreases
within the “envelope” of a 
decaying exponential.

D
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FIGURE 13.22 Weakly damped motion.
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Time, t

FIGURE 13.23 (a) Underdamped,  
(b) critically damped, and (c) overdamped 
oscillations.
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242 Chapter 13 Oscillatory Motion

13.7 Driven Oscillations and Resonance
LO 13.9 Explain resonance in driven oscillatory systems.

Pushing a child on a swing, you can build up a large amplitude by giving a relatively small 
push once each oscillation cycle. If your pushing were not in step with the swing’s natural 
oscillatory motion, then the same force would have little effect.

When an external force acts on an oscillatory system, we say that the system is driven. 
Consider a mass–spring system, which you might drive as suggested in Fig. 13.24. Suppose 
the driving force is given by Fd cos vd t, where vd is called the driving frequency. Then 
Newton’s law is

 m 
d2x

dt2 = -kx - b 
dx
dt

+ Fd cos vdt (13.18)

where the first term on the right-hand side is the restoring force, the second the damping 
force, and the third the driving force. Since the system is being driven at the frequency vd, 
we expect it to undergo oscillatory motion at this frequency. So we guess that the solution 
to Equation 13.18 might have the form

x = A cos1vdt + f2

A car’s suspension acts like a mass–spring system with m = 1200 kg 
and k = 58 kN/m. Its worn-out shock absorbers provide a damping 
constant b = 230 kg/s. After the car hits a pothole, how many oscilla-
tions will it make before the amplitude drops to half its initial value?

INTERPRET We interpret this problem as being about damped simple 
harmonic motion, and we identify the car as the oscillating system.

DEVELOP Our plan is to find out how long it takes the amplitude to de-
crease by half and then find the number of oscillation cycles in this time. 
Equation 13.17, x1t2 = Ae-bt/2m cos1vt + f2, describes the motion, 
with the factor e-bt/2m giving the decrease in amplitude. At t = 0 this 
factor is 1, so we want to know when it’s equal to one-half: e-bt/2m = 1

2.

EVALUATE Taking the natural logarithms of both sides gives 
bt/2m = ln 2, where we used the facts that ln1x2 and ex are inverse 
functions and ln11/x2 = - ln1x2. Then

t =
2m
b

 ln 2 =
12211200 kg2

230 kg/s
 ln 2 = 7.23 s

is the time for the amplitude to drop to half its original value. For weak 
damping, the period is very close to the undamped period, which is

T = 2pAm
k

= 2pA 1200 kg

58 * 103 N/m
= 0.904 s

Then the number of cycles during the 7.23 s it takes the amplitude to 
drop in half is

7.23 s
0.904 s

= 8

ASSESS That the number of oscillations is much greater than 1 tells 
us that the damping is weak, justifying our use of the undamped pe-
riod. It also tells us that those are really bad shocks!

Damped Simple Harmonic Motion: Bad ShocksEXAMPLE 13.6

13.6 The figure shows displacement-versus-time graphs for three mass–spring systems, with different 
masses m, spring constants k, and damping constants b. The time on the horizontal axis is the same for all 
three. (1) For which system is damping the most significant? (2) For which system is damping the least 
significant?
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Hand moves with 
the driving frequency.

Block responds at
the same frequency,
but possibly larger
amplitude.

FIGURE 13.24 Driving a mass–spring 
 system results in a large amplitude if the 
driving frequency is near the natural 
 frequency 1k /m.
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13.7 Driven Oscillations and Resonance 243

Substituting this expression and its derivatives into Equation 13.18 (see Problem 73) 
shows that the equation is satisfied if

 A1vd2 =
Fd

m21vd
2 - v0

222 + b2vd
2/m2

 (13.19)

where v0 is the undamped natural frequency 1k/m, as distinguished from the driving 
frequency vd.

Figure 13.25 shows resonance curves—plots of Equation 13.19 as a function of driv-
ing frequency—for three values of the damping constant. As long as the system is under-
damped, the curve has a maximum at some nonzero frequency, and for weak damping, that 
maximum occurs at very nearly the natural frequency. The weaker the damping, the more 
sharply peaked is the resonance curve. Thus, in weakly damped systems, it’s possible to 
build up large-amplitude oscillations with relatively small driving forces—a phenomenon 
known as resonance.

Most physical systems, from molecules to cars, and loudspeakers to buildings and 
bridges, exhibit one or more natural modes of oscillation. If these oscillations are weakly 
damped, then the buildup of large-amplitude oscillations through resonance can cause se-
rious problems—sometimes even destroying the system (Fig. 13.26). Engineers designing 
complex structures spend a lot of their time exploring all possible oscillation modes and 
taking steps to avoid resonance. In an earthquake-prone area, for example, a building’s nat-
ural frequencies would be designed to avoid the frequency of typical earthquake motions. 
A loudspeaker should be engineered so its natural frequency isn’t in the range of sound 
it’s intended to reproduce. Damping systems such as the shock absorbers of Example 13.6 
or the tuned mass damper of Example 13.2 help limit resonant oscillations in cases where 
natural frequencies aren’t easily altered.

Resonance is also important in microscopic systems. The resonant behavior of 
electrons in a special tube called a magnetron produces the microwaves that cook food 
in a microwave oven; the same resonant process heats ionized gases in some exper-
iments designed to harness fusion energy. Carbon dioxide in Earth’s atmosphere ab-
sorbs infrared radiation because CO2 molecules—acting like miniature mass–spring 
systems—resonate at some of the frequencies of infrared radiation. The result is the 
greenhouse effect, which now threatens Earth with significant climatic change. The 
process called nuclear magnetic resonance (NMR) uses the resonant behavior of pro-
tons to probe the structure of matter and is the basis of magnetic resonance imaging 
(MRI) used in medicine. In NMR, the resonance involves the natural precession fre-
quency of the protons due to magnetic torques; we described a classical model of this 
process in Chapter 11.
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FIGURE 13.25 Resonance curves for three 
damping strengths; v0 is the undamped 
natural frequency 1k /m.

FIGURE 13.26 Oscillations of the ground 
during an earthquake can drive resonant 
oscillations in buildings whose natural fre-
quencies include those of the earthquake 
oscillations. This helps explain why some 
buildings collapse while neighboring 
buildings sustain only modest damage. 
Photo shows the aftermath of the 1985 
magnitude-8.1 earthquake in Mexico City.

13.7 The photo shows a wineglass shattering in response to sound. What’s more 
important here, the amplitude or the frequency of the sound?
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Chapter 13 Summary

Big Idea
The big idea here is simple harmonic motion (SHM), oscillatory 
 motion that is ubiquitous and that occurs whenever a disturbance 
from equilibrium results in a restoring force or torque that is directly 
 proportional to the displacement. Position in SHM is a sinusoidal 
function of time:

x1t2 = A cos vt

Period T is the time to complete 
one oscillation cycle; its inverse is 
frequency, or number of oscilla-
tions per unit time:

f =
1
T

Another measure of frequency is 
angular frequency v, given by

v = 2pf =
2p
T

Angular frequency can be under-
stood in terms of the close relation-
ship between circular motion and 
simple harmonic motion.

T

x (t)

t

A

r
u

u = vt

p 2p
vt

Po
si

tio
n

In the absence of friction and 
other dissipative forces, energy in 
SHM is conserved, although it’s 
transformed back and forth be-
tween kinetic and potential forms:

E = 1
2 mv2 + 1

2 kx2 = constant

When dissipative forces act, the motion 
is damped. For small  dissipative forces 
the oscillation amplitude decreases ex-
ponentially with time:

x1t2 = Ae-bt/2m cos1vt + f2

1
2

1
2

U =   kx2

Total energy U + K

K =   mv2

e-bt>2m

If a system is driven at a frequency near its natural oscillation frequency v0, 
then large-amplitude oscillations can build; this is resonance. The amplitude 
A depends on the driving force Fd, the driving frequency vd, the natural fre-
quency v0 = 1k/m, and the damping constant b:

A1vd2 =
Fd

m21vd
2 - v0

222 + b2vd
2/m2

Driving frequency, vd

A
m

pl
itu

de

v0

Key Concepts and Equations

Applications
In mass–spring systems, the angular 
 frequency is given by

v = A k
m

In  sys tems involving ro ta t ional 
 oscillations, the analogous relation 
 involves the torsional constant and 
 rotational inertia:

v = Ak

I

A special case is the pendulum, 
for which (with small-amplitude 
oscillations)

v = AmgL

I

m

m

k

k

Pivot

L Center of
gravity

In the case of a simple pendulum, 
the angular frequency  reduces to

v = A g

L

m

L
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Learning Outcomes After finishing this chapter you should be able to:

LO 13.1 Characterize oscillatory motion by its amplitude, frequency, 
and period.
Exercises 13.11, 13.12, 13.13, 13.14, 13.15

LO 13.2 State the physical conditions that result in simple harmonic 
motion.
Problem 13.85

LO 13.3 Describe simple harmonic motion quantitatively in a mass–
spring system.
For Thought and Discussion Questions 13.1, 13.2, 13.3, 
13.4, 13.5, 13.10; Exercises 13.16, 13.17, 13.18, 13.19, 
13.28; Problems 13.40, 13.42, 13.43, 13.44, 13.47, 13.50, 
13.54, 13.57, 13.59, 13.60, 13.74, 13.80

LO 13.4 Describe other simple harmonic motion systems, including 
torsional oscillators and pendulums.
For Thought and Discussion Questions 13.4, 13.6, 13.10; 
Exercises 13.20, 13.21, 13.22, 13.23; Problems 13.41, 

13.45, 13.46, 13.48, 13.49, 13.50, 13.51, 13.52, 13.55, 
13.56, 13.58, 13.61, 13.63, 13.64, 13.67, 13.68, 13.69, 
13.70, 13.75, 13.76, 13.77, 13.78, 13.81, 13.82, 13.83, 13.84

LO 13.5 Relate simple harmonic motion to circular motion.
Exercises 13.24, 13.25; Problem 13.53

LO 13.6 Outline energy exchanges in simple harmonic motion.
Exercises 13.26, 13.27; Problems 13.62, 13.71, 13.72

LO 13.7 Explain why simple harmonic motion is ubiquitous throughout 
the universe.
Problems 13.60, 13.61, 13.63, 13.64, 13.69, 13.75

LO 13.8 Describe the effect of damping on simple harmonic motion.
For Thought and Discussion Questions 13.7, 13.8; Exercises 
13.29, 13.30; Problems 13.65, 13.66

LO 13.9 Explain resonance in driven oscillatory systems.
For Thought and Discussion Question 13.9; Exercise 13.31; 
Problem 13.73, 13.79

For Thought and Discussion

1. The vibration frequencies of molecules are much higher than 
those of macroscopic mechanical systems. Why?

2. What happens to the frequency of a simple harmonic oscil-
lator when the spring constant is doubled? When the mass is 
doubled?

3. How does the frequency of a simple harmonic oscillator depend 
on its amplitude?

4. How would the frequency of a horizontal mass–spring system 
change if it were taken to the Moon? Of a vertical mass–spring 
system? Of a simple pendulum?

5. When in its cycle is the acceleration of an undamped simple har-
monic oscillator zero? When is the velocity zero?

6. One pendulum consists of a solid rod of mass m and length L, 
and another consists of a compact ball of the same mass m on 
the end of a massless string of the same length L. Which has the 
greater period? Why?

7. Why is critical damping desirable in a car’s suspension?
8. Explain why the frequency of a damped system is lower than that 

of the equivalent undamped system.
9. Opera singers have been known to break glasses with their 

voices. How?
10. What will happen to the period of a mass–spring system if it’s 

placed in a jetliner accelerating down a runway? What will hap-
pen to the period of a pendulum in the same situation?

Exercises and Problems

Exercises

Section 13.1 Describing Oscillatory Motion
11. A doctor counts 68 heartbeats in 1.0 minute. What are the corre-

sponding period and frequency?
12. A violin string playing the note A oscillates at 440 Hz. What’s its 

oscillation period?

13. The vibration frequency of a hydrogen chloride molecule is 
8.66 * 1013 Hz. How long does it take the molecule to complete 
one oscillation?

14. The top of a skyscraper sways back and forth, completing 95 full 
oscillation cycles in 10 minutes. Find (a) the period and (b) the 
frequency (in Hz) of its oscillatory motion.

15. A hummingbird’s wings vibrate at about 45 Hz. What’s the 
 corresponding period?

Section 13.2 Simple Harmonic Motion
16. A 200-g mass is attached to a spring of constant k = 5.6 N/m 

and set into oscillation with amplitude A = 25 cm. Determine 
(a) the frequency in hertz, (b) the period, (c) the maximum veloc-
ity, and (d) the maximum force in the spring.

17. An automobile suspension has an effective spring constant of 26 
kN/m, and the car’s suspended mass is 1900 kg. In the absence 
of damping, with what frequency and period will the car undergo 
simple harmonic motion?

18. A 342-g mass is attached to a spring and undergoes sim-
ple harmonic motion. Its maximum acceleration is 18.6 m/s2, 
and its maximum speed is 1.75 m/s. Determine (a) the angular 
 frequency, (b) the amplitude, and (c) the spring constant.

19. A particle undergoes simple harmonic motion with ampli-
tude 25 cm and maximum speed 4.8 m/s. Find the (a) angular 
 frequency, (b) period, and (c) maximum acceleration.

Section 13.3 Applications of Simple Harmonic Motion
20. How long should you make a simple pendulum so its period is (a) 

200 ms, (b) 5.0 s, and (c) 2.0 min?
21. At the heart of a grandfather clock is a simple pendulum 1.45 m 

long; the clock ticks each time the pendulum reaches its maxi-
mum displacement in either direction. What’s the time interval 
between ticks?

22. A 622-g basketball with 24.0-cm diameter is suspended by a 
wire and is undergoing torsional oscillations at 1.87 Hz. Find the 
 torsional constant of the wire.
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246 Chapter 13 Oscillatory Motion

23. A meter stick is suspended from one end and set swinging. Find 
the period of the resulting small-amplitude oscillations.

Section 13.4 Circular and Harmonic Motion
24. A wheel rotates at 600 rpm. Viewed from the edge, a point on the 

wheel appears to undergo simple harmonic motion. What are (a) 
the frequency in Hz and (b) the angular frequency for this SHM?

25. The x- and y-components of an object’s motion are harmonic with 
frequency ratio 1.75:1. How many oscillations must each compo-
nent undergo before the object returns to its initial position?

Section 13.5 Energy in Simple Harmonic Motion
26. A 450-g mass on a spring is oscillating at 1.2 Hz, with total en-

ergy 0.51 J. What’s the oscillation amplitude?
27. A torsional oscillator of rotational inertia 1.6 kg#m2 and torsional 

constant 3.4 N #m/rad has total energy 4.7 J. Find its maximum 
angular displacement and maximum angular speed.

28. A 2000-kg car is going at 100 km/h. It’s got bad shock absorbers, 
and it’s executing vertical SHM with amplitude and frequency of 
approximately 20 cm and 1 Hz, respectively. Estimate the per-
centage of the car’s kinetic energy that’s in the oscillation.

Sections 13.6 and 13.7 Damped Harmonic Motion 
and Resonance
29. The vibration of a piano string can be described by an equation 

analogous to Equation 13.17. If the quantity analogous to b/2m 
in that equation has the value 2.8 s-1, how long will it take the 
amplitude to drop to half its original value?

30. A mass–spring system has b/m = v0 /5, where b is the damping 
constant and v0 the natural frequency. How does its amplitude at 
v0 compare with its amplitude when driven at frequencies 10% 
above and below v0?

31. A car’s front suspension has a natural frequency of 0.45 Hz. 
The car’s front shock absorbers are worn and no longer provide 
 critical damping. The car is driving on a bumpy road with bumps  
40 m apart. At a certain speed, the driver notices that the car be-
gins to shake violently. What is this speed?

Example Variations
The following problems are based on two worked examples from the 
text. Each set of four problems is designed to help you make connec-
tions that enhance your understanding of physics and to build your 
confidence in solving problems that differ from ones you’ve seen be-
fore. The first problem in each set is essentially the example problem 
but with different numbers. The second problem presents the same sce-
nario as the example but asks a different question. The third and fourth 
problems repeat this pattern but with entirely different scenarios.

32. Example 13.2: Mass–spring systems are used as tuned mass 
dampers to diminish the vibrations of the balconies of a perform-
ing arts center. The oscillation frequency of the TMDs is 6.85 
Hz, the oscillating mass is 142 kg, and the oscillation amplitude 
is 4.86 cm. What are (a) the spring constant, (b) the maximum 
speed, and (c) the maximum acceleration of the mass?

33. Example 13.2: A tuned mass damper for a skyscraper consists 
of a mass–spring system with spring constant 0.288 MN/m. What 
should be its mass if it’s to oscillate with a period of 5.71 s?

34. Example 13.2: An alternative to the mass–spring tuned mass 
damper of Example 13.2 is to use a large pendulum. The Taipei 
101 mass damper (see Application, page 235) is such a damper. 
It uses a solid ball with diameter 5.49 m and mass 660,000 kg, 

suspended from multiple cables. Find the period of this system. 
Although the real system is more complex, treat this TMD as a 
simple pendulum with a single 8.40-m-long cable attached to the 
top of the ball, and measuring the length L from the suspension 
point to the center of the ball (which is not the same as the cable 
length). Neglect the mass of the cable.

35. Example 13.2: Repeat the preceding problem, now treating the 
mass damper more accurately as a physical pendulum but still 
neglecting the cable mass. Hint: You’ll find the parallel-axis 
 theorem useful.

36. Example 13.5: A mass–spring system is oscillating with fre-
quency f = 0.377 Hz and amplitude 28.2 cm. Find its speed at 
the point where its kinetic and potential energies are equal.

37. Example 13.5: A mass–spring system with spring constant 
k = 63.7 N/m is oscillating with angular frequency 2.38 s–1 and to-
tal energy 7.69 J. Find (a) its amplitude and (b) its maximum speed.

38. Example 13.5: A simple pendulum is swinging with period 
T = 2.62 s and amplitude 8.85°. Find the following quantities 
at the point where the pendulum’s kinetic and potential energies 
are equal: (a) the angle the pendulum makes with the vertical and 
(b) the speed of the pendulum bob.

39. Example 13.5: A simple pendulum of mass m is swinging with 
period T and amplitude umax. Find expressions for (a) its total en-
ergy and (b) its maximum speed.

Problems
40. A simple model for car-

bon dioxide consists of 
three mass points (atoms) 
connected by two springs 
(electric forces), as shown in Fig. 13.27. One way this system can 
oscillate is if the carbon atom stays fixed and the two oxygens 
move symmetrically on either side of it. If the frequency of this 
oscillation is 4.0 * 1013 Hz, what’s the effective spring constant? 
(Note : The mass of an oxygen atom is 16 u.)

41. A pendulum consists of a 320-g solid ball 15.0 cm in diame-
ter, suspended by an essentially massless string 80.0 cm long. 
Calculate the period of this pendulum, treating it first as a sim-
ple pendulum and then as a physical pendulum. What’s the error 
in the simple-pendulum approximation? (Hint : Remember the  
parallel-axis theorem.)

42. The human eye and the muscles that hold it can be modeled 
as a mass–spring system with typical values m = 7.5 g and 
k = 2.5 kN/m. What’s the resonant frequency of this system? 
Shaking your head at this frequency blurs vision, as the eyeball 
undergoes resonant oscillations.

43. A mass m slides along a frictionless horizontal surface at speed 
v0. It strikes a spring of 
constant k attached to a 
rigid wall, as shown in 
Fig. 13.28. After an elastic 
encounter with the spring, 
the mass heads back in the 
direction it came from. In 
terms of k, m, and v0, de-
termine (a) how long the mass is in contact with the spring and 
(b) the spring’s maximum compression.

44. Show by substitution that x1t2 = A sin vt is a solution to 
Equation 13.3.

45. A physics student, bored by a lecture on simple harmonic mo-
tion, idly picks up his pencil (mass 8.65 g, length 18.8 cm) by 
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the tip with his frictionless fingers, and allows it to swing back 
and forth with small amplitude. If the pencil completes 5974 full 
cycles during the lecture, how long does the lecture last?

46. A pendulum of length L is mounted in a rocket. Find expressions 
for its period if the rocket is (a) at rest on its launch pad, (b) ac-
celerating upward with acceleration a = 1

2 g, (c) accelerating 
downward with a = 1

2 g, and (d) in free fall.
47. The protein dynein powers the flagella that propel some unicellu-

lar organisms. Biophysicists have found that dynein is intrinsically 
oscillatory, and that it exerts peak forces of about 1.0 pN when 
it attaches to structures called microtubules. The resulting oscil-
lations have amplitude 15 nm. (a) If this system is modeled as a 
mass–spring system, what’s the associated spring constant? (b) If 
the oscillation frequency is 70 Hz, what’s the effective mass?

48. A mass is attached to a vertical spring, which then goes into os-
cillation. At the high point of the oscillation, the spring is in the 
original unstretched equilibrium position it had before the mass 
was attached; the low point is 5.8 cm 
 below this. Find the oscillation period.

49. Derive the period of a simple pendulum by 
considering the horizontal displacement x 
and the force acting on the bob, rather than 
the angular displacement and torque.

50. A solid disk of radius R is suspended 
from a spring of spring constant k 
and torsional constant k, as shown in 
Fig. 13.29. In terms of k and k, what 
value of R will give the same period for 
the vertical and torsional oscillations of 
this system?

51. A thin steel beam is sus-
pended from a crane and is 
undergoing torsional oscil-
lations. Two 82.4 kg steel-
workers leap onto opposite 
ends of the beam, as shown in  
Fig. 13.30. If the frequency of 
torsional oscillations diminishes by 21.0%, what’s the beam’s mass?

52. A cyclist turns her bicycle upside down to repair it. She then notices 
that the front wheel is executing a slow, small-amplitude, back-and-
forth rotational motion with period 12 s. Treating the wheel as a 
thin ring of mass 600 g and radius 30 cm, whose only irregularity is 
the tire valve stem, determine the mass of the valve stem.

53. An object undergoes simple harmonic motion in two mutually 
perpendicular directions, its position given by r

!
= A sin vtin +  

A cos vtjn. (a) Show that the object remains a fixed distance from 
the origin (i.e., that its path is circular), and find that distance. 
(b) Find an expression for the object’s velocity. (c) Show that the 
speed remains constant, and find its value. (d) Find the angular 
speed of the object in its circular path.

54. The muscles that drive insect wings minimize the energy needed 
for flight by “choosing” to move at the natural oscillation fre-
quency of the wings. Biologists study this phenomenon by clip-
ping an insect’s wings to reduce their mass. If the wing system 
is modeled as a simple harmonic oscillator, by what percent will 
the frequency change if the wing mass is decreased by 25%? Will 
it increase or decrease?

55. A hollow ball of diameter D is suspended from a string of neg-
ligible mass whose length is equal to the ball’s diameter. The 
string is attached to the surface of the ball. Find an expression 
for the period of this physical pendulum in the small-amplitude 
approximation.
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56. If Jane and Tarzan are initially 8.0 m apart in Fig. 13.12, and 
Jane’s mass is 60 kg, what’s the maximum tension in the vine, 
and at what point does it occur?

57. A small mass measuring device (SMMD) used for research on the 
biological effects of spaceflight consists of a small spring-mounted 
cage. Rats or other small subjects are introduced into the cage, which 
is set into oscillation. Calibration of an SMMD gives a linear function 
for the square of the oscillation period versus the subject’s mass m in 
kg: T2 = 4.0 s2 + 15.0 s2/kg2m. Find (a) the spring constant and 
(b) the mass of the cage alone.

58. A thin, uniform hoop of mass 
M and radius R is suspended 
from a horizontal rod and set 
oscillating with small ampli-
tude, as shown in Fig. 13.31. 
Show that the period of the 
oscil lat ions is  2p22R/g . 
(Hint : You may find the paral-
lel-axis theorem useful.)

59. A mass m is mounted between 
two springs with constants 
k1 and k2, as shown in Fig. 
13.32. Show that the angu-
lar frequency of oscillation 
is v = 21k1 + k22/m.

60. Two mass–spring systems 
are oscillating with the same total energy, but system A’s am-
plitude is twice that of system B. How do their spring constants 
compare?

61. Show that the potential energy of a simple pendulum is propor-
tional to the square of the angular displacement in the small- 
amplitude limit.

62. The total energy of a mass–spring system is the sum of its kinetic 
and potential energy: E = 1

2 mv2 + 1
2 kx2. Assuming E remains 

constant, differentiate both sides of this expression with respect to 
time and show that Equation 13.3 results. (Hint : Remember that 
v = dx/dt.)

63. A solid cylinder of mass M and 
radius R is mounted on an axle 
through its center. The axle is 
attached to a horizontal spring 
of constant k, and the cylinder 
rolls back and forth without 
slipping (Fig. 13.33). Write the 
statement of energy conservation for this system, and differentiate it 
to obtain an equation analogous to Equation 13.3 (see Problem 62). 
Comparing your result with Equation 13.3, determine the angular 
frequency of the motion.

64. A mass m is free to slide on a frictionless track whose height 
y as a function of horizontal position x is y = ax2, where a 
is a constant with units of inverse length. The mass is given 
an initial displacement from the bottom of the track and then 
released. Find an expression for the period of the resulting 
motion.

65. A 250-g mass is mounted on a spring of constant k = 3.3 N/m. 
The damping constant for this system is b = 8.4 * 10- 3 kg/s. 
How many oscillations will the system undergo before the ampli-
tude decays to 1/e of its original value?

66. A harmonic oscillator is underdamped if the damping constant b is 
less than 12mv0, where v0 is the natural frequency of undamped 
motion. Show that for an underdamped oscillator, Equation 13.19 
has a maximum at a driving frequency less than v0.
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where M is the star’s mass and G is the constant of universal gravi-
tation. Use this fact to estimate the period of the star Delta Cephei, 
whose mass and radius are, respectively, about 5 and 50 times 
those of the Sun. (Your answer is off by a factor of about 3 because 
of the approximations made here.)

79. You’re a structural engineer working on a design for a steel beam, 
and you need to know its resonant frequency. The beam’s mass is 
3750 kg. You test the beam by clamping one end and deflecting 
the other so it bends, and you determine the associated potential 
energy. The following table gives the results:

Beam deflection x (cm) Potential energy U (J)

-4.54 164

-3.49 141

-2.62 71.9

-1.22 9.15

-0.448 0.162

0 0

0.730 4.13

1.29 16.3

2.13 34.0

3.39 115

4.70 225

Find a quantity which, when U is plotted against it, should give a 
straight line. Make your plot, determine the best-fit line, and use 
its slope to determine the resonant frequency of the beam.

80. Show that x1t2 = a cos vt - b sin vt represents simple har-
monic motion, as in Equation 13.8, with A = 2a2 + b2 and 
f = tan- 11b/a2.

81. You’re working for the summer with 
an ornithologist who knows you’ve 
studied physics. She asks you for a 
noninvasive way to measure birds’ 
masses. You propose using a bird 
feeder in the shape of a 50-cm-diam-
eter disk of mass 340 g, suspended 
by a wire with torsional constant 
5.00 N #m/rad (Fig. 13.35). Two 
birds land on opposite sides and the 
feeder goes into torsional oscillation 
at 2.6 Hz. Assuming the birds have 
the same mass, what is it?

82. While waiting for your plane to 
take off, you suspend your keys 
from a thread and set the resulting pendulum oscillating. It com-
pletes exactly 90 cycles in 1 minute. You repeat the experiment as 
the plane accelerates down the run-
way, and now measure exactly 91 
cycles in 1 minute. Find the plane’s 
acceleration.

83. You’re working for a playground 
equipment company, which wants 
to know the rotational inertia of 
its swing with a child on board; 
the combined mass is 32.6 kg. You 
observe the child twirling around 
in the swing, twisting the ropes as 
shown in Fig. 13.36. As a result, 
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67. A massless spring with k = 74 N/m hangs from the ceiling. A 490-g 
mass is hooked onto the unstretched spring and allowed to drop. Find 
(a) the amplitude and (b) the period of the resulting motion.

68. A meter stick is suspended from a frictionless rod through a 
small hole at the 25-cm mark. Find the period of small-amplitude 
oscillations about the stick’s equilibrium position.

69. A particle of mass m has potential energy given by U = ax2, where 
a is a constant and x is the particle’s position. Find an expression for 
the frequency of simple harmonic oscillations this particle undergoes.

70. Two balls with the same unknown mass m are mounted on opposite 
ends of a 1.5-m-long rod of mass 850 g. The system is suspended 
from a wire attached to the center of the rod and set into torsional 
oscillations. If the wire has torsional constant 0.63 N #m/rad and the 
period of the oscillations is 5.6 s, what’s the unknown mass m?

71. Two mass–spring systems with the same mass are undergoing os-
cillatory motion with the same amplitudes. System 1 has twice 
the frequency of system 2. How do (a) their energies and (b) their 
maximum accelerations compare?

72. Two mass–spring systems have the same mass and the same total 
energy. The amplitude of system 1 is twice that of system 2. How do 
(a) their frequencies and (b) their maximum accelerations compare?

73. Show by direct substitution that x = Acos(vdt + w) satisfies 
Equation 13.18, with A given by Equation 13.19.

74. A 500-g block on a frictionless, horizontal surface is attached to 
a rather limp spring with k = 8.7 N/m. A second block rests on 
the first, and the whole system executes simple harmonic motion 
with period 1.8 s. When the amplitude of the motion is increased 
to 35 cm, the upper block just begins to slip. What’s the coeffi-
cient of static friction between the blocks?

75. Repeat Problem 64 for a small solid ball of mass M and radius R 
that rolls without slipping on the parabolic track.

76. This problem explores what would happen if a hole were drilled 
through Earth’s center and out the other side, and an object were 
dropped into the hole. Approximating Earth as a uniform solid sphere, 
the gravitational acceleration within the planet (including inside the 
hypothetical hole) would be g(r) = g0(r/RE), where g

0
 is the value at 

Earth’s surface, r is the distance from Earth’s center, and R
E
 is Earth’s 

radius. This gravitational acceleration is directed toward Earth’s cen-
ter. (a) Write an expression for the force on a mass m at any point r in 
the hole, apply Newton’s second law, and show that you get an equa-
tion analogous to Equation 13.3. Neglect air resistance. (b) Use your 
analogy to find an expression for the period of the simple harmonic 
motion that results when the mass is dropped into the hole. (c) Use ap-
propriate values to find a numerical value for the period, and compare 
with the period for circular low-Earth orbit that we found in Chapter 8.

77. A disk of radius R is suspended 
from a pivot somewhere between 
its center and edge (Fig. 13.34). 
For what point will the period 
of this physical pendulum be a 
minimum?

78. A variable star is a star whose ra-
dius and therefore brightness var-
ies periodically. Variable stars are 
especially important because they help astronomers establish 
the cosmic distance scale. If a star’s radius at equilibrium is R

0
, 

then, under some simplifying assumptions about the behavior of 
the gas making up the star, the deviation dR from R

0
 obeys the 

equation

d2(dR)

dt2 = -
GM

R3
0

 dR,
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child and swing rise slightly, with the rise h in cm equal to the 
square of the number of full turns. When the child stops twist-
ing, the swing begins torsional 
oscillations. You measure the 
period at 18.4 s. What do you 
report for the rotational inertia 
of the child–swing system?

84. The pendulum in an antique 
clock consists of a thin, uni-
form rod of length 30.00 
cm and negligible mass, on 
which is mounted a solid disk 
of mass 692.2 g and diam-
eter 6.350 cm, as shown in 
Fig. 13.37. A nut of negligi-
ble mass allows the disk to be 
moved up or down slightly to 
adjust the clock’s timekeeping. 
By how much does the period 
of the pendulum change when 
the nut is moved upward 1.000 
mm (i.e., when the small dis-
tance h shown in the figure in-
creases by 1 mm)?

85. This problem explores the nonlinear pendulum discussed 
qualitatively in Conceptual Example 13.1. You can tackle 
this problem if you have experience with your calculator’s  
differential-equation solving capabilities or if you’ve used a 
software program like Mathematica or Maple that can solve 
differential equations numerically. On page 236 we wrote 
Newton’s law for a pendulum as I d2u/dt2 = -mgL sin u.  
(a) Rewrite this equation in a form suitable for a simple pendu-
lum, but without making the approximation  sin u _ u. Although 
it won’t affect the form of the equation, assume that your pen-
dulum uses a massless rigid rod rather than a string, so it can 
turn completely upside down without collapsing. (b) Enter your 
equation into your calculator or software, and produce graphical 
solutions to the equation for the situation where you specify the 
initial kinetic energy K0 when the pendulum is at its bottommost 
position. In particular, describe solutions for (i) K0 66 Umax, (ii) 
K0 ≲ Umax, and (iii) K0 7 Umax. Here Umax is the maximum pos-
sible potential energy for the system, which occurs when the pen-
dulum is completely upside down; U0 = 2Lmg, where L is the 
pendulum’s length.

Passage Problems
Physicians and physiologists are interested in the long-term effects 
of apparent weightlessness on the human body. Among these ef-
fects are redistribution of body fluids to the upper body, loss of 
muscle tone, and overall mass loss. One method of measuring 
mass in the apparent weightlessness of an orbiting spacecraft is to 
strap the astronaut into a chairlike device mounted on springs (Fig. 
13.38). This body mass measuring device (BMMD) is set oscillat-
ing in simple harmonic motion, and measurement of the oscillation 
period, along with the known spring constant and mass of the chair 
itself, then yields the astronaut’s mass. When a 60-kg astronaut is 
strapped into the 20-kg chair, the time for three oscillation periods 
is measured to be 6.0 s.

CH

COMP

86. If a 90-kg astronaut is “weighed” with this BMMD, the time for 
three periods will be
a. 50% longer.
b. shorter by less than 50%.
c. longer by less than 50%.
d. longer by more than 50%.

87. If the same device were used on Earth, the results for a given 
astronaut (assuming mass hasn’t yet been lost in space) would be
a. the same.
b. greater than in an orbiting spacecraft.
c. less than in an orbiting spacecraft.
d. meaningless, because the device won’t work on Earth.

88. If an astronaut’s mass declines linearly with time while she’s in 
orbit, the oscillation period of the BMMD will
a. decrease at an ever-decreasing rate.
b. decrease linearly with time.
c. decrease at an ever-increasing rate.
d. increase linearly with time.

89. The spring constant for the BMMD described here is
a. 80 N/m.
b. 80p N/m.
c. 2 N/m.
d. 80p2 N/m.
e. none of the above.

Answers to Chapter Questions

Answer to Chapter Opening Question
1 Hz is 1 cycle per second, so that’s 32,768 oscillation cycles per sec-
ond. This number is 215, so it takes 15 divisions by two to reduce to the 
one “tick” per second that drives the watch.

Answers to GOT IT? Questions
13.1 (c)
13.2  Frequencies and periods are the same; amplitudes and phase 

constants are different because of the different initial displace-
ments and times of release, respectively.

13.3 (1) no change; (2) doubles; (3) doubles
13.4 (1) 1:2; (2) 3:2
13.5  The more energetic oscillator has (1) twice the mass and (2) 

twice the spring constant. (3) Their maximum speeds are equal.
13.6 (1) c; (2) b
13.7  The frequency, which needs to be at the glass’s resonant fre-

quency (although, even at resonance, a sound that’s too weak 
won’t break the glass).

Shaft

Disk

Nut

Threads
h

6.350 cm

30.00 cm

FIGURE 13.37 Problem 84

FIGURE 13.38 Astronaut Tamara Jernigan uses a 
body mass measuring device in the Spacelab Life 
Sciences Module (Passage Problems 86–89).
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Humans and other animals communicate using sound waves. Light and 
related waves enable us to visualize our surroundings and provide 

most of our information about the universe beyond Earth. Our cell phones 
keep us connected via radio waves. Physicians probe our bodies with ultra-
sound waves. Radio waves connect our wireless devices to the Internet and 
cook the food in our microwave ovens. Earthquakes trigger waves in the 
solid Earth and may generate dangerous tsunamis. Black holes collide in 
the distant universe, generating waves that ripple the fabric of space and 
time. Wave motion is an essential feature of our physical environment.

All these examples involve a disturbance that moves or propagates 
through space. The disturbance carries energy but not matter. Air doesn’t 
move from your mouth to a listener’s ear, but sound energy does. Water 
doesn’t move across the open ocean, but wave energy does. A wave is a 
traveling disturbance that transports energy but not matter.

14.1 Waves and Their Properties
LO 14.1 Describe waves qualitatively and distinguish longitudinal 

from transverse waves.

In this chapter we’ll deal with mechanical waves, which are disturbances of 
some material medium, such as air, water, a violin string, or Earth’s interior. 
Visible and infrared light waves, radio waves, ultraviolet and X rays, in con-
trast, are electromagnetic waves. They share many properties with mechanical 
waves, but they don’t require a material medium. We’ll treat electromagnetic 
waves in Chapters 29–32. Gravitational waves, first detected in 2015, are also 
nonmechanical waves. We’ll explore them further in Chapter 33.

Skills & Knowledge You’ll Need
■■ Newton’s second law (Section 4.2)

■■ Power (Section 6.5)

■■ Simple harmonic motion (Section 13.2)

■■ Trig identities involving multiple 
angles

Learning Outcomes
After finishing this chapter you should be able to:

LO 14.1  Describe waves qualitatively and distinguish longitudinal 
from transverse waves.

LO 14.2  Describe wave motion quantitatively using functions of 
space and time.

LO 14.3 Explain how Newtonian physics describes waves on strings.

LO 14.4 Evaluate the energy carried by waves.

LO 14.5 Describe sound waves and quantify sound intensity in decibels.

LO 14.6 Describe wave interference in one and two dimensions.

LO 14.7 Describe wave reflection and standing waves.

LO 14.8 Describe the Doppler effect and shock waves.

Wave Motion

16
Temperature and 

Heat

15
Fluid Motion

13
Oscillatory Motion

12
Static Equilibrium 14

Ocean waves travel thousands of kilometers 
across the open sea before breaking on shore. 
How much water moves with the waves?
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14.1 Waves and Their Properties 251

Mechanical waves occur when a disturbance in one part of a medium is communicated 
to adjacent parts. Figure 14.1 shows a multiple mass–spring system that serves as a model 
for many types of mechanical waves. Disturb one mass, and it goes into simple harmonic 
motion. But because the masses are connected, that motion is communicated to the adja-
cent mass. As a result, both the disturbance and its associated energy propagate along the 
mass–spring system, disturbing successive masses as they go.

  WAVE MOTIONS A wave moves energy from place to place but not matter. However, 
that doesn’t mean that the matter making up the wave medium doesn’t move. It does, 
undergoing localized oscillatory motion as the wave passes. But once the wave is gone, the 
disturbed matter returns to its equilibrium state. Don’t confuse this localized motion of the 
medium with the motion of the wave itself. Both occur, but only the latter carries energy 
from one place to another.

Longitudinal and Transverse Waves
In Fig. 14.1, we disturbed the system by displacing one block so its subsequent oscilla-
tions were back and forth along the structure—in the same direction as the wave prop-
agation. The result is a longitudinal wave. Sound is a longitudinal wave, as we’ll see in 
Section 14.5. We could equally well displace a mass at right angles, as in Fig. 14.2. Then 
we get a transverse wave, whose disturbance is at right angles to the wave propagation. 
Some waves include both longitudinal and transverse motions, as shown for a water wave 
in Fig. 14.3.

Wave motion

Here the
water moves
longitudinally.

In regions in between,
it moves both longitudinally
and transversely.

Here it’s moving
transversely.

FIGURE 14.3 A water wave has both longi-
tudinal and transverse components.

The disturbance is
up and down c

cbut the wave moves
horizontally.

FIGURE 14.2 A transverse wave.

The wavelength can be
measured between any two
repeating points on the wave.

l

l

l

FIGURE 14.5 The wavelength l is the 
distance over which the wave pattern 
repeats.

(a)

(b)

(c)

FIGURE 14.4 (a) A pulse, (b) a continuous 
wave, and (c) a wave train.

Disturb this block 
by displacing it slightly,
and it begins to oscillate.

The oscillation and its energy are
communicated to the next block c

cand so the wave
propagates.

(a)

(b)

(c)

FIGURE 14.1 Wave propagation in a  
mass–spring system.

Amplitude and Waveform
The maximum value of a wave’s disturbance is the wave amplitude. For a water wave, 
amplitude is the maximum height above the undisturbed water level; for a sound wave, it’s 
the maximum excess air pressure; for the waves of Figs. 14.1 and 14.2, it’s the maximum 
displacement of a mass.

Wave disturbances come in many shapes, called waveforms (Fig. 14.4). An iso-
lated disturbance is a pulse, which occurs when the medium is disturbed only briefly. A  
continuous wave results from an ongoing periodic disturbance. Intermediate between 
these extremes is a wave train, resulting from a periodic disturbance lasting a finite time.

Wavelength, Period, and Frequency
A continuous wave repeats in both space and time. The wavelength l is the distance over 
which the wave pattern repeats (Fig. 14.5). The wave period T is the time for one com-
plete oscillation. The frequency f, or number of wave cycles per unit time, is the inverse 
of the period.

Wave Speed
A wave travels at a specific speed through its medium. The speed of sound in air is about 
340 m/s. Small ripples on water move at about 20 cm/s, while earthquake waves travel at 

M14_WOLF8559_04_SE_C14.indd   251 11/13/18   2:52 AM



252 Chapter 14 Wave Motion

At t = 0, the
peak is at
x = 0.

At t, the peak
is at x = vt.y

v

x = 0 x = vt

vt

y = f (x)

x

FIGURE 14.7 The wave pulse moves a dis-
tance vt in time t, but its shape stays the 
same.

(a)

(b)

D
is
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ac

em
en

t, 
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0
Position, x

A

-A

l

D
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Time, t

T

0

A

-A

FIGURE 14.8 A sinusoidal wave (a) as a 
function of position at fixed time t = 0 
and (b) as a function of time at fixed 
 position x = 0.

l

v = l>T
l

t = 0

t = T

This one-wavelength
section c

cmoves to 
here in one
period T.

FIGURE 14.6 One full cycle passes a given 
point in one wave period T ; the wave 
speed is therefore v = l /T.

several kilometers per second. The physical properties of the medium ultimately deter-
mine the wave speed, as we’ll see in Section 14.3.

Wave speed, wavelength, and period are related. In one wave period, a fixed observer 
sees one complete wavelength go by (Fig. 14.6). Thus, the wave moves one wavelength in 
one period, so its speed is

 v =
l

T
= lf  1wave speed2 (14.1)

where the second equality follows because period and frequency are inverses.

v is the speed at which a wave propagates.

…in one period T, so the wave speed is l/T . Frequency f = 1/T , so v is also  lf .

The wave moves one wavelength l…

14.1 A boat bobs up and down on a water wave, moving 2 m vertically in 1 s. A 
wave crest moves 10 m horizontally in 2 s. Is the wave speed (a) 2 m/s or (b) 5 m/s? 
Explain.

G
O

T 
IT

?

14.2 Wave Math
LO 14.2 Describe wave motion quantitatively using functions of space  

and time.

Figure 14.7 shows “snapshots” of a wave pulse at time t = 0 and at some later time t. 
Initially the wave disturbance y is some function of position: y = f 1x2. Later the pulse has 
moved to the right a distance vt, but its shape, described by the function f, is the same. We 
can represent this displaced pulse by replacing x with x - vt as the argument of the func-
tion f. Then x has to be larger—by the amount vt—to give the same value of f  as it did 
before. For example, this particular pulse peaks when the argument of f  is zero. Initially, 
that occurred when x was zero. Replacing x by x - vt ensures that the argument becomes 
zero when x = vt, putting the peak at this new position. As time increases, so does vt and 
therefore the value of x corresponding to the peak. Thus f 1x - vt2 correctly represents the 
moving pulse.

Although we considered a single pulse, this argument applies to any function f 1x2, 
including continuous waves: Replace the argument x with x - vt, and the function 
f 1x - vt2 describes a wave moving in the positive x-direction with speed v. You can con-
vince yourself that a function of the form f 1x + vt2 describes a wave moving in the neg-
ative x-direction.

A particularly important case is a simple harmonic wave, for which a “snapshot” at 
time t = 0 shows a sinusoidal function. We’ll choose coordinates so that x = 0 is at a 
maximum of the wave, making the function a cosine (Fig. 14.8a). Then y 1x, 02 = A cos kx, 
where A is the amplitude and k is a constant, called the wave number. We can find k be-
cause we know that the wave repeats in one wavelength l. Since the period of the cosine 
function is 2p, we therefore want kx to be 2p when x equals l. Then kl = 2p, or

 k =
2p
l
  1wave number2 (14.2)

k is the wave number, the spatial  
analog of the angular frequency v.

Just as v is 2p/T , so k is 2p/l…

…where l is the wavelength.
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14.2 Wave Math 253

To describe a wave moving with speed v, we replace x in the expression A cos kx with 
x - vt, giving y1x, t2 = A cos3k1x - vt24 . If we now sit at the point x = 0, we’ll see an 
oscillation described by y10, t2 = A cos1-kvt2 = A cos1kvt2, where the last step follows 
because cos1-x2 = cos x. But we found that k = 2p/l, and Equation 14.1 shows that 
v = l/T, so the argument of the cosine function becomes kvt = 12p/l21l/T2t = 2pt/T.

In Chapter 13, we introduced the angular frequency v = 2p/T  in describing sim-
ple harmonic motion; here the same quantity arises in describing wave motion. And no  
wonder: At a fixed point in space, the wave medium undergoes simple harmonic motion 
with angular frequency v = 2p/T  (Fig. 14.8b). Putting this all together, we can write a 
traveling sinusoidal wave in the form

 y1x, t2 = A cos1kx { vt2  1sinusoidal wave2 (14.3)

where we’ve written { so we can describe a wave going in the positive x-direction (-  sign) 
or the negative x-direction (+  sign). The argument of the cosine is called the wave’s phase. 
Note that k and v are related to the more familiar wavelength l and period T in the same way: 
k = 2p/l and v = 2p/T. Just as v is a measure of frequency—oscillation cycles per unit 
time, with an extra factor of 2p—so is k a measure of spatial frequency—oscillation cycles 
per unit distance, again with that factor of 2p to make the math simpler. The relations be-
tween k, l and v, T allow us to rewrite the wave speed of Equation 14.1 in terms of k and v:

 v =
l

T
=

2p/k
2p/v

=
v

k
 (14.4)

A wave’s displacement y is 
a function of both position x 
and time t.

A is the wave amplitude.

k is the wave number, and x is the 
position where we’re evaluating y.

Here we’re describing a 
sinusoidal wave.

v is the angular frequency, and t is the 
time when we’re evaluating y.

A surfer paddles out beyond the breaking surf to where the waves are 
sinusoidal in shape, with crests 14 m apart. The surfer bobs a vertical 
distance 3.6 m from trough to crest, a process that takes 1.5 s. Find the 
wave speed, and describe the wave using Equation 14.3.

INTERPRET This is a problem about a simple harmonic wave—that 
is, a wave with sinusoidal shape.

DEVELOP We’ll take x = 0 at the location of a wave crest when 
t = 0, so Equation 14.3, y1x, t2 = A cos1kx { vt2, applies. Let’s 
take the positive x-direction toward shore, so we’ll use the minus sign 
in Equation 14.3. In Fig. 14.9a we sketched a “snapshot” of the wave, 
showing the spatial information we’re given. Figure 14.9b shows the 
temporal information.

EVALUATE The 1.5-s trough-to-crest time in Fig. 14.9b is half the full 
crest-to-crest period T, so T = 3.0 s. The crest-to-crest distance in Fig. 
14.9a is the wavelength l, so l = 14 m. Then Equation 14.1 gives

v =
l

T
=

14 m
3.0 s

= 4.7 m/s

To describe the wave with Equation 14.3 we need the amplitude A, 
wave number k, and angular frequency v. The amplitude is half the 
crest-to-trough displacement, or A = 1.8 m, as shown in Fig. 14.9a. 
The wave number k and angular frequency v then follow from l and 
T: k = 2p/l = 0.449 m-1 and v = 2p/T = 2.09 s-1. Then the wave 
description is

y1 x, t2 = 1.8 cos1 0.449x - 2.09t2
with y and x in meters and t in seconds.

ASSESS As a check on our answer, let’s see whether our values of v and 
k satisfy Equation 14.4: v = v/k = 2.09 s-1/0.449 m-1 = 4.7 m/s. 
Thus the pairs l, T  and v, k are equivalent ways to describe the same 
wave.

Describing a Wave: Surfing
Worked Example with Variation Problems

EXAMPLE 14.1

Crest to trough is 3.6 m.

It takes 1.5 s
from trough
to crest.

FIGURE 14.9 Our sketch of displacement 
versus (a) position and (b) time.
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254 Chapter 14 Wave Motion

The Wave Equation
We argued our way to Equation 14.3 for a sinusoidal wave on mathematical grounds 
alone. Whether such waves are actually possible depends on the physical properties of the 
medium. Many media do, in fact, support waves as described by Equation 14.3. We’ll ex-
plore one case in detail in the next section. More generally, physicists analyze the behavior 
of a medium in response to disturbances. Often the analysis results in a particular equation 
relating the space and time derivatives of the disturbed quantity:

 
02y

0x2 =
1

v2 
02y

0t2  1wave equation2 (14.5)

This is the wave equation for waves propagating in one dimension. Here y is the wave 
disturbance—the height of a water wave, the pressure in a sound wave, and so on. The 
quantity v is the wave speed, which usually appears as a combination of quantities related 
to properties of the medium, and thus allows physicists to deduce the wave speed. Because 
the wave disturbance is a function of the two variables x (spatial position) and t (time), 
the derivatives here are partial derivatives, designated with the symbol 0  and indicating 
differentiation with respect to one variable while the other is held constant. Thus the wave 
equation is a partial differential equation. Solving such equations requires more ad-
vanced math courses, but you can show directly (Problem 71) that Equation 14.3 satisfies 
the wave equation, with wave speed v = v/k. More generally, any function of the form 
f 1x {  vt2 satisfies the wave equation, as you can show in Problem 72. You’ll encounter 
the wave equation again in Chapter 29, when you study electromagnetic waves.

14.3 Waves on a String
LO 14.3 Explain how Newtonian physics describes waves on strings.

Scientists and engineers generally explore wave possibilities in a medium by applying the 
laws of physics and deriving a wave equation similar to Equation 14.5. Such analysis re-
veals the wave speed and other wave properties. Here we’ll take a simpler approach to one 
special case: transverse waves on a stretched string. Our results are directly applicable to 
musical instruments, climbing ropes, bridge cables, and other elongated structures.

Our string has mass per unit length m in kilograms per meter, and it’s stretched to a 
tension force F. Consider a wave pulse propagating to the right, as shown in Fig. 14.10a. 
We’ll use Newton’s law to analyze the string’s motion and determine the speed of the pulse. 
It’s easiest to do this in a frame of reference moving with the pulse; in that frame, the entire 
string moves leftward with the pulse speed v. At the pulse location, however, the string’s 
motion deviates from horizontal as it rides up and down over the pulse (Fig. 14.10b).

14.2 The figure shows snapshots of two waves propagating with the same speed. 
Which has the greater (1) amplitude, (2) wavelength, (3) period, (4) wave number, 
and (5) frequency?

G
O

T 
IT

?

v
u v

u

Because the wave displacement y is a function 
of both x and t, we use partial derivatives, 
writing 0  instead of d.

Here’s the second partial derivative of the wave 
displacement with respect to time.

The = sign relates the spatial and  
temporal second derivatives of the  
wave displacement y.

v is the wave speed.

v
u

v
u

Fnet
S

F
S

F
S

u

u u

u

A pulse moves 
to the right.

In the pulse’s
reference frame,
the string moves
left, up, and
over the pulse.

The top of the
string undergoes
circular motion.

The length of
the segment 
is 2uR.

The string
tension here
is down and
to the left c

cwhile here
it’s down and
to the right c

cgiving a net 
downward force.

(a)

(b)

(c)

R R

C

FIGURE 14.10 A wave pulse moving on a 
string. In (c), each of the diagonal forces 
shown contributes a downward compo-
nent F sin u.
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14.4 Wave Energy 255

Whatever the pulse shape, a small section at the top forms a circular arc of some radius 
R, as shown in Fig. 14.10c. Then the string right at the top of the pulse undergoes circular 
motion with speed v and radius R; if its mass is m, Newton’s law requires that a force of 
magnitude mv2/R act toward the center of curvature to keep the string on its circular path. 
This force is provided by the difference in the direction of the string tension between the 
two ends of the section; as Fig. 14.10c shows, the tension at each end contributes a down-
ward component F sin u. Then the net force on the segment has magnitude 2F sin u and 
points toward the center of curvature.

Now we make an additional assumption: that the disturbance of the string is small, in 
the sense that the string remains almost horizontal even at the pulse. Then the angle u is 
small, and we can apply the approximation sin u ≃  u. Therefore, the net force on the string 
section becomes approximately 2Fu. Furthermore, the small-disturbance approximation 
means that the tension doesn’t vary significantly from its undisturbed value, so F in this 
expression is essentially the same F we’re using to characterize the tension throughout the 
string. Finally, our curved string section forms a circular arc whose length, from Fig. 14.10c, 
is 2uR. Multiplying by the mass per unit length m gives its mass: m = 2uRm. Now we can 
apply Newton’s law, equating the net force 2Fu to the mass times acceleration:

2Fu =
mv2

R
=

2uRmv2

R
= 2umv2

Solving for the wave speed v then gives

 v = AF
m

 (14.6)

Does this make sense? The greater the tension F, the greater the string’s acceleration, and 
the more rapidly the wave should propagate. The string’s inertia, on the other hand, limits 
the acceleration, and therefore a greater mass per unit length should slow the wave. Equation 
14.6, with F in the numerator and m in the denominator, reflects both these trends.

We’ve made no assumptions here other than to assume that the disturbance is small. 
Therefore, Equation 14.6 applies to small-amplitude pulses, continuous waves, and wave 
trains of any shape.

A 43-m-long rope of mass 5.0 kg joins two climbers. One climber 
strikes the rope, and 1.4 s later the second climber feels the effect. 
What’s the rope tension?

INTERPRET We’re asked for the rope tension. Although wave speed 
isn’t mentioned explicitly, we just learned to relate wave speed and rope 
tension. Striking the rope produces a wave, which the second climber 
feels. We’re given the time it takes that wave to propagate along the rope.

DEVELOP Equation 14.6, v = 1F/m, gives the relations among rope 
tension, mass per unit length, and wave speed. Our plan is to solve for the 
rope tension, but first we need to find m and v from the given information.

EVALUATE We’re given the rope’s mass m and length L, so its mass 
per unit length is m = m/L. We’re given the time t for the wave to 
travel the rope length L, so the wave speed is v = L/t. Solving 
Equation 14.6 for F then gives

F = mv2 = am
L
baL

t
b

2

=
mL

t2 =
15.0 kg2143 m2

11.4 s22 = 110 N

ASSESS Is this number reasonable? A typical adult weighs around 
700 N, so the rope is supporting only a small fraction of the lower 
climber’s weight—a reasonable situation.

EXAMPLE 14.2 Wave Speed and Tension Force: Rock Climbing

14.4 Wave Energy
LO 14.4 Evaluate the energy carried by waves.

Waves carry energy, so a moving wave is characterized by its power—the rate at which it 
carries energy. We quantify that power in slightly different ways depending on the geom-
etry of the wave.
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256 Chapter 14 Wave Motion

Wave Power
Waves carry energy. For a wave on a string, the vertical component of the tension force 
does work that transfers energy along the string. Figure 14.11 shows that the vertical force 
on the string at the left side of the pulse is approximately -Fu. As we showed in Chapter 6, 
power—the rate of doing work—is the product of force and velocity, so the power here is 
P = -Fuu, where u is the vertical velocity of the string—not the wave speed. Rather, the 
vertical velocity is the rate of change of the string displacement y. For a simple harmonic 
wave, y1x, t2 = A cos1kx - vt2. We can differentiate this to get

u =
dy

dt
= Av sin1kx - vt2

where we used the chain rule, differentiating cosine to -sine and then multiplying by 
the derivative, -v, of the cosine’s argument kx - vt. As Fig. 14.11 shows, the tan-
gent of the angle u is the slope, dy/dx, of the string. For small angles, tan u ≃ u so 
u ≃ dy/dx = -kA sin1kx - vt2. Putting these results for u and u in our expression for 
power gives P = -Fuu = FvkA2 sin21kx - vt2. The sine term shows that the power 
fluctuates in space and time. Usually we’re interested in the average power, P = 1

2 FvkA2, 
which follows because the average value of sin2 is 12 (Fig. 14.12). We can give this a more 
physical meaning if we use Equations 14.4 and 14.6 to write k = v/v and F = mv2, with 
v the wave speed. Then we have

 P = 1
2 mv2A2v (14.7)

This equation gives the sensible result that wave power is directly proportional to the 
speed v at which energy moves along the wave.

Wave Intensity
Total power is useful in describing waves confined to narrow structures like strings for me-
chanical waves or optical fibers for electromagnetic waves. But for waves in three-dimensional 
media, like sound in air, it makes more sense to talk about the intensity, or the rate at which the 
wave carries energy across a unit area perpendicular to the wave propagation. Intensity is thus 
power per unit area, measured in watts per square meter 1W/m22.

Wavefronts are surfaces on which the wave phase is constant—for example, wave 
crests. A plane wave is one whose wavefronts are planes. Since the wave doesn’t spread 
out, its intensity remains constant (Fig. 14.13a). But as waves propagate from a localized 
source, they spread and their intensity drops. Spherical waves originate from point sources, 
and spherical wavefronts spread in all directions. Since the area of a sphere is 4pr2, the in-
tensity of a spherical wave decreases as the inverse square of the distance from its source:

 I =
P
A

=
P

4pr2  1spherical wave2 (14.8)

Note that energy isn’t lost here; rather, the same energy is spread over ever-larger areas as 
the wave propagates (Fig. 14.13b). Table 14.1 lists some typical wave intensities.

Table 14.1 Wave Intensities

Wave Intensity, W/m2

Sound, 4 m from loud rock band 1
Sound, jet aircraft at 50 m 10
Sound, whisper at 1 m 10-10

Light, sunlight at Earth’s orbit 1360
Light, sunlight at Jupiter’s orbit 50
Light, 1 m from typical camera flash 4000
Light, at target of laser fusion experiment 1018

TV signal, 5 km from 50-kW transmitter 1.6 * 10-4

Microwaves, inside microwave oven 6000
Earthquake wave, 5 km from Richter 7.0 quake 4 * 104

u
u

F
S

u

u cso only the vertical 
force Fy does work.

String is moving 
downward as 
the pulse moves 
to the right c

Fy = -F sinu ≃ -Fu

x

y

FIGURE 14.11 The vertical force compo-
nent does work on the string; for small 
u, sin u ≃ u, so Fy ≃ Fu.

1
2

1

0 x

si
n2 x

FIGURE 14.12 The function sin2 x swings 
symmetrically between 0 and 1, so its 
average value is 12.

Source

The plane wave doesn't
spread, so its intensity
remains constant.

The spherical wave spreads over
ever-larger areas, so its intensity
decreases.

(a)

(b)

FIGURE 14.13 (a) Plane and (b) spherical 
waves.
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14.5 Sound Waves
LO 14.5 Describe sound waves and quantify sound intensity in decibels.

Sound waves are longitudinal mechanical waves that propagate through gases, liquids, 
and solids. Most familiar is sound in air. Here the wave disturbance comprises a small 
change in air pressure and density accompanied by a back-and-forth motion of the air 
(Fig. 14.14). The speed of sound in air and other gases depends on the background pres-
sure p (force per unit area) and density r (mass per unit volume):

 v = Agp
r

 (14.9)

where g is a constant characteristic of the gas. For air and other diatomic gases, g is 75; for 
monatomic gases like helium, it’s 53. Sound propagates faster in liquids and solids because 
they’re less compressible. For dry air at 20°C, Equation 14.9 gives 343 m/s, comparable to 
the approximate value 340 m/s that we gave in Section 14.1.

Sound and the Human Ear
The human ear responds to a wide range of sound intensities and frequencies, as shown in 
Fig. 14.15. Audible frequencies range from around 20 Hz to 20 kHz, although the upper 
limit drops with age. Figure 14.15 shows that the minimum intensity for sound to be au-
dible increases at high and low frequencies; that’s the reason for the “loudness” switch on 
your stereo system, which boosts lows and highs to make the sound richer at low volumes. 
Dolphins, bats, and other creatures can hear much higher frequencies than we humans; 
bats locate their prey with sound waves at frequencies approaching 100 kHz. Medical  
ultrasound frequencies extend to tens of MHz.

EXAMPLE 14.3 Evaluating Wave Intensity: A Reading Light

Your book is 1.9 m from a 9.2-W LED lamp, and the light is barely adequate for reading. How far 
from a 4.9-W LED would the book have to be to get the same intensity at the page?

INTERPRET This is a problem about wave intensity, and we identify the LEDs as sources of 
spherical waves.

DEVELOP Equation 14.8, I = P/14pr22, gives the intensity. We want both LEDs to produce the 
same intensity, so we have I = P9.2/14pr9.2

2 2 =  P4.9 /14pr4.9
22.

EVALUATE We then solve for the unknown distance r4.9:

r4.9 = r9.2AP4.9

P9.2
= 11.9 m2A4.9 W

9.2 W
= 1.4 m

ASSESS Make sense? Although the 4.9-W LED has only about half the power output, the  
decrease in distance isn’t as great as you might expect because the intensity depends on the  
inverse square of the distance. By the way, those energy-efficient LEDs are approximately equiv-
alent to 75-W and 40-W incandescent bulbs, respectively.

14.3 Two identical stars are different distances from Earth, and the intensity of the 
light from the more distant star as received at Earth is only 1% that of the closer star. 
Is the more distant star (a) twice as far away, (b) 100 times as far away, (c) 10 times 
as far away, or (d) 110 times as far away?
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Molecules converge in this region, making
the pressure a maximum.  Since the
molecules come from both directions, the net
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zero.
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FIGURE 14.14 A sound wave consists 
of  alternating regions of  compression 
(higher density and pressure) and 
 rarefaction (lower density and pressure) 
propagating through the air.
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258 Chapter 14 Wave Motion

Decibels
Figure 14.15 shows that the human ear responds to an extremely broad range of sound 
intensities, covering some 12 orders of magnitude; that’s why Fig. 14.15 has a logarithmic 
scale. We therefore quantify sound levels using a logarithmic unit called the decibel (dB). 
The sound intensity level b in decibels is defined by

 b = 10 log a I
I0
b  (14.10)

where I is the intensity in W/m2 and I0 = 10-12 W/m2 is a reference level chosen as the 
approximate threshold of hearing at 1 kHz. Since the logarithm of 10 is 1, an increase of 
10 dB corresponds to a factor-of-10 increase in the intensity I. Your ears, however, don’t 
respond linearly, and for intensity levels above about 40 dB, you perceive a 10-dB increase 
as making the sound roughly twice as loud.

20 50 10
0

20
0

50
0

10
00

20
00

50
00

10
00

0

In
te

ns
ity

 (
W
>m

2 )

10-12

10-10

10-8

10-6

10-4

10-2

1

In
te

ns
ity

 le
ve

l (
dB

)

0

20

40

60

80

100

120Threshold of pain

Rock band at 40 m

Normal conversation

WhisperThreshold
of hearing

Frequency (Hz)

FIGURE 14.15 The human ear responds to 
sound whose intensity and frequency lie 
within the shaded region.

EXAMPLE 14.4 Decibels: Turn Down the TV!

Your sister is watching TV, the sound blasting at 75 dB. You yell to her 
to turn down the volume, and she lowers the intensity level to 60 dB. 
By what factor has the power dropped?

INTERPRET This problem is about the relation between power and 
sound intensity level as measured in decibels.

DEVELOP Equation 14.10, b = 10 log1 I/I02 , relates the decibel 
level to the intensity, or power per unit area. At a fixed distance, the 
sound intensity is proportional to the power from the TV speaker, so 
in this example we can replace I by P in Equation 14.10.

EVALUATE Call the original 75-dB level b1; then Equation 14.10 
reads b1 = 10 log1 P1/P02 = 10 log P1 - 10 log P0, where P1 is the 
corresponding power and P0 is the reference-level power. At the turned-
down power P2, the equation reads b2 = 10 log P2 - 10 log P0.  
Subtracting our two equations gives

b2 - b1 = 10 log P2 - 10 log P1 = 10 log aP2

P1
b

Therefore,  log1P2/P12 = 1b2 - b12/10 = 160 - 752/10 = -1.5. 
The answer we want is the ratio P2/P1, and because logarithms and expo-
nentials are inverses, we have P2/P1 = 10-1.5 = 0.032.

ASSESS Although we worked this problem using Equation 14.10, 
you can often do decibels in your head. Here the intensity level has 
dropped by 15 dB, corresponding to 1.5 orders of magnitude in ac-
tual intensity. So the intensity—and therefore the TV’s power—has 
dropped by a factor of 10-1.5, or 1/1101102. Since 110 is about 3, 
that’s about 1/30. Because you perceive each 10-dB change as a factor 
of about 2 in loudness, the reduced volume will sound somewhere be-
tween one-fourth and one-half as loud as before.

14.4 Your band needs a new guitar amplifier, and the available models range from 
25 W to 250 W of audio power. Will the sound intensity level for the most powerful 
amplifier compared with the least powerful be (a) 10 times greater, (b) greater by 
2.25 dB, or (c) greater by 10 dB?G
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14.6 Interference
LO 14.6 Describe wave interference in one and two dimensions.

Figure 14.16 shows two wave trains approaching from opposite directions. Where they 
meet, experiment shows that the net displacement is the sum of the individual displace-
ments. This is true for most waves, at least when the amplitude isn’t too large. Waves 
whose displacements simply add are said to obey the superposition principle.

At the point shown in Fig. 14.16b, the wave crests coincide and so do the troughs. 
The resulting wave is, momentarily, twice as big. This is constructive interference—two 
waves superposing to produce a larger wave displacement. A little later, in Fig. 14.16c, the 
two waves cancel; this is destructive interference. Wave interference occurs throughout 
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14.6 Interference 259

physics, from mechanical waves to light and even with the quantum-mechanical waves 
that describe matter at the atomic scale. Here we take a quick look at wave interference; 
we’ll consider the interference of light waves in more detail in Chapter 32.

Fourier Analysis
The superposition principle lets us build complex wave shapes by superposing simpler 
ones. The French mathematician Jean Baptiste Joseph Fourier (1768–1830) showed that 
any periodic wave can be written as a sum of simple harmonic waves, a process now 
known as Fourier analysis. Figure 14.17 shows a square wave—important, for example, 
as the “clock” signal that sets the speed of your computer—represented as a superposition 
of individual sine waves. Fourier analysis has applications ranging from music to struc-
tural engineering to communications because it helps us understand how a complex wave 
behaves if we know how its harmonic components behave. The mix of Fourier compo-
nents in the waveform from a musical instrument determines the exact sound we hear and 
accounts for the different sounds from different instruments even when they’re playing the 
same note (Fig. 14.18).

Dispersion
When wave speed is independent of wavelength, the simple harmonic components mak-
ing up a complex waveform travel at the same speed. As a result, the waveform main-
tains its shape. But for some media, wave speed depends on wavelength. Then, individual 
harmonic waves travel at different speeds, and a complex waveform changes shape as it 

(b)(a)

(d)(c)

Two waves approach.

Now the waves cancel.
They go their separate ways.

Their crests coincide,
resulting in a larger wave.

FIGURE 14.16 Wave superposition showing (b) constructive interference and (c) destructive 
interference.

This mix of higher
frequencies determines

the guitar’s unique
sound.
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FIGURE 14.18 (a) An electric guitar plays the note E, producing a complex wave-
form. (b) Fourier analysis shows the relative strengths of the individual sine waves 
whose sum produces the waveform.

Why does the airline passenger in the photo look 
so content? Because he’s wearing noise- cancelling 
headphones. These devices exploit interference to 
actively cancel ambient noise, leaving the head-
phone signal loud and clear. Each headphone con-
tains a tiny microphone sensing the ambient sound 
and an amplifier that also inverts the phase of the 
signal, so crests become troughs and vice versa. 
The phase-inverted signal is fed to the headphones 
along with the desired audio. Since the ambient 
noise delivered to the head-
phone is inverted—that 
is, out of phase— relative 
to the noise coming di-
rectly to the ear, the result 
is destructive interference 
that greatly reduces the 
listener’s perception of the 
ambient noise. Peace and 
quiet!

APPLICATION Noise-
Cancelling 
Headphones

The darker wave here c

 cis the sum of
the 3 lighter waves.

With more terms, the sum
approaches the square wave.

FIGURE 14.17 A square wave built up 
as a sum of simple harmonic waves. 
In this case the sum has the form 
y1t2 = A sin1vt2 + 1

3  A sin13vt2 +  
1
5  A sin15vt2 + g. Only the first three 
terms are shown.
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260 Chapter 14 Wave Motion

moves. This phenomenon is called dispersion and is illustrated in Fig. 14.19. Waves on 
the surface of deep water, for example, have speed given by

 v = A lg

2p
 (14.11)

where l is the wavelength and g the acceleration of gravity. Because v depends on l, the 
waves are dispersive. Dispersion is also important in communications systems; for exam-
ple, dispersion of the square wave pulses carrying digital data sets the maximum lengths 
for wires and optical fibers used in computer networks.

CONCEPTUAL EXAMPLE 14.1 Storm Brewing!

It’s a lovely, sunny day at the coast, but large waves, their crests far 
apart, are crashing on the beach. How do these waves tell of a storm at 
sea that may affect you later?

EVALUATE The phrase “crests far apart” is a clue: It says we’re 
dealing with long-wavelength waves. Equation 14.11 shows that 
 longer-wavelength waves on the ocean surface travel faster. Most ocean 
waves are generated by frictional forces between wind and water, so 
there must be strong winds somewhere out at sea. The longest wave-
lengths travel faster, so they reach shore well in advance of the storm.

ASSESS High-surf warnings often go up in advance of a storm, for 
the very reason elucidated in this example. Incidentally, wind isn’t the 
only source of ocean waves; so are earthquakes. But the tsunamis they 

produce are shallow-water waves that don’t obey Equation 14.11. You 
can explore tsunamis further in the Passage Problems.

MAKING THE CONNECTION A storm develops 600 km offshore and 
starts moving toward you at 40 km/h. Large waves with crests 250 m 
apart are your first hint of the storm. How long after you observe these 
waves will the storm hit?

EVALUATE At 40 km/h, it’s going to take 15 hours for the storm to 
reach shore. Equation 14.11 gives 71 km/h for the wave speed when 
l = 250 m. So the waves took 8.4 hours to reach shore. The storm is 
then 6.6 hours away.

Beats
When two waves of slightly different frequencies superpose, they interfere constructively at 
some points and destructively at others (Fig. 14.20a). Quantitatively, the combined wave is the 
sum of the two individual waves: y1t2 = A cos v1t + A cos v2t. We can express this in a more 
enlightening form using the identity cos a + cos b = 2 cos31

21a - b24  cos31
21a + b24  

given in Appendix A. Then we have

y1t2 = 2A cos31
21v1 - v22t4  cos31

21v1 + v22t4
The second cosine factor represents a sinusoidal oscillation at the average of the two in-
dividual frequencies. The first term oscillates at a lower frequency—half the difference 
of the individual frequencies. If we think of the entire term 2A cos31

21v1 - v22t4  as the 
“amplitude” of the higher-frequency oscillation, then this amplitude itself varies with time, 
as Fig. 14.20b shows. Note that there are two amplitude peaks for each cycle of the slow 
oscillation, so the frequency with which the amplitude varies is simply v1 - v2.

For sound waves, interference of two nearly equal frequencies produces intensity vari-
ations called beats; the closer the two frequencies, the longer the period between beats. 
Pilots, for example, synchronize airplane engines by reducing the beat frequency toward 
zero; musicians use the same trick to tune instruments. Beating of electromagnetic waves 
forms the basis for some very sensitive measurements.

Interference in Two Dimensions
Waves propagating in two and three dimensions exhibit a rich variety of interference 
phenomena. Figure 14.21 shows one of the simplest and most important examples—the  
interference of waves from two point sources oscillating at the same frequency. Points on 
a perpendicular line midway between the sources are equidistant from both sources, and 
therefore waves arrive at this line in phase. Thus, they interfere constructively, producing a 
large amplitude. Some distance from the center line, the waves arrive exactly half a period 

(a)

(b)

Constructive interference here c

cgives 
a large
amplitude.

FIGURE 14.20 The origin of beats.

(a)

(b)

FIGURE 14.19 (a) A wave pulse in a non-
dispersive medium holds its shape as it 
propagates. (b) In a dispersive medium, 
the pulse shape changes.
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14.7  Reflection and Refraction 261

out of phase. They therefore interfere destructively, producing a nodal line where the wave 
amplitude is very small. Since waves travel half a wavelength in half a period, the nodal 
line occurs where the distances to the two sources differ by half a wavelength. Additional 
nodal lines occur where those distances differ by 1 12 wavelengths, 2 12 wavelengths, and so 
forth. In practice, two-source interference is observable only when the source separation 
is comparable to the wavelength. If it’s much larger, then the regions of constructive and 
destructive interference are so close that they blur together.

Two-source interference also results when plane waves pass through two closely spaced 
apertures that act as sources of circular or spherical wavefronts. Such two-slit interference 
experiments are important in optics and modern physics and are of historical interest be-
cause they were first used to demonstrate the wave nature of light.

EXAMPLE 14.5 Wave Interference in Two Dimensions: Calm Water

Ocean waves pass through two small openings, 20 m apart, in a break-
water. You’re in a boat 75 m from the breakwater and initially midway 
between the openings, but the water is pretty rough. You row 33 m 
parallel to the breakwater and, for the first time, find yourself in rela-
tively calm water. What’s the wavelength of the waves?

INTERPRET This is a problem about wave interference. The water is 
rough at your initial location because constructive interference pro-
duces large-amplitude waves. You find calm water at the first nodal 
line, where destructive interference reduces the wave amplitude.

DEVELOP We sketched the situation in Fig. 14.22. We’ve seen that 
the first nodal line occurs when the path lengths from two sources dif-
fer by half a wavelength. So our plan is to calculate the wavelength by 
applying this fact to the distances AP and BP.

EVALUATE Applying the Pythagorean theorem gives

 AP = 2175 m22 + 143 m22 = 86.5 m

 BP = 2175 m22 + 123 m22 = 78.4 m

The wavelength is twice the difference between these lengths, so

l = 21AP - BP2 = 2186.5 m - 78.4 m2 = 16 m

ASSESS We expect two-source interference to be obvious when 
the source spacing is comparable to the wavelength. Here the 20-m 
spacing is indeed comparable to the 16-m wavelength, so our answer 
makes sense.

FIGURE 14.22 Calm water at P implies that paths AP and 
BP differ by half a wavelength.

14.7 Reflection and Refraction
LO 14.7 Describe wave reflection and standing waves.

You shout in a mountain valley and hear echoes. You look in a mirror and see your  
reflection. A metal screen reflects microwaves to keep them in your oven. A physician’s 
ultrasound probes your body, reflecting off internal structures. A bat uses reflected sound 
to home in on its prey. All these are examples of wave reflection.

14.5 Light shines through two small holes into a dark room, and a screen is mounted 
opposite the holes. The hole spacing is comparable to the wavelength of the light. 
Looking at the screen, will you see (a) two bright spots opposite the two holes or (b) 
a pattern of light and dark patches? Explain.G
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Nodal lines:
destructive
interference

Large amplitude:
constructive
interference

FIGURE 14.21 Water waves from two 
sources interfere to produce regions of 
low and high amplitude.
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Here comes the pulse.

End is free to slide.

Now the
interference

is constructive c

cand the pulse
emerges upright.

And away it goes.

FIGURE 14.24 Reflection of a 
wave pulse at a free end.

Here comes 
the pulse.

End is clamped.

It’s beginning
to reflect.

Incident and

reflected pulses
cancel.

The reflected
pulse emerges;

it’s inverted.

And away it goes.

FIGURE 14.23 Reflection of 
a wave pulse at the rigidly 
clamped end of string.

You can see that wave reflection must occur when a wave hits a medium in which it 
can’t propagate; otherwise, where would the wave energy go? The figures above detail the 
reflection process for waves on a stretched string, in the two cases where the string end is 
clamped at a rigid wall (Fig. 14.23) or, in contrast, free to move up and down (Fig. 14.24). 
In the first case, the wave amplitude must remain zero at the end, so the incident and re-
flected pulses interfere destructively and the reflected wave is therefore inverted. In the 
second case, the displacement is a maximum at the free end, and the reflected wave is not 
inverted.

Between the extremes of a rigid wall and a perfectly free end lies the case of one 
string connected to another with different mass per unit length. In this case, some wave 
energy is transmitted to the second string and some is ref lected back along the first 
(Fig. 14.25).

The phenomenon of partial reflection and transmission at a junction of strings has its 
analog in the behavior of all sorts of waves at interfaces between different media. For exam-
ple, shallow-water waves are partially reflected if the water depth changes abruptly. Light 
incident on even the clearest glass undergoes partial reflection because of the difference 
in the light-transmitting properties of air and glass (much more on this in Chapter 30). 
Partial reflection of ultrasound waves at the interfaces of body tissues with different densi-
ties makes ultrasound a valuable medical diagnostic.

When waves strike an interface between two media at an oblique angle and are ca-
pable of propagating in the second medium, the phenomenon of refraction occurs. In 
refraction, the direction of wave propagation changes because of a difference in wave 
speed between the two media (Fig. 14.26). We’ll discuss the mathematics of refraction in 
Chapter 30.

FIGURE 14.26 Waves in shallow water 
 refract at the interface between two 
 different water depths.

The incoming wave travels
along the lighter string.

Because the string on the right is
heavier, the reflected wave is inverted.

FIGURE 14.25 Partial reflection occurs at 
the junction between two strings.
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14.8 Standing Waves
LO 14.7 Describe wave reflection and standing waves.

Imagine a string clamped tightly at both ends. Waves propagate back and forth by reflecting 
at the ends. But because the ends are clamped, the wave displacement at each end must al-
ways be zero. Only certain waves can satisfy this requirement; as Fig. 14.27 suggests, they’re 
waves for which an integer number of half-wavelengths just fits the string’s length L.

The waves in Fig. 14.27 are standing waves, so called because they essentially stand 
still, confined to the length of the string. At each point the string executes simple har-
monic motion perpendicular to its undisturbed state. We can describe standing waves 
mathematically as arising from the superposition of two waves propagating in op-
posite directions and reflecting at the ends of the string. If we take the x-axis to coin-
cide with the string, then we can write the string displacements in two such waves as 
y11x , t2 = A  cos1k x - vt2 for the wave propagating in the +x -direction (recall 
Equation 14.3) and y21x , t2 = -A  cos1k x + vt2 for the wave propagating in the  
-x -direction. (The minus sign in y2  accounts for the phase change that occurs on reflec-
tion at a rigid boundary, as you saw in Fig. 14.23.) Their superposition is then

y1x, t2 = y1 + y2 = A3 cos1kx - vt2 -  cos1kx + vt24
Appendix A lists a trig identity for the difference of two cosines:

cos a - cos b = -2 sin31
21a + b24  sin31

21a - b24
Applying this identity with a = kx - vt and b = kx + vt gives

 y1x, t2 = 2A sin kx sin vt (14.12)

Waves propagating and reflecting inside the Earth help geologists deduce the 
planet’s interior structure. That’s because Earth’s interior supports two types of 
waves. Longitudinal waves, also called P waves, propagate in both solids and 
liquids. Transverse, or S waves, propagate only in solids. Earthquakes generate  
S waves that propagate throughout the solid Earth. But as the figure suggests, 
they can’t get through the liquid outer core, so they leave a “shadow” where seis-
mographs don’t record any S-wave activity. This effect is our clearest evidence 
that Earth has a liquid core.

P waves, however, do propagate through the liquid core. But they undergo 
partial reflections farther in—evidence for an abrupt change in core density. 
Careful analysis shows that wave speeds in the inner core are consistent with its 
being solid—giving our planet the solid–liquid–solid structure suggested in the 
figure.

Studies of Earth’s large-scale structure generally use earthquake waves, al-
though inner-core evidence also comes from underground nuclear explosions. At 
a smaller scale, explosive charges or machines that “thump” the ground produce 
waves whose reflections from rock layers down to a few kilometers depth help 
reveal oil and gas deposits.

APPLICATION Probing the Earth

S-wave shadow zone

S waves recorded

Earthquake epicenter

105°105°

Solid

Liquid

S waves recorded

14.6 You’re holding one end of a taut rope, and you can’t see the other end. You 
tweak the rope to give it an upward displacement, sending a pulse down the rope. 
A while later, a pulse comes back toward you. Its displacement is upward, but with 
considerably lower amplitude than the initial displacement you provided. Assuming 
there’s no energy loss in the rope itself, you can conclude that the far end of the rope 
is (a) attached to a rigid anchor point, (b) attached in such a way that it’s free to slide 
up and down, (c) tied to another rope with less mass per unit length, or (d) tied to 
another rope with more mass per unit length.
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FIGURE 14.27 Standing waves on a string 
clamped at both ends; shown are the 
fundamental and four overtones.
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264 Chapter 14 Wave Motion

Equation 14.12 is the mathematical description of a standing wave, and it affirms our quali-
tative description that each point on the string simply oscillates up and down. Pick any point—
that is, any fixed value of x—and Equation 14.12 does indeed describe simple harmonic motion 
in the y-direction, through the factor sin vt. The amplitude of that motion depends on the point 
x you’ve chosen and is given by the factor that multiplies sin vt—namely, 2A sin kx.

Because the string is clamped at both ends, the amplitude at the ends must be zero. Our 
amplitude factor 2A sin kx does give y = 0 in Equation 14.12 at x = 0, but what about at 
x = L? Here we’ll get zero only if sin kL = 0—and that requires kL to be a multiple of p. 
So we must have kL = mp, where m is any integer. But the wave number k is related to 
the wavelength l by k = 2p/l. Our condition kL = mp can then be written

 L =
ml

2
, m = 1, 2, 3,  p (14.13)

This is just the condition we already guessed from Fig. 14.27—namely, that the string 
length L be an integer number of half-wavelengths.

Given a particular string length L, Equation 14.13 limits the allowed standing waves on the 
string to a discrete set of wavelengths. Those allowed waves are called modes or harmon-
ics, and the integer m is the mode number. The m = 1  mode is the fundamental and is the 
 longest-wavelength standing wave that can exist on the string. The higher modes are overtones.

Figure 14.27 shows that there are points where the string doesn’t move at all. These 
are called nodes. Points where the amplitude of the wave displacement is a maximum, in 
contrast, are antinodes.

When a string is clamped rigidly at one end but is free at the other, its clamped end is 
a node but its free end is an antinode. Figure 14.28 shows that the string length must then 
be an odd multiple of a quarter-wavelength—a result that you can also get from Equation 
14.12 by requiring sin kL = 1 to give maximum amplitude at x = L.

Standing-Wave Resonance
We’ve discussed standing waves in terms of constraints on the wavelength l rather than on 
the frequency f . But because waves on a string have a fixed speed v, and because fl = v, 
Equation 14.13’s discrete set of allowed wavelengths corresponds to a set of discrete 
frequencies. The lowest allowed frequency, the fundamental, corresponds to the longest 
wavelength; the overtones have higher frequencies.

Because a stretched string can oscillate in any of its allowed frequencies, the resonant be-
havior that we discussed in Chapter 13 can occur close to any of those frequencies. Buildings 
and other structures, in analogy with our simple string, support a variety of standing-wave 
modes. For example, a skyscraper is like the string of Fig. 14.28, with its base clamped to 
Earth but its top free to swing. Engineers must be sure to identify all possible modes of 
structures they design in order to avoid harmful resonances. The disastrous oscillations of the 
Tacoma Narrows Bridge shown in Fig. 13.26 are actually torsional standing waves.

Other Standing Waves
Standing waves are common phenomena. Water waves in confined spaces exhibit standing 
waves, and entire lakes can develop very slow oscillations corresponding to low-mode-
number standing waves. Standing electromagnetic waves occur inside closed metal cav-
ities; in microwave ovens the nodes of the standing-wave pattern would result in “cold” 
spots were not either the food or the source of microwaves kept in motion. Standing sound 
waves in the Sun help astrophysicists probe the solar interior. And even atomic structure 
can be understood in terms of standing waves associated with electrons.

Musical Instruments
Our analysis of standing waves on strings applies directly to stringed musical instruments 
such as violins, guitars, and pianos. Standing-wave vibrations in the instrument strings are 
communicated to the air as sound waves, usually through the intermediary of a sounding 
box or electronic amplifiers. For instruments in the violin family, the body of the instru-
ment itself undergoes standing-wave vibrations, excited by the vibration of the string, that 
establish each individual instrument’s peculiar sound quality (Fig. 14.29). Similarly, the 

l
4

L

Antinodes

Nodes

Nodes

3l
4

5l
4

7l
4

9l
4

FIGURE 14.28 When one end of the string 
is fixed and the other free, the string can 
accommodate only an odd number of 
quarter-wavelengths.

FIGURE 14.29 Standing waves on a violin, 
imaged using holographic interference  
of laser light waves.
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14.9 The Doppler Effect and Shock Waves 265

14.7 A string 1 m long is clamped tightly at one end and is free to slide up and down 
at the other. Which of the following are possible wavelengths for standing waves on 
this string: 45  m , 1 m, 43  m , 3

2  m , 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m?
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14.9 The Doppler Effect and Shock Waves
LO 14.8 Describe the Doppler effect and shock waves.

The speed v of a wave is its speed relative to the medium through which it propagates. A 
point source at rest in the medium radiates waves uniformly in all directions (Fig. 14.32). 
But when the source moves, wave crests bunch up in the direction toward which the source 
is moving, resulting in a decreased wavelength (Fig. 14.33). In the opposite direction, 
wave crests spread out and the wavelength increases.

The wave speed is determined by the properties of the medium, so it doesn’t change 
with source motion. Thus the equation v = lf  still holds. This means that an observer 

The double bassoon is the lowest-pitched instrument in a normal or-
chestra. The instrument is “folded” to achieve an effective air col-
umn 5.5 m long, and it acts like a pipe open at both ends. What’s 
the frequency of the double bassoon’s fundamental note? Assume the 
sound speed is 343 m/s.

INTERPRET This is a problem about standing-wave modes in a hol-
low pipe open at both ends.

DEVELOP Figure 14.30b applies to a pipe that’s open at both ends. 
So our sketch of the fundamental mode in Fig. 14.31 looks like the 
upper of the two pictures in Fig. 14.30b. We can find the wavelength 
and then use Equation 14.1, v = lf , to get the frequency.

EVALUATE The wavelength is twice the instrument’s 5.5-m length, 
or 11 m. Then Equation 14.1 gives

f =
v
l

=
343 m/s

11 m
= 31 Hz

ASSESS This frequency is the note B0, which lies near the low- 
frequency limit of the human ear. Like most wind instruments, the 
bassoon has a number of holes that, when uncovered, alter the posi-
tions of the antinodes and therefore change the pitch.

EXAMPLE 14.6 Standing-Wave Modes: The Double Bassoon

From
here c

cto here
is half a

wavelength.

FIGURE 14.31 Sketch for Example 14.6.

stretched membranes of drums exhibit a variety of standing-wave patterns representing the 
allowed modes on these two-dimensional surfaces.

Wind instruments generate standing sound waves in air columns, as suggested in Fig. 14.30. 
These must be open at one end to allow sound to escape; in many instruments the column is 
effectively open at both ends. An open end has its pressure fixed at atmospheric pressure; it is 
therefore a pressure node and thus, from Fig. 14.14, a displacement antinode. As a result, an  
instrument open at one end supports odd-integer multiples of a quarter-wavelength  
(Fig. 14.30a), in analogy with Fig. 14.28. An instrument open at both ends, on the other hand, 
supports integer multiples of a half-wavelength (Fig. 14.30b).

(a) (b)

FIGURE 14.30 Standing waves in wind instruments: (a) open at one end 
and (b) open at both ends.
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Essential University Physics 4e
Wolfson
Pearson Education
9780134988559
Fig 14.33
Pickup: 9885514037
Troutt Visual Services
tb    03/18/18    24p5 x 11p2   

1
2

Source

A perceives shorter
wavelength,
higher frequency.

B perceives longer
wavelength,
lower frequency.

u =   v

B A
l′approachl′recede

FIGURE 14.33 Origin of the Doppler effect, shown for a source moving with half the wave speed.

in front of the moving source, where l is smaller, experiences a higher wave frequency 
as more wave crests pass per unit time. Similarly, an observer behind the source expe-
riences a lower frequency. This change in wavelength and frequency from a moving 
source is the Doppler effect or Doppler shift, after the Austrian physicist Christian 
Johann Doppler (1803–1853).

To analyze the Doppler effect, let l be the wavelength measured when the source is 
stationary, and l′ the wavelength when the source is moving at speed u through a medium 
where the wave speed is v. At the source, the time between wave crests is the wave period 
T, and a wave crest moves one wavelength l in this time. But during the same time T, 
the moving source covers a distance uT, after which it emits the next wave crest. So the 
distance between wave crests, as seen by an observer in front of the moving source, is 
l′ = l - uT . Writing T = l/v, we get

 l′ = l - u 
l

v
= l a1 -

u
v
b  1source approaching2 (14.14a)

The situation is similar in the direction opposite the source motion, except that now the 
wavelength increases by the amount lu/v, giving

 l′ = l a1 +
u
v
b  1source receding2 (14.14b)

We can recast these expressions in terms of frequency using the relations l = v/f  and 
l′ = v/f  ′, where f  ′ is the frequency of waves from the moving source as measured by an 
observer at rest in the medium. Substituting these relations in our expressions for l′ and 
then solving for f  ′ gives

 f ′ =
f

1 {  u/v
  1Doppler shift, moving source2 (14.15)

for the Doppler-shifted frequency, where the +  and -  signs correspond to receding and 
approaching sources, respectively.

f ′ is the frequency you 
perceive when a wave 
source moves toward you.

f is the frequency emitted 
by the source. u is the source speed 

relative to you…

Use -  if the source moves 
toward you and +  if it moves 
away.

…and v is the wave speed 
relative to the medium.

l

FIGURE 14.32 Circular waves from a source 
at rest with respect to the medium.
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14.9 The Doppler Effect and Shock Waves 267

You’ve probably experienced the Doppler effect for sound when standing near a high-
way. A loud truck approaches with a high-pitched sound “aaaaaaaaaaa.” As it passes, 
the pitch drops abruptly: “aaaaaaaaeioooooooooo,” and stays low as the truck recedes. 
Practical uses of the Doppler effect are numerous. The Doppler shift in reflected ultra-
sound measures blood flow and fetal heartbeat. Police radar uses the Doppler shift of 
high-frequency radio waves reflected from moving cars. The Doppler shift of starlight 
reveals stellar motions, and Doppler-shifted light from distant galaxies is evidence that our 
entire universe is expanding.

A car speeds down the highway with its stereo blasting. An observer with perfect pitch is standing by 
the roadside and, as the car approaches, notices that a musical note that should be G 1 f = 392 Hz2 
sounds like A (440 Hz). How fast is the car moving?

INTERPRET This problem is about the Doppler effect in sound from a moving source.

DEVELOP Equation 14.15, f ′ = f /11 {  u/v2, relates the original and shifted frequencies to the 
source speed u, so our plan is to solve this equation for u. We’ll use the minus sign because the 
source is approaching. We’ll also need the sound speed v, which Example 14.6 gave as 343 m/s.

EVALUATE Solving Equation 14.15 for u gives

u = v a1 -
f

f ′
b = 1343 m/s2a1 -

392 Hz
440 Hz

b = 37.4 m/s

ASSESS Our answer—some 134 km/h or 84 mi/h—seems reasonable for a speeding car, though 
not a particularly safe speed! And it’s a little more than 10% of the sound speed, consistent with the 
roughly 10% change in the sound frequency.

Doppler Effect: The Wrong Note
Worked Example with Variation ProblemsEXAMPLE 14.7

Moving Observers
A Doppler shift in frequency, but not wavelength, also occurs when a moving observer 
 approaches a stationary source—meaning a source at rest with respect to the wave medium. 
An observer moving toward a stationary source passes wave crests more often than would 
happen if the observer were at rest, and thus measures a shorter wave period and therefore a 
higher frequency. The result, as you can show in Problem 78, is a shifted frequency given by

 f ′ = f  a1 {  
u
v
b  1Doppler shift, moving observer2 (14.16)

with the positive sign for an observer approaching the source and the negative sign for 
an observer receding. For observer velocities u small compared with the wave speed v, 
Equations 14.15 and 14.16 give essentially the same results.

Waves from a stationary source that reflect from a moving object undergo a Doppler 
shift twice. First, because the frequency as received at the reflecting object is shifted, ac-
cording to Equation 14.16, due to the object’s motion relative to the source. Then a station-
ary observer sees the reflected waves as coming from a moving source, so there’s another 
shift, this time given by Equation 14.15. Police radar and other Doppler-based speed mea-
surements make use of this double Doppler shift that occurs on reflection.

f ′ is the frequency you 
perceive when you move 
toward or away from a wave 
source.

f  is the frequency emitted 
by the source.

u is your speed relative to 
the source…

Use +  if you move toward 
the source and -  if you 
move away.

… and v is the wave speed 
relative to the medium.
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FIGURE 14.35 (a) A shock wave trails from 
a supersonic aircraft. The plane is flying 
low over the ocean, and the humid air 
condenses at the shock, making it visible. 
(b) The wake trailing from this boat is 
also a shock wave that arises because the 
boat is moving faster than the speed of 
water waves.

The Doppler Effect for Light
Although light and other electromagnetic waves do not require a material medium, they, 
too, are subject to the Doppler shift. Both Doppler formulas we derived here apply to elec-
tromagnetic waves, but only as approximations when the relative speed between source 
and observer is much lower than the speed of light.

The Doppler shift for electromagnetic waves is the same whether it’s the source that 
moves or the observer. This reflects a profound fact at the root of Einstein’s relativity: that 
“stationary” and “moving” are meaningful only as relative terms. Electromagnetic waves, 
unlike mechanical waves, do not require a medium—and therefore terms such as “station-
ary source” and “moving observer” are meaningless. All that matters is the relative motion 
between source and observer. We’ll explore this point further in Chapter 33.

Shock Waves
Equation 14.14a suggests that wavelength goes to zero if a source approaches at ex-
actly the wave speed. This happens because wave crests can’t get away from the source, 
so they pile up just ahead of it to form a large-amplitude wave called a shock wave  
(Fig. 14.34). When the source moves faster than the wave speed, waves pile up on a cone 
whose half-angle is given by sin u = v/u, as shown. The ratio u/v of source speed to wave 
speed is called the Mach number, and the cone angle is the Mach angle.

v
u

u
u

This is the Mach angle. Its sine
is vT>uT, or v>u.

Right now the source is here,
about to emit a wave crest.

This is the distance uT that the
source moved in one period.

Here’s where the source 
was one wave period ago, 
when it emitted the circular 
wave crest shown.Here’s where the source was

two wave periods ago. The
crest it emitted then has had
more time to expand outward,
so it’s larger.

This is the distance vT that the
wave crest moved in one period.

Wave crests from all source 
locations pile up along this 
line, making a conical 
shock wave.

FIGURE 14.34 Shock waves form when the source speed u exceeds the wave speed v.

Shock waves occur in a wide variety of physical situations (Fig. 14.35). Sonic booms 
are shock waves from supersonic aircraft. The bow wave of a boat is a shock wave on 
the water surface. On a much larger scale, a huge shock wave forms in space as the solar 
wind—a high-speed flow of particles from the Sun—encounters Earth’s magnetic field.

14.8 In Fig. 14.35, which is moving faster in relation to the wave speed in the  
medium through which they’re traveling, the airplane or the boat?
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Key Concepts and Equations
Wave period is the time for one complete 
wave cycle. Period and frequency are in-
verses, and wavelength l,  period T or fre-
quency f, and wave speed v are all related:

v =
l

T
= lf

A simple harmonic wave is sinusoidal in 
shape. The wave disturbance is a function 
of position and time and is most simply de-
scribed in terms of its wave number k and 
angular frequency v:

y1x , t2 = A  cos1k x - vt2
They’re related to wavelength and period by

k =
2p
l
  an d  v =

2p
T

Applications
Wave speed is a characteristic of the medium.

Transverse waves on strings: v = AF
m

Longitudinal sound waves in a gas: v = AgP

r
, about 343 m/s in air 

under standard conditions

Surface waves in deep water: v = A lg

2p

Standing waves on strings
Clamped at both ends, string length is an integer multiple of a 
half-wavelength: L = ml/2

Nodes

m = 2; L = l shown

Clamped at one end, string length is an odd-integer multiple of a 
quarter-wavelength:

3
4L =   l shown

Nodes

Amplitude
A

Speed vWavelength
l

l

Transverse waveLongitudinal wave

Waves are the big idea here. A wave is a propagating disturbance that 
carries energy but not matter. Waves are characterized by their ampli-
tude, wavelength, and speed. They can be longitudinal or transverse.

Big Idea

SummaryChapter 14

W
av

e 
di

st
ur

ba
nc

e,
 y

Position, x

A l = 2p>k

T = 2p>v

Time, t

Wave disturbance y(x) at fixed time t = 0

Wave disturbance y(t) at fixed position x = 0

A

Wave intensity is the power per unit area carried by the wave: I = P/A. For a spherical wave that spreads in all directions from a localized source, 
intensity decreases as the inverse square of the distance from the source: I = P/14pr22.

The Doppler effect is a frequency and/or wavelength 
shift due to the motion u of an observer or source rela-
tive to the medium with wave speed v.

Moving source: f ′ =
f

11 { u/v2,+  for receding, -  for 

approaching; l also changes

Moving observer: f ′ = f11 { u/v2, +  for approach-
ing, -  for receding; no change in l

B A

Moving source Shock waves occur when a wave source 
1speed u2 moves through a medium at greater 
than the wave speed 1v2.

v
u

u
u
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Mastering Physics

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems COMP Computer problems

Go to www.masteringphysics.com to access assigned homework and self-study tools such as 
Dynamic Study Modules, practice quizzes, video solutions to problems, and a whole lot more!

Learning Outcomes After finishing this chapter you should be able to:

LO 14.1 Describe waves qualitatively and distinguish longitudinal 
from transverse waves.
For Thought and Discussion Question 14.1

LO 14.2 Describe wave motion quantitatively using functions of space 
and time.
For Thought and Discussion Questions 14.2, 14.3; Exercises 
14.11, 14.12, 14.13, 14.14, 14.15, 14.16, 14.17, 14.18, 
14.19, 14.20; Problems 14.55, 14.56, 14.71, 14.72

LO 14.3 Explain how Newtonian physics describes waves on strings.
For Thought and Discussion Questions 14.4, 14.5; Exercises 
14.21, 14.22, 14.23, 14.24; Problems 14.50, 14.57, 14.58, 
14.61, 14.62, 14.68

LO 14.4 Quantitatively characterize the energy carried by waves.
For Thought and Discussion Question 14.6; Exercises 
14.25, 14.26; Problems 14.51, 14.52, 14.53, 14.54, 14.56, 
14.59, 14.60, 14.75

LO 14.5 Describe sound waves and quantify sound intensity in 
decibels.
For Thought and Discussion Questions 14.7, 14.8; Exercise 
14.27, 14.28, 14.29, 14.30, 14.31; Problems 14.63, 14.64, 
14.65, 14.66, 14.67, 14.82

LO 14.6 Describe wave interference in one and two dimensions.
Exercises 14.32, 14.33; Problems 14.80, 14.79

LO 14.7 Describe wave reflection and standing waves.
For Thought and Discussion Question 14.9; Exercises 
14.34, 14.35, 14.36, 14.37; Problems 14.68, 14.69, 14.70, 
14.74

LO 14.8 Describe the Doppler effect and shock waves.
For Thought and Discussion Question 14.10; Exercise 
14.38, 14.39, 14.40, 14.41; Problems 14.73, 14.76, 14.77, 
14.78, 14.79

For Thought and Discussion

1. What distinguishes a wave from an oscillation?
2. Red light has a longer wavelength than blue light. Compare their 

frequencies.
3. Consider a light wave and a sound wave with the same wave-

length. Which has the higher frequency?
4. If you doubled the tension in a string, what would happen to the 

speed of waves on the string?
5. A heavy cable is hanging vertically, its bottom end free. How 

will the speed of transverse waves near the top and bottom of the 
cable compare? Why?

6. The intensity of light from a localized source decreases as the in-
verse square of the distance from the source. Does this mean that 
the light loses energy as it propagates?

7. Medical ultrasound uses frequencies around 107 Hz, far above the 
range of the human ear. In what sense are these waves “sound”?

8. If you double the pressure of a gas while keeping its density the 
same, what happens to the sound speed?

9. If you place a perfectly clear piece of glass in perfectly clear wa-
ter, you can still see the glass. Why?

10. Why can a boat easily produce a shock wave on the water surface, 
while only a very high-speed aircraft can produce a sonic boom?

Exercises and Problems

Exercises
Section 14.1 Waves and Their Properties
11. Ocean waves with 18-m wavelength travel at 5.3 m/s. What’s 

the time interval between wave crests passing a boat moored at 
a fixed location?

12. Ripples in a shallow puddle propagate at 34 cm/s. If the wave 
frequency is 5.2 Hz, find (a) the period and (b) the wavelength.

13. An 89.5-MHz FM radio wave propagates at the speed of light. 
What’s its wavelength?

BIO

14. A seismograph located 1250 km from an earthquake detects seis-
mic waves 5.12 min after the quake occurs. The seismograph os-
cillates in step with the waves, at 3.21 Hz. Find the wavelength.

15. Medical ultrasound waves travel at about 1500 m/s in soft tissue. 
Higher frequencies provide clearer images but don’t penetrate to 
deeper organs. Find the wavelengths of (a) 8.0-MHz ultrasound 
used in fetal imaging and (b) 3.5-MHz ultrasound used to image 
an adult’s kidneys.

Section 14.2 Wave Math
16. An ocean wave has period 4.1 s and wavelength 10.8 m. Find its 

(a) wave number and (b) angular frequency.
17. Find the (a) amplitude, (b) wavelength, (c) period, and 

(d) speed of a wave whose displacement is given by 
y = 1 .3  cos10 .6 9 x + 3 1 t2, where x and y are in centimeters 
and t in seconds. (e) In which direction is the wave propagating?

18. Ultrasound used in a medical imager has frequency 4.86 MHz 
and wavelength 0.313 mm. Find (a) the angular frequency,  
(b) the wave number, and (c) the wave speed.

19. Figure 14.36 shows a simple harmonic wave at time t = 0  and 
later at t = 2 .6  s . Write a mathematical description of this wave.

BIO

BIO

t = 0 s

2 4 6 8 10 12 14 16
x (cm)

t = 2.6 s

1.5

y 
(c

m
)

1
0.5

0
-0.5

-1
-1.5

FIGURE 14.36 Exercise 23

20. Analysis of waves in shallow water (depth much less than wave-
length) yields the following wave equation:

02y

0x 2
=

1
g h

 
02y

0t 2

where h is the water depth and g the gravitational acceleration. 
Give an expression for the wave speed.
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Exercises and Problems 271

Section 14.3 Waves on a String
21. The main cables supporting New York’s George Washington 

Bridge have a mass per unit length of 4100 kg/m and are under 
250-MN tension. At what speed would a transverse wave propa-
gate on these cables?

22. A transverse wave 1.2 cm in amplitude propagates on a string; 
its frequency is 44 Hz. The string is under 21-N tension and has 
mass per unit length 15 g/m. Determine its speed.

23. Transverse waves propagate at 18 m/s on a string under 14-N 
tension. What will be the wave speed if the tension is increased  
to 40 N?

24. A rope is stretched between supports 18.3 m apart; its tension is 
78.6 N. If one end of the rope is tweaked, the resulting distur-
bance reaches the other end 585 ms later. Find the rope’s mass.

Section 14.4 Wave Energy
25. A rope with 280 g of mass per meter is under 550-N tension. 

Find the average power carried by a wave with frequency 3.3 Hz 
and amplitude 6.1 cm propagating on the rope.

26. Cell phones typically transmit with a power of 0.60 W when 
they’re in urban areas with closely spaced cell towers. In rural ar-
eas, however, the power increases to 3.0 W. By what factor does 
this power boost increase a phone’s range—that is, the distance 
at which the phone’s signal has a given intensity?

Section 14.5 Sound Waves
27. Find the sound speed in air under standard conditions with pres-

sure 1 0 1  kN/ m 2 and density 1.20 kg/m3.
28. Timers in sprint races start their watches when they see smoke 

from the starting gun, not when they hear the sound. Why? How 
much error would be introduced by timing a 100-m race from the 
sound of the gun?

29. The specific heat ratio g for nitrous oxide (N2O) is 1.31. Find the 
sound speed in N2O at 1.95 * 104@N/m2 pressure and 0.352-kg/m3  
density.

30. A gas with density 1.0 kg/m3 and pressure 81 kN/m2 has sound 
speed 368 m/s. Are the gas molecules monatomic or diatomic?

31. Divers in an underwater habitat breathe a special mixture of 
oxygen and neon to prevent the possibly fatal effects of nitro-
gen in ordinary air. With pressure 6.2 * 105 N/m2 and density 
4.5 kg/m3, the effective g value for the mixture is 1.61. Find 
the frequency in this mixture for a 50-cm-wavelength sound 
wave, and compare with its frequency in air under normal 
conditions.

Section 14.6 Interference
32. You’re flying in a twin-engine turboprop aircraft, with its two 

propellers turning at 985 and 993 rpm, respectively. How often to 
you hear a peak in the engine sound?

33. What’s the wavelength of the ocean waves in Example 14.5 if the 
calm water you encounter at 33 m is the second calm region on 
your voyage from the center line?

Section 14.8 Standing Waves
34. A 2.0-m-long string is clamped at both ends. (a) Find the 

 longest-wavelength standing wave possible on this string.  
(b) If the wave speed is 56 m/s, what’s the lowest standing-wave 
frequency?

35. When a stretched string is clamped at both ends, its fundamental 
frequency is 140 Hz. (a) What’s the next higher frequency? If the 
same string, with the same tension, is now clamped at one end 

BIO

and free at the other, what are (b) the fundamental and (c) the 
next higher frequency?

36. A string is clamped at both ends and tensioned until its funda-
mental frequency is 85 Hz. If the string is then held rigidly at its 
midpoint, what’s the lowest frequency at which it will vibrate?

37. A crude model of the human vocal tract treats it as a pipe closed 
at one end. Find the effective length of a vocal tract whose 
fundamental tone is 620 Hz. Take Vsound = 354 m/s at body 
temperature.

Section 14.9 The Doppler Effect and Shock Waves
38. A car horn emits 380-Hz sound. If the car moves at 17 m/s with 

its horn blasting, what frequency will a person standing in front 
of the car hear?

39. A fire station’s siren is blaring at 85 Hz. What’s the frequency 
perceived by a firefighter racing toward the station at 120 km/h?

40. A fire truck’s siren at rest wails at 1400 Hz; standing by the road-
side as the truck approaches, you hear it at 1600 Hz. How fast is 
the truck going?

41. Red light emitted by hydrogen atoms at rest in the laboratory 
has wavelength 656 nm. Light emitted in the same process on 
a distant galaxy is received at Earth with wavelength 708 nm. 
Describe the galaxy’s motion relative to Earth.

Example Variations
The following problems are based on two worked examples from the 
text. Each set of four problems is designed to help you make connec-
tions that enhance your understanding of physics and to build your 
confidence in solving problems that differ from ones you’ve seen be-
fore. The first problem in each set is essentially the example problem 
but with different numbers. The second problem presents the same sce-
nario as the example but asks a different question. The third and fourth 
problems repeat this pattern but with entirely different scenarios.

42. Example 14.1: A surfer paddles out beyond the breaking surf to 
where waves are sinusoidal in shape, with crests 59.6 m apart. 
The surfer bobs a vertical distance of 4.28 m, taking 3.09 s to go 
from trough to crest. (a) Find the wave speed and (b) describe the 
wave using Equation 14.3.

43. Example 14.1: A surfer just misses catching a big wave. If the 
wavelength is 78.2 m, and if she stays in the same place, how 
long will she have to wait for the next wave? Hint: You’ll find 
Equation 14.11 useful.

44. Example 14.1: A Mars rover includes an experiment designed 
to explore Mars’ atmosphere using sound waves. The experiment 
generates sound waves of a known frequency and measures their 
wavelength. For a frequency of 482 Hz, the measured wavelength 
is 50.6 cm. Find the sound speed on Mars.

45. Example 14.1: The speed of sound in water is 1480 m/s. (a) 
Find the wavelength of sound waves emitted by a blue whale vo-
calizing at a frequency of 14.5 Hz. (b) How does this compare 
with the wavelength in air of sound with the same frequency, as-
suming a sound speed of 343 m/s?

46. Example 14.7: A car speeds down the highway with its stereo 
blasting. An observer with perfect pitch is standing by the road-
side and, as the car approaches, notices that a musical note that 
should be B at a frequency of 494 Hz sounds like D at 523 Hz. 
Find the car’s speed, assuming a sound speed of 343 m/s.

47. Example 14.7: The speed limit on a highway is 95.0 km/h. A car 
whose horn emits 352-Hz sound is approaching you. What fre-
quency will you hear if the car is going at the speed limit, assum-
ing a sound speed of 343 m/s?

BIO
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272 Chapter 14 Wave Motion

61. An ideal spring is stretched to a total length L1 . When that length 
is doubled, the speed of transverse waves on the spring triples. 
Find an expression for the unstretched length of the spring.

62. Show that the time it takes a wave to propagate up the cable in 
Problem 50 is t = 21L/g, where L is the cable length.

63. You see an airplane 5.2 km straight overhead. Sound from the 
plane, however, seems to be coming from a point back along the 
plane’s path at 35° to the vertical. What’s the plane’s speed, as-
suming an average sound speed of 330 ms?

64. What are the intensities in W/m2 of sound with intensity levels of 
(a) 65 dB and (b) -5  dB?

65. Show that a doubling of sound intensity corresponds to approxi-
mately a 3-dB increase in the decibel level.

66. Sound intensity from a localized source decreases as the inverse 
square of the distance, according to Equation 14.8. If the distance 
from the source doubles, what happens to (a) the intensity and  
(b) the decibel level?

67. At 2.0 m from a localized sound source you measure the intensity 
level as 75 dB. How far away must you be for the perceived loud-
ness to drop in half (i.e., to an intensity level of 65 dB)?

68. The A-string (440 Hz) on a piano is 38.9 cm long and is clamped 
at both ends. If the string tension is 667 N, what’s its mass?

69. Show that the standing-wave condition of Equation 14.13 is 
equivalent to the requirement that the time it takes a wave to 
make a round trip from one end of the medium to the other and 
back be an integer multiple of the wave period.

70. You’re designing an organ for a new concert hall; the lowest note 
is to be 22 Hz. The architects have asked you to minimize the 
lengths of the organ pipes. How long will the longest pipe be if 
it’s (a) closed at one end and (b) open at both ends?

71. Show by differentiation and substitution that a wave described by 
Equation 14.3 satisfies the wave equation (Equation 14.5), with 
wave speed v = v/k.

72. Show by differentiation and substitution that any function of the 
form y = f1x {  vt2 satisfies the wave equation (Equation 14.5).

73. You’re a marine biologist concerned with the effect of sonic 
booms on plankton, and you need to estimate the altitude of a 
supersonic aircraft flying directly over you at 2.2 times the speed 
of sound. You hear its sonic boom 19 s later. Assuming a constant 
340 m/s sound speed, find the plane’s altitude.

74. A 2.25-m-long pipe has one end open. Among its possible 
 standing-wave frequencies is 345 Hz; the next higher frequency 
is 483 Hz. Find (a) the fundamental frequency and (b) the sound 
speed.

75. Gravitational waves were first detected in 2015, using the LIGO 
detectors at Livingston, Louisiana, and Hanford, Washington. 
The gravitational waves, propagating as plane waves, reached the 
Livingston detector 7.0 ms before they reached Hanford. (a) Did 
the waves come from the southern or northern hemisphere of the 
sky? (b) Estimate the straight-line distance between Livingston 
and Hanford and, using the fact that gravitational waves propa-
gate at the speed of light, find the approximate angle between the 
direction of the waves’ propagation and the Livingston–Hanford 
line. Knowing this angle helped LIGO scientists to determine an 
approximate location of the source.

CH

CH

CH

CH
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48. Example 14.7: The Sun undergoes oscillations with periods on 
the order of 5 min and amplitudes, measured as variations in the 
height of the solar surface, of a few m. The corresponding ve-
locity of the solar surface is on the order of 10 cm/s, and this 
can be measured by carefully observing the Doppler effect on 
light emitted at the solar surface. One space-based instrument 
observes light from singly ionized nickel atoms, emitted with 
a wavelength of 676.8 nm. If the instrument observes this light 
Doppler shifted by 3.52 * 10- 7 nm, what is the velocity at the 
Sun’s surface?

49. Example 14.7: A star is orbiting the galactic center, and at a 
point in its orbit when it’s heading in the direction toward Earth, 
it’s moving at 64.8 km/s. An astronomer observes a spectral line 
emitted by hydrogen atoms in the star’s atmosphere; the wave-
length relative to the emitting atoms is 656.28 nm. By how much 
will the astronomer observe this wavelength to be shifted?

Problems
50. A uniform cable hangs vertically under its own weight. Show 

that the speed of waves on the cable is given by v = 1yg, where 
y is the distance from the bottom of the cable.

51. Find the maximum speed for transmission of waves on a rope 
with m = 68.4 g/m if the rope’s breaking tension is 415 N.

52. A loudspeaker emits energy at the rate of 50 W, spread in all di-
rections. Find the intensity of sound 18 m from the speaker.

53. Light intensity 3.3 m from a lamp is 0.73 W/m2. Find the lamp’s 
power output, assuming it radiates equally in all directions.

54. An experiment based at New Mexico’s Apache Point observatory 
uses a laser beam to measure the distance to the Moon with milli-
meter precision. The laser power is 120 GW, although it’s pulsed 
on for only 90 ps. The beam emerges from the laser with a di-
ameter of 7.0 mm. It’s then beamed into a telescope aimed at the 
Moon. When the beam leaves the telescope, it has the telescope’s 
full 3.5-m diameter. By the time it reaches the Moon, the beam 
has expanded to a diameter of 6.5 km. Find the intensity of the 
beam (a) as it leaves the laser, (b) as it leaves the telescope, and 
(c) as it reaches the Moon. Do any of these intensities exceed that 
of bright sunlight on Earth (about 1000 W/m2)?

55. Two waves have the same angular frequency v,  wave number k, 
and amplitude A, but they differ in phase: y1 = A  cos1k x - vt2 
and y2 = A  cos1k x - vt + f2. Show that their superposition 
is also a simple harmonic wave, and determine its amplitude as a 
function of the phase difference f.

56. A wire is under 32.8-N tension, carrying a wave described 
by y = 1.75 sin10.211x - 466t2, where x and y are in cen-
timeters and t is in seconds. What are (a) the wave amplitude,  
(b) the wavelength, (c) the wave period, (d) the wave speed, and 
(e) the power carried by the wave?

57. A spring of mass m and spring constant k has an unstretched 
length L0 . Find an expression for the speed of transverse waves 
on this spring when it’s been stretched to a length L.

58. When a 340-g spring is stretched to a total length of 40 cm, it 
supports transverse waves propagating at 4.5 m/s. When it’s 
stretched to 60 cm, the waves propagate at 12 m/s. Find (a) the 
spring’s unstretched length and (b) its spring constant.

59. At a point 15 m from a source of spherical sound waves, you mea-
sure the intensity 750 mW/m2. How far do you need to walk, di-
rectly away from the source, until the intensity is 270 mW/m2?

60. Figure 14.37 shows two observers 20 m apart on a line that con-
nects them to a spherical light source. If the observer nearer the 
source measures a light intensity 50% greater than the other ob-
server, how far is the nearer observer from the source?

CH

20 m x = ?

FIGURE 14.37 Problem 60
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acceleration. Tsunamis can travel thousands of kilometers across an 
ocean to reach the shore with their initial energy nearly intact; when 
they do, they can cause massive damage and loss of life (Fig. 14.38).

83. As a tsunami approaches shore, it
a. speeds up.
b. slows down.
c. maintains its speed.

84. For a tsunami to behave as a shallow-water wave, its wavelength
a. must be comparable to or longer than the ocean depth.
b. must be shorter than the ocean depth.
c. can have any value.

85. A tsunami is traveling at 450 km/h when the ocean depth abruptly 
doubles. Its new speed is roughly
a. 225 km/h.
b. 320 km/h.
c. 640 km/h.
d. 900 km/h.

86. On the open ocean, a tsunami has relatively small amplitude—
typically 1 m or less. As the tsunami approaches shore, its ampli-
tude increases and its wavelength decreases. As a result,
a. its total energy increases.
b. the rate at which it carries energy shoreward increases.
c. the wave frequency increases.
d. none of these quantities changes.

Answers to Chapter Questions

Answer to Chapter Opening Question
None. The waves transport energy, but not matter.

Answers to GOT IT? Questions
14.1 (b) 5 m/s, because that’s the speed of the wave crest
14.2 (1) upper wave; (2) lower; (3) lower; (4) upper; (5) upper
14.3 (c)
14.4 (c)
14.5 (b) because of interference analogous to Fig. 14.21
14.6 (c)
14.7 45  m , 4

3  m , 4 m
14.8 the boat

76. Obstetricians use ultrasound to monitor fetal heartbeat. If  
5.0-MHz ultrasound ref lects off the moving heart wall with 
a 100-Hz frequency shift, what’s the speed of the heart wall? 
(Hint : You have two shifts to consider.)

77. You’re in court, trying to argue your way out of a speeding ticket. 
You were stopped going 120 km/h in a 90-km/h zone. A techni-
cal expert testifies that the 70-GHz police radar signal underwent 
a 15.6-kHz frequency shift when it reflected off your car. You 
claim that corresponds to an impossible 240 km/h, so the radar 
must be defective. How should the judge rule?

78. You move at speed u toward a wave source that’s stationary with 
respect to the medium in which waves of wavelength l propa-
gate with speed v. Your speed relative to the wave crests is there-
fore v + u. Show that for you, the time between wave crests is 
T′ = l/1v + u2, and from this show that you perceive a fre-
quency given by Equation 14.16, with the +  sign.

79. You’re a meteorologist specifying a new Doppler radar system 
that determines the velocity of distant raindrops by reflecting 
radar signals (which travel at the speed of light) off them and 
measuring the Doppler shift. You need a system that will measure 
speeds as low as 2.5 km/h. A vendor offers a 5.0-GHz radar that 
can detect a frequency shift of only 50 Hz. Is that sufficient?

80. Use a computer to form the sum implied in the caption of Figure 
14.17, taking v = 1  s -1  and using (a) the three terms shown and 
(b) 10 terms (note that only odd harmonics appear in the sum). 
Plot your result over one cycle (t from 0 to 2p) and compare 
with the square wave shown in the figure.

81. Two loudspeakers are mounted 2.85 m apart, pointing in the 
same direction and producing identical sound waves of a fixed 
frequency. You’re standing 10.0 m from the speakers, on the per-
pendicular bisector of the line between them. You move in direc-
tion parallel to the line between the speakers and find that the 
sound intensity diminishes, reaching a minimum when you’ve 
moved 2.44 m. If the sound speed is 343 m/s, what is the fre-
quency of the sound waves?

82. An airport neighborhood is concerned about the basing of the 
new F-35 jet fighter. They’ve got the following data for the sound 
intensity level measured at different distances from the plane as 
it takes off. They’d like to know the total sound power emitted 
by the plane. As a physics student, you’re called to help. First, 
convert the sound intensity levels to actual intensity. Then find a 
quantity which, when you plot intensity against it, should give a 
straight line. Make your plot, determine the best-fit line, and use 
its slope to report the total sound power.

Distance (m) 1000 1200 1500 2000 3000 4000

Sound intensity 
level (dB)

80.7 79.4 76.9 74.2 71.6 68.8

Passage Problems
Tsunamis are ocean waves gener-
ally produced when earthquakes 
suddenly displace the ocean f loor, 
and with it a huge volume of water. 
Unlike ordinary waves on the ocean 
surface, a tsunami involves the en-
tire water column, from surface to 
bottom. To a tsunami, the ocean is 
shallow—and that makes tsuna-
mis shallow-water waves, whose 
speed is v = 1g d ,  where d is the 
water depth and g the gravitational 
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DATA

FIGURE 14.38 People flee 
as the devastating tsunami 
of December 2004 strikes 
Thailand (Passage Problems 
83–86).
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Atornado whirls across a darkened sky. A plane flies, supported by air 
pressure on its wings. Gas from a giant star forms a cosmic whirlpool 

before plunging into a black hole. Fluid in your car’s brake system am-
plifies the force of your foot on the brake pedal. Your own body is sus-
tained by air moving into and out of your lungs, and by the flow of blood 
throughout your tissues. All these examples involve fluid motion.

Fluid is matter that flows under the influence of external forces. Fluids 
include both liquids and gases. The intermolecular forces are weaker in 
fluids than in solids, and as a result the molecules move around readily. 
In a liquid, those forces are strong enough to keep the molecules in close 
contact, while in a gas they’re almost negligible and the molecules are 
usually widely spaced. Mobility of the individual molecules means that a 
fluid spreads out to take the shape of its container.

15.1 Density and Pressure
LO 15.1 Characterize fluids by density and pressure.

If we could observe a fluid on the molecular scale, we would find large num-
bers of molecules in continuous motion, colliding with each other and with 
the walls of their containers. This molecular behavior is governed by the 
laws of mechanics, and in principle we could study fluids by applying those 
laws to all the individual molecules. But even a drop of water contains about 
1021 molecules; to calculate the motions of all those molecules would take the 
fastest computers many times the age of the universe!

Because the number of molecules is so large, we approximate a fluid by 
treating it as continuous rather than composed of discrete particles. In this 
 approximation, valid for f luid samples large compared with the distance 
 between molecules, we describe the fluid by specifying macroscopic proper-
ties such as density and pressure.

Skills & Knowledge You’ll Need
■■ Kinetic energy (Section 6.4)

■■ Gravitational potential energy 
(Section 7.2)

■■ Conservation of mechanical energy 
(Section 7.3)

Learning Outcomes
After finishing this chapter you should be able to:

LO 15.1 Characterize fluids by density and pressure.

LO 15.2 Describe how fluid pressure varies in hydrostatic equilibrium.

LO 15.3 Use Archimedes’ principle as it applies to floating and 
 submerged objects.

LO 15.4 Apply conservation of mass and energy in fluid dynamics.

LO 15.5 Apply Bernoulli’s principle to applications in fluid dynamics.

LO 15.6 Qualitatively describe the roles of viscosity and turbulence.

Fluid Motion

Why is only the “tip of the iceberg” above water?

14
Wave Motion

13
Oscillatory  

Motion

16
Temperature and 

Heat

17
The Thermal 
Behavior of 

Matter15
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F
S

The fluid exerts pressure
internally as well as on the
container.  The internal 
pressure is the same in all
directions.

F is the force on the area A,
so the pressure is p = F>A.

A

S

FIGURE 15.1 Pressure, the force per unit 
area, is exerted equally in all directions.

Density
Density (symbol r, Greek rho) measures the mass per unit volume; its SI units are kg/m3. 
Water’s density is normally about 1000 kg/m3; air’s is about a factor of 1000 smaller. 
Because their molecules are essentially in contact, liquids are incompressible, meaning 
that their densities remain nearly constant. Gases, in contrast, are compressible: With rel-
atively large intermolecular distances, their densities can change readily.

Pressure
Pressure measures the normal force per unit area exerted by a fluid (Fig. 15.1):

 p =
F
A
 1pressure2 (15.1)

The SI pressure unit is N/m2, given the name pascal (Pa) after the French mathematician, 
scientist, and philosopher Blaise Pascal (1623–1662). Another commonly used pressure 
unit is the atmosphere (atm), defined as Earth’s normal atmospheric pressure at sea level 
and equal to 101.3 kPa (in English units, that’s 14.7 pounds per square inch, or psi).

Pressure is a scalar quantity; at a given point in a fluid, pressure is exerted equally in all 
directions (Fig. 15.1), so it makes no sense to associate a direction with it. This property 
explains an aspect of pressure that you may find puzzling. Although the atmosphere bears 
down on your body with a pressure of 14.7 pounds on every square inch, you don’t feel that 
burden. That’s because the force arising from this pressure is everywhere perpendicular to 
your body, and your body fluids respond by compressing until they’re at the same pressure. 
If you’ve had your ears “pop” in a fast elevator or airplane, or when diving underwater, you 
know the pain that can develop when the pressure on your body is temporarily imbalanced.

Pressure is a scalar…

…that describes the force 
per unit area in a fluid.

15.1 What quantity of water has the same mass as 1 m3 of air under normal condi-
tions? (a) 1 m3; (b) 100 cm3; (c) 1 L; (d) 0.1 m3

G
O

T 
IT

?

15.2 Hydrostatic Equilibrium
LO 15.2 Describe how fluid pressure varies in hydrostatic equilibrium.

For a fluid to remain at rest, the net force everywhere in the fluid must be zero; this condition 
is hydrostatic equilibrium. In the absence of any external forces, hydrostatic equilibrium 
requires that the pressure be constant throughout the fluid; otherwise, pressure differences 
would result in a net force, and the fluid would move in response. As Fig. 15.2 suggests, it’s 
pressure difference, rather than pressure itself, that gives rise to forces within fluids.

Hydrostatic Equilibrium with Gravity
Hydrostatic equilibrium in the presence of gravity requires a pressure force to counteract 
the gravitational force. Since forces arise only from pressure differences, the fluid pres-
sure must therefore vary with depth.

Figure 15.3 shows the forces on a fluid element of area A, thickness dh, and mass dm. 
A gravitational force acts downward on this fluid element; for it to be in equilibrium there 
must therefore be an upward pressure force—and that requires a greater pressure on the 
bottom. Suppose the pressures at the top and bottom are p and p + dp, respectively. Since 
pressure is force per unit area, the net pressure force is dFpress = 1p + dp2A - pA = A dp. 
The gravitational force is dFg = -g dm, where the minus sign designates the downward 
direction. But the mass dm is the density times the volume, so dFg = -g dm = -grA dh. 
Hydrostatic equilibrium requires that these forces sum to zero: A dp -  grA dh = 0, or

Fnet
S

Fnet = 0

Increasing pressure

(a)

Constant pressure

(b)

S S

FIGURE 15.2 If pressure varies with 
 position, then there’s a net force on a 
volume of fluid.
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dp

dh
= rg 1hydrostatic equilibrium2 (15.2)

This equation shows that dp/dh—the variation in pressure with depth h—is positive, 
confirming that pressure increases with depth. For a liquid, which is essentially incompress-
ible, r is constant, and Equation 15.2 shows that pressure increases linearly with depth:

 p = p0 + rg h (15.3)

where p0 is the pressure at the liquid surface.
Equation 15.2 applies to any fluid in a uniform gravitational field; Equation 15.3 fol-

lows from Equation 15.2 for the special case of a liquid. It’s also possible to integrate 
Equation 15.2 to find the pressure in a gas that’s subject to the gravitational force. Because 
the gas density isn’t constant, this is a little more involved mathematically. Problem 72 
explores the variation of pressure with height in Earth’s atmosphere.

The derivative dp/dh is the 
rate of change of pressure 
p with depth h.

In hydrostatic equilibrium, dp/dh 
is the product of fluid density r 
and gravitational acceleration g.

Fluid element

Pressure force on the bottom
must be greater in order to
balance gravity.

1p + dp2A

pA

dh h

dFg

A

FIGURE 15.3 Forces on a fluid element in 
hydrostatic equilibrium.

(a) At what water depth is the pressure twice atmospheric pressure? 
(b) What’s the pressure at the bottom of the 11-km-deep Marianas 
Trench, the deepest point in the ocean? Take atmospheric pressure as 
101 kPa and the density of seawater as 1030 kg/m3.

INTERPRET This problem is about hydrostatic equilibrium, with wa-
ter the fluid.

DEVELOP We determine that Equation 15.3, p = p0 + rgh, applies, 
with p0 equal to the atmospheric pressure at the water surface. Then 
at twice atmospheric pressure, p = 2p0, and we can solve for h to an-
swer part (a). Because pressure increases linearly with depth, we can 
extrapolate our result for part (a) to find the answer to part (b).

EVALUATE Solving our equation for the depth h and substituting the 
given numbers in, we find for part (a):

h =
p - p0

rg
=

2.02 * 105 Pa - 1.01 * 105 Pa

11030 kg/m3219.81 m/s22 = 10.0 m

This result implies that the pressure increases by 100 kPa for every 
10 m of depth. In the Marianas Trench, 11 * 103 m deep, the pressure 
increase is then

111 * 103 m21100 kPa/10 m2 = 110 MPa

which is our answer to (b).

ASSESS This is over a thousand times atmospheric pressure, or more 
than 8 tons per square inch! Creatures living at these depths are in 
pressure equilibrium with their surroundings. To bring them to the 
surface for study, scientists must maintain their natural pressure or 
they’ll explode. A similar plight awaits scuba divers who hold their 
breath while ascending; air in the lungs expands, bursting the alveoli. 
Problem 64 involves film producer James Cameron’s 2012 dive to the 
bottom of the Marianas Trench.

EXAMPLE 15.1 Calculating Pressure: Ocean Depths

Measuring Pressure
Figure 15.4 shows a barometer, in which air pressure acts on the open pool of mercury, 
pushing the liquid into the evacuated tube. Since p0 = 0 in the vacuum at the top of the 
tube, Equation 15.3 becomes simply p = rgh, showing that the height h of the mercury 
is directly proportional to atmospheric pressure p. Standard atmospheric pressure of 101.3 
kPa supports a mercury column 760 mm or 29.92 in. high. Pressure varies slightly with 
meteorological conditions, and weather forecasters regularly report atmospheric pressure 
in millimeters or inches of mercury. Mercury’s high density makes for a reasonable-sized 
barometer. Example 15.1 shows that a water-filled barometer would need to be 10 m long!

A manometer is a U-shaped tube filled with liquid and used to measure pressure dif-
ferences. A pressure difference between the two ends results in a height difference h be-
tween the liquid surfaces (Fig. 15.5, next page). Equation 15.3 shows that h is directly 
proportional to the pressure difference.

Barometers and manometers are the classic pressure-measuring instruments, and un-
derstanding them will help you grasp the meaning of pressure. But pressure-measuring 
devices today are usually electronic, using the pressure force to alter electrical properties 
and produce an electrical signal proportional to pressure.

A vacuum
has zero pressure, so
po = 0 at the mercury’s
surface in the tube.

cand pushes mercury
up the tube until the
mercury’s weight balances
the pressure force.

Atmospheric pressure 
presses on surface c

760 mm

Vacuum

Mercury

patmosphere

FIGURE 15.4 A mercury barometer.
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15.2 Hydrostatic Equilibrium 277

The term gauge pressure describes the excess pressure above atmospheric. Inflation 
instructions for tires and sports equipment specify gauge pressure. A tire inflated to 200 
kPa (about 30 psi) has an absolute pressure of about 300 kPa because of the additional 
100-kPa atmospheric pressure.

Pascal’s Law
Equation 15.3 shows that an increase in surface pressure p0 results in the same pressure in-
crease throughout the fluid. More generally, a pressure increase anywhere is felt through-
out the fluid—a fact known as Pascal’s law. Pascal applied this principle in his invention 
of the hydraulic press. Today hydraulic systems, based on Pascal’s law, control machinery 
ranging from brakes in motor vehicles and some bicycles to aircraft wings, bulldozers, 
cranes, and robots.

Points at the
same depth in
the fluid have
the same 
pressure p.

h is proportional to the pressure difference
between fluid and atmosphere.

patmosphere

Mercury, water,
or other liquid

Fluid
under
pressure h

FIGURE 15.5 A manometer used to 
 measure the pressure difference between 
a closed container and the atmosphere.

In the hydraulic lift of Fig. 15.6, a large piston supports a car; the total mass of car and piston is 
3200 kg. What force must be applied to the smaller piston to support the car?

INTERPRET We interpret this as a problem involving Pascal’s law. Whatever pressure results 
from the force on the smaller piston is transmitted through the fluid to the larger piston and 
thus supports the car.

DEVELOP We’re given a drawing. Having determined that Pascal’s law applies, and neglect-
ing pressure variations with depth, we conclude that the pressure is the same throughout the 
system. Our plan, then, is to write expressions involving the pressures at both pistons and use 
the fact that they’re equal to solve for the unknown force. We’ll use the fact that the pressure on 
a piston is the applied force divided by the piston’s area.

EVALUATE The small piston exerts a pressure p = F1/A1 = F1/pR1
2, where F1 is the unknown 

force. The pressure at the large piston is the same and produces a force F2 = pA2. This force 
supports the weight mg of piston and car; therefore, we have

mg = pA2 = ppR2
2 =

F1

pR1
2 pR2

2 = F1a
R2

R1
b

2

Solving for F1 gives our answer:

F1 = mg aR1

R2
b

2

= 13200 kg219.8 m/s22  a 15 cm
120 cm

b
2

= 490 N

We used the diameters from Fig. 15.3, rather than the radii, because their ratio is the same.

ASSESS How can a 490-N force—about 100 lb—support the car? Through the constant fluid 
pressure, this smaller force is effectively multiplied by the ratio of the piston areas. What about 
energy? Do we get something for nothing here? GOT IT? 15.2 explores this question.

EXAMPLE 15.2 Applying Pascal’s Law: A Hydraulic Lift

120 cm
15 cm

F1

FIGURE 15.6 A hydraulic lift.
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278 Chapter 15 Fluid Motion

15.3 Archimedes’ Principle and Buoyancy
LO 15.3 Use Archimedes’ principle as it applies to floating and 

submerged objects.

Why do some objects float while others sink? Figure 15.7a shows the upward pressure 
force on an arbitrary fluid volume balancing the downward gravitational force. Now imag-
ine replacing the fluid volume with a solid object of identical shape (Fig. 15.7b). The 
remaining fluid hasn’t changed, so it continues to exert an upward force on the object—a 
force whose magnitude equals the weight of the original fluid volume. This force is the 
buoyancy force, and in giving its magnitude we’ve stated Archimedes’ principle: The 
buoyancy force on an object is equal to the weight of the fluid displaced by the object.

If the submerged object weighs more than the displaced fluid, then the gravitational 
force exceeds the buoyancy force and the object sinks. If the object weighs less than the 
displaced fluid, buoyancy is greater and the object rises. Therefore, an object floats or 
sinks depending on whether its average density is greater than or less than that of the fluid. 
In between is the case of neutral buoyancy, when an object’s average density is the same 
as that of the fluid. The Application on this page gives examples of neutral buoyancy.

Fb
S

Fb
S

Fg
S

Fg
S

Replace the 
fluid with a 
solid object,
and the 
pressure force
doesn’t change.
But the weight
may.

(a)

(b)

This fluid is
in equilibrium,
so the pressure
force Fb 
balances
its weight Fg.

S

S

FIGURE 15.7 The buoyancy force Fb
S

 arises 
because pressure increases with depth.

15.2 If you lift the car in Fig. 15.6 by pushing down on the smaller piston, is 
the work you do (a) more, (b) less, or (c) the same work as is done on the car? 
Explain.G

O
T 

IT
?

Fish glide through the water, maintaining 
depth with little effort and rising or diving at 
will. That’s possible because they’re in neu-
tral buoyancy, with density equal to that of the 
surrounding water. The fish’s swim bladder—a 
pair of gas-filled sacs—expands and contracts 
under the influence of water pressure, main-
taining neutral buoyancy. Biologists believe 
that the lungs of terrestrial organisms may have 
evolved from the swim bladders of our ances-
tral fish. The ballast tanks of submarines serve a 
similar function to keep these vessels in neutral 
buoyancy. Analogously, the burner that’s fired 
periodically to heat the air in a hot-air balloon 
serves the same function; by introducing hot, 
lower-density air, the balloonist can keep the 
craft in neutral buoyancy or induce it to rise.

APPLICATION
Swimming  
Like a Fish

You’re setting up a raft in a swimming area, and you need to move a 60-kg concrete block on the lake 
bottom. What’s the apparent weight of the block as you lift it underwater? The density of concrete  
is 2200 kg/m3.

INTERPRET We interpret this as a problem about buoyancy; the concrete will seem to weigh less 
underwater because of the upward buoyancy force. We identify the apparent weight as the force 
you’ll need to apply to lift the block off the lake bottom.

DEVELOP Figure 15.8 is our sketch, showing gravity and the buoyancy force on the block; you’ll 
need to apply a force equal but opposite to their sum. Archimedes’ principle applies, giving a 
buoyancy force equal to the weight of water that occupies the same volume as the concrete block. 
So our plan is to find that force and compare it with the gravitational force on the block.

EVALUATE The concrete block’s mass is mc, so its weight is the gravitational force Fg = mc g. 
Its volume is Vc = mc/rc, which also equals the volume of the displaced water: Vw = Vc = mc/rc. 
Archimedes’ principle says that the weight of this displaced water is the magnitude of the 

EXAMPLE 15.3 Finding the Buoyancy Force: Working Underwater

FIGURE 15.8 What’s the apparent weight of the concrete 
block?
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15.3 Archimedes’ Principle and Buoyancy 279

Floating Objects
Archimedes’ principle still holds for a floating object. But with the object in equilibrium 
at a liquid surface, the buoyancy force now must balance the object’s weight—which will 
happen if the fluid displaced by the submerged part of the object weighs the same as the 
object. This condition determines how high in the water the object floats, as Example 15.4 
illustrates.

buoyancy force, so Fb = mwg = Vwrwg = mc g1rw/rc2. Then the 
upward buoyancy force and the downward gravitational force sum to 
give a downward force of magnitude:

 Fg - Fb = mc g - mc g arw

rc
b = mc g a1 -

rw

rc
b

 = 160 kg219.8 m/s22a1 -
1

2.2
b = 320 N

You have to apply an upward force of equal magnitude to lift the block 
off the bottom.

ASSESS This is about 70 lb—a lot more manageable than the block’s 
weight mg of nearly 600 N or about 130 lb in air. Knowing the ap-
parent weight of a submerged object would let us turn this problem 
around to determine its density. Archimedes purportedly used his 
principle in this way to find the density of the king’s crown, and thus 
show that it was not pure gold.

The average density of a typical arctic iceberg is 0.86 that of seawater. 
What fraction of an iceberg’s volume is submerged?

INTERPRET We interpret this problem also as being about buoyancy, 
but now we have a floating object with buoyancy balancing gravity. 
Only the submerged portion contributes to the buoyancy force, so the 
condition of force balance will enable us to find how much of the ice-
berg is submerged.

DEVELOP Figure 15.9 is our sketch, showing gravitational and buoy-
ancy forces of equal magnitude. Archimedes’ principle applies here 
and states that the buoyancy force is equal to the weight of water dis-
placed by the submerged portion of the iceberg. So our plan is to find 
the gravitational and buoyancy forces, and then equate their magni-
tudes to get the submerged volume. Since we’re looking for volume, 
we’ll write any masses as products of density and volume.

EVALUATE The iceberg’s weight is wice = mice g = riceVice g, where 
Vice is the volume of the entire iceberg. Only the submerged portion dis-
places water, so the volume of displaced water is Vsub, and the weight 
of the displaced water is therefore wwater = mwater g = rwaterVsub g. By 
Archimedes’ principle, wwater is equal in magnitude to the buoyancy 

force, which balances gravity when the iceberg is in equilibrium. 
Equating the two gives rwaterVsub g = riceVice g, which we solve to get

Vsub

Vice
=

rice

rwater
= 0.86

ASSESS Our result means that 86% of the iceberg’s volume is under 
water, leaving only 14% showing. Tip of the iceberg, indeed! Note 
that the volume ratio is just the density ratio rice  

/rwater, showing that 
the closer an object’s density is to that of water, the lower it floats.

EXAMPLE 15.4 Floating Objects: The Tip of the Iceberg
Worked Example with Variation Problems

FIGURE 15.9 How much of the iceberg is submerged?

CONCEPTUAL EXAMPLE 15.1 The Shrinking Arctic

Arctic sea ice is melting rapidly as a result of global warming. Does 
this contribute to rising sea levels?

EVALUATE Your first answer might be “yes,” but think again! 
Archimedes’ principle tells us that the floating ice displaces a volume of 

water whose weight is equal to that of the entire ice—although only the 
submerged portion does the displacing. When the ice melts, it becomes wa-
ter that, because it no longer sticks above the surface, displaces a volume 
equal to its entire weight. But since the weight hasn’t changed, the amount 
of water displaced is the same. That means the water level is unchanged.

(continued)
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(a)

(b)

CM

CM

CB

CB

With CB above
CM, torque
tends to right
the boat.

With CB below
CM, torque
tips the boat.

FIGURE 15.10 A boat’s stability requires 
the center of buoyancy (CB) to be above 
the center of mass (CM).

Flow speed is higher
where streamlines 
are closer.

FIGURE 15.11 Streamlines represent flow 
velocity in a river.

EVALUATE As this conceptual example shows, melting sea ice 
won’t contribute to sea-level rise, but land-based ice will add wa-
ter to the oceans. Its volume will be about 86% that of the ice (see 
Example 15.4), or about 2.6 million km3. With oceans covering 
about 71% of Earth’s surface area (4pRE

2, where RE is Earth’s ra-
dius), the meltwater will spread in a layer of thickness d and there-
fore volume V = 10.71214pR 2

E 2d. Setting this quantity equal to 
the 2.6 * 1015@m3 volume of meltwater and solving for d then gives 
d = 7 m—enough to inundate most of today’s coastal cities.

Center of Buoyancy
The buoyancy force acts not at the center of mass of a floating object but at the center of 
mass of the water that would be there if the object weren’t. This point is called the center 
of buoyancy, and for an object to float in stable equilibrium, the center of buoyancy must 
lie above the center of mass. Otherwise, a net torque results that tends to tip the object. The 
stability of watercraft depends critically on this condition (Fig. 15.10).

15.3 The density of a rubber ball is three-fifths that of water. When placed in water, 
will the ball (a) float with less than half of it out of the water, (b) float with more 
than half of it out of the water, or (c) sink?
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15.4 Fluid Dynamics
LO 15.4 Apply conservation of mass and energy in fluid dynamics.

We now turn our attention to moving fluids, described by the flow velocity at each point 
in the fluid and at each instant of time. We illustrate flow velocity by drawing contin-
uous lines called streamlines that are everywhere tangent to the local f low direction  
(Fig. 15.11). Their spacing is a measure of flow speed, with closely spaced streamlines 
indicating higher speed. Small particles introduced into moving fluids follow streamlines 
and therefore give a visual indication of the flow velocity pattern.

In steady flow, the pattern of f luid motion remains the same at each point, even 
though individual f luid elements are in continuous motion. A river in steady f low 
always looks the same, even though you’re not seeing the same water each time you 
look. At a given point, the water velocity is always the same. Unsteady flow, in 
 contrast, involves f luid motion that changes with time. Blood f low in your arteries 
is unsteady; with each contraction of the heart ventricles, the pressure rises and the 
f low velocity increases. We’ll restrict our quantitative description of f luid motion to 
steady flow.

Like all other motion in classical physics, fluid motion is governed by Newton’s laws. 
It’s possible to write Newton’s second law in a form that explicitly involves the fluid ve-
locity as a function of position and time. But the resulting equation is difficult to solve in 
any but the simplest cases. Instead of applying Newton’s law directly, we’ll approach fluid 
dynamics using energy conservation.

ASSESS Melting ice doesn’t contribute to sea-level rise—as long as 
it’s sea ice that melts. Land ice is a different story: Melting glaciers and 
“calving” of glaciers to form icebergs together cause about half of con-
temporary sea-level rise. Thermal expansion, which we’ll explore in 
Chapter 17, causes the rest. According to the Intergovernmental Panel 
on Climate Change, these two processes are expected to  result in sea-
level rise in the range of 50 cm to more than 1 m by the year 2100.

MAKING THE CONNECTION The land-based Greenland ice cap oc-
cupies some 3 million km3, while some 15,000 km3 of ice are afloat in 
the Arctic Ocean. Compare the approximate rise in the world’s oceans 
that would result from complete melting of these two ice volumes.
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15.4 The photo shows smoke particles 
tracing streamlines in a test of a car’s 
aerodynamic properties. Is the flow speed 
greater (a) over the roof or (b) over the 
hood?
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A1r1

v1∆t A2

r2

v2∆t

v2
u

v1
u

Two nearby streamlines
define a flow tube.

These fluid elements have the 
same mass, so they take the same
time ∆t to enter and exit the tube.

(a)

(b)

FIGURE 15.12 In steady flow, fluid enters 
and leaves a flow tube at the same rate.

Conservation of Mass: The Continuity Equation
In mechanics we had no trouble keeping track of the individual objects. But a fluid is con-
tinuous and deformable, so it’s not easy to follow an individual fluid element as it moves. 
Yet fluid is conserved; as it moves, new fluid is neither created nor destroyed.

Consider a steady fluid flow represented by streamlines, as shown in Fig. 15.12a. We 
shaded a flow tube—a small tubelike region bounded on its sides by streamlines and on 
its ends by areas at right angles to the flow. The flow tube has a sufficiently small cross 
section that fluid velocity and other properties don’t vary significantly over any cross sec-
tion; however, fluid properties may vary along the flow tube. Although our flow tube has 
no physical boundaries, it nevertheless acts like a pipe because fluid flows along, not 
across, the streamlines. In steady flow, the rate at which fluid enters the tube at its left end 
must equal the rate at which it exits at the right.

Figure 15.12b shows a small fluid element just about to enter the flow tube, a process 
that will take some time ∆t. Suppose the fluid is moving at speed v1; since it takes time 
∆t to cross the tube end, its length is v1 ∆t. With cross-sectional area A1, length v1 ∆t, and 
density r1, the mass of the entering fluid is m = r1A1v1 ∆t.

Another fluid element is shown just about to leave the tube. Suppose it has the same 
mass m as the entering fluid element. Then it must exit the tube in the same time ∆t in or-
der to keep the total mass in the tube constant. Its mass can be written as m = r2A2v2 ∆t.

Equating our two expressions for m shows that r1v1A1 = r2v2A2. Since the endpoints 
of the tube are arbitrary, we conclude that the quantity rvA must have the same value any-
where along the flow tube:

 rvA = constant along a flow tube acontinuity equation,
any fluid b  (15.4)

Equation 15.4 is the continuity equation, which expresses the conservation of mass in 
steady fluid flow. The units of rvA here are 1kg/m321m/s21m22, or simply kg/s. This quan-
tity is therefore the mass flow rate or mass of fluid per unit time passing through the flow 
tube. Equation 15.4 says that the mass flow rate is constant in steady flow.

For a liquid, the density r is constant, and the continuity equation becomes simply

 vA = constant along a flow tube acontinuity equation,
liquid b  (15.5)

Now the constant quantity is just vA, with units of 1m/s21m22, or m3/s. This is the volume 
flow rate. Equation 15.5 makes sense: Where a liquid’s cross-sectional area is large, it 
flows slowly to transport a given volume of fluid per unit time. But in a constricted area, 
it must flow faster to carry the same volume. With a gas, obeying Equation 15.4 but not 
necessarily 15.5, the situation is slightly more ambiguous because density variations also 

The mass flow rate, in kg/s, at which fluid 
crosses a given area A is the product of fluid 
density r, flow velocity v, and area A.

For steady flow, conservation of mass dictates 
that the mass flow rate can’t change along a 
flow tube.

vA is the volume flow 
rate, in m3/s.

Because a liquid’s density doesn’t vary, conservation  
of mass implies that the volume flow rate is constant for 
a liquid.

¯̆˙
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282 Chapter 15 Fluid Motion

play a role. For flow speeds below the speed of sound in a gas, it turns out that smaller 
area implies a higher flow speed just as for a liquid. But when the gas flow speed exceeds 
the sound speed, density changes become so great that flow speed actually decreases with 
smaller area.

v1
u

v2
u

This is the
same fluid
element. y2A2 p2A2

y1

∆x2

p1A1

∆x1

A1

FIGURE 15.13 A flow tube showing the 
same fluid element entering and leaving. 
The work done by pressure and gravita-
tional forces equals the change in kinetic 
energy of the fluid element.

EXAMPLE 15.5 Using the Continuity Equation: Ausable Chasm

The Ausable River in upstate New York is about 40 m wide. Under 
typical early summer conditions, it’s 2.2 m deep and flows at 4.5 m/s. 
Just before it reaches Lake Champlain, the river enters Ausable 
Chasm, a deep gorge only 3.7 m wide. If the flow rate in the gorge 
is 6.0 m/s, how deep is the river at this point? Assume a rectangular 
cross section with uniform flow speed.

INTERPRET The concept behind this problem is mass conservation, 
embodied in the continuity equation for a liquid, Equation 15.5. Since 
the flow is uniform over the river’s cross section, we can treat the en-
tire river as a single flow tube.

DEVELOP Equation 15.5 says that the product vA is constant. For the 
river’s rectangular cross section, the area A is the product of width 

w and depth d. Then Equation 15.5 becomes v1w1d1 = v2w2d2, where 
the subscripts indicate values upstream and in the gorge. Our plan is to 
solve for the depth d2 in the gorge.

EVALUATE Solving gives

d2 =
v1w1d1

v2w2
=

14.5 m/s2140 m212.2 m2
16.0 m/s213.7 m2 = 18 m

ASSESS This is about 60 feet, quite a depth for a small river! But 
conservation of mass requires it. In the gorge, the river is much nar-
rower but its flow speed is only a little higher, so it’s got to be a lot 
deeper.

Conservation of Energy: Bernoulli’s Equation
We now turn to conservation of fluid energy. Figure 15.13 shows the same fluid element 
as it enters and again as it leaves a flow tube. If it enters with speed v1 and leaves with 
speed v2, the change in its kinetic energy is

∆K = 1
2 m1v2

2 - v1
22

The work–kinetic energy theorem (Equation 6.14) equates this change to the net work done 
on the fluid element. As the element enters the tube, it’s subject to a pressure force p1A1 
from the fluid to its left. This external force acts over the length ∆x1 of the fluid element as 
it enters, so it does work W1 = p1A1 ∆x1. Similarly, as it leaves the tube, the fluid element 
experiences a force p2A2 from the fluid to its right. Because this force is opposite the flow 
direction, it does negative work W2 = -p2A2 ∆x2. External forces from adjacent flow tubes 
act at right angles to the flow, so they do no work. Finally, the fluid element rises a distance 
y2 - y1 as it traverses the tube; therefore, gravity does negative work Wg = -mg1y2 - y12. 
Summing these three contributions and applying the work–kinetic energy theorem, we 
have W1 + W2 + Wg = ∆K, or p1A1 ∆x1 - p2A2 ∆x2 - mg1y2 - y12 = 1

2  m1v2
2 - v1

22. 
The quantities A1 ∆x1 and A2 ∆x2 are the volumes of the fluid element as it enters and 
leaves the flow, respectively. If we restrict ourselves to incompressible fluids, then those 
volumes are equal. Dividing through by this common volume V = A ∆x and noting that 
m/V = r, we get p1 + 1

2 rv1
2 + rgy1 = p2 + 1

2 rv2
2 + rgy2, or

 p + 1
2 rv2 + rgy = constant along a flow tube 1Bernoulli>s equation2 (15.6)

This is Bernoulli’s equation, after the Swiss mathematician Daniel Bernoulli (1700–1782).
What do the terms in Bernoulli’s equation mean? The quantity 1

2 rv2 looks like kinetic 
energy 1

2 mv2, except it has mass per unit volume r instead of mass m. It’s therefore the 

Pressure p is a measure of 
internal energy per unit 
 volume of fluid.

Absent any mechanisms that add or 
remove energy, the sum of the three 
terms remains unchanged.

This term is the kinetic energy 
per unit volume in the fluid 
 flowing with speed v…

… and this is the gravitational potential 
energy per unit volume when the fluid 
is at vertical position y.

¯̆ ˙ ¯̆ ˙
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kinetic energy per unit volume, or kinetic-energy density. Similarly, rgy is the gravita-
tional potential energy per unit volume. Pressure p, too, has the units of energy density and 
represents internal energy of the fluid. Bernoulli’s equation therefore says that the total 
energy per unit volume of fluid is conserved as the fluid moves.

Bernoulli’s equation in the form 15.6 applies to incompressible fluids. It neglects fluid 
friction, also called viscosity, that may dissipate fluid kinetic energy. It also neglects en-
ergy transfers associated with machinery such as turbines or pumps that may extract or 
add to the fluid’s energy. Engineers often include those effects in Bernoulli’s equation.

15.5 Applications of Fluid Dynamics
LO 15.5 Apply Bernoulli’s principle to applications in fluid dynamics.

The laws of mass and energy conservation that we just derived for fluids allow us to ana-
lyze a wide variety of natural and technological phenomena. We’ll usually need both the 
continuity equation and Bernoulli’s equation, considering the values of the appropriate 
constant quantities at two points in a fluid flow. As you study the examples and applica-
tions that follow, remember that they’re ultimately based in the same Newtonian principles 
we’ve been using to describe mechanical systems.

The continuity equation and Bernoulli’s equation are the keys to solving problems in fluid 
dynamics. Here’s a strategy that will help you focus these two equations on a problem.

INTERPRET The form of Bernoulli’s equation we derived applies only to incompressible flu-
ids. So be sure you’re dealing either with a liquid or with a gas flowing at speeds well below 
its sound speed.

DEVELOP
• Identify a flow tube. This may be a physical pipe or other structure, or a mathematical tube 

bounded by streamlines.
• Draw a sketch of the situation, showing the flow tube.
• Determine the point where you’re interested in solving for some aspect of the flow, and 

another point where you know the quantities that go into the continuity equation and Ber-
noulli’s equation. Note those quantities that you know at each point. Mark the two points 
on your sketch.

• Write the continuity equation and Bernoulli’s equation, with the known quantities forming 
the terms on one side and the other side containing your unknown(s).

EVALUATE Evaluate by solving your equations for the unknown quantity or quantities. Often 
this will involve solving the continuity equation first and then using the result in Bernoulli’s 
equation.

ASSESS Ask whether your result makes sense. Does flow speed increase at a constriction? 
Does pressure go up when flow speed drops, or vice versa? Are there any limitations that ap-
ply, or insights to be gained?

PROBLEM-SOLVING STRATEGY 15.1 Fluid Dynamics

A large, open tank is filled to height h with liquid of density r. Find 
the speed of liquid emerging from a small hole at the base of the tank.

INTERPRET We’re dealing with a f low of water, an incompress-
ible liquid. So we can apply our problem-solving strategy for fluid 
dynamics.

DEVELOP We take the tank to be a rather oddly shaped flow tube, 
and Fig. 15.14 is our sketch. We’re interested in the water’s velocity 
at the hole, so the hole is one of the points we’ll use in the fluid equa-
tions. Since the hole is open to the atmosphere, the pressure at the 
hole is atmospheric pressure pa. The top surface is also open to the 

EXAMPLE 15.6
Bernoulli’s Equation: Draining a Tank
Worked Example with Variation Problems

A car speedometer works by counting rotations 
of its wheels as they turn on the road. But air-
planes can’t do that; instead, they use Bernoulli’s 
principle to measure airspeed—the plane’s speed 
relative to the air. The device that accomplishes 
this is a Pitot tube, which samples the pressure 
of air moving past the plane, as well as the pres-
sure of air that’s been stopped relative to the 
plane. Bernoulli’s equation relates the difference 
of the two pressures to the relative speed of the 
air and plane, providing the pilots with a direct 
indication of their airspeed. Knowing the wind 
speed—often substantial at aircraft altitudes—
then lets the plane’s computers determine the 
speed relative to the ground. The photo shows 
a pair of external Pitot tubes on an aircraft fu-
selage. You can explore the physics of the Pitot 
tube in Problem 68, where you’ll also find a sim-
plified diagram of the device.

APPLICATION
An Airplane 
Speedometer

(continued)
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284 Chapter 15 Fluid Motion

Venturi Flows and the Bernoulli Effect
A constriction in a pipe carrying incompressible fluid requires that the flow speed increase 
in order to maintain constant mass flow. Such a constriction is a venturi. Because of the 
increased speed, Bernoulli’s equation requires the pressure to be lower in the venturi. The 
next example shows how this effect provides a measure of fluid flow.

atmosphere, so here the pressure is also pa. Now, because the hole is 
very small in relation to the tank, the water level drops only slowly. 
Therefore, we can make the approximation v = 0 at the top—and 
thus we know both p and v at the top. Although we didn’t write a 
formal equation here, that approximation follows from the continuity 
equation because the ratio of hole to top surface area is so small. We 
also need the potential-energy terms in Bernoulli’s equation. If we 
take y = 0 at the hole, then those terms are zero at the hole and rgh 
at the top. Then Bernoulli’s equation, p + 1

2 rv2 + rgy = constant, 
becomes

pa + rgh = pa + 1
2 rvhole

2

where the terms on the left are at the top surface and those on the right 
are at the hole. We’ve taken care of the continuity equation through 
our assumption of negligible flow speed at the top.

EVALUATE Atmospheric pressure cancels, and we solve for the un-
known flow velocity at the hole:

vhole = 12gh

ASSESS This is the same result we would get by dropping an object from 
a height h—and for the same reason: conservation of energy. Draining 
a gram of water from the hole is energetically equivalent to removing a 
gram of water from the top and dropping it. Just as the speed of a falling 
object is independent of its mass, so the speed of the liquid is independent 
of its density. As the liquid drains, however, the height decreases and so 
does the flow rate. That’s a calculus challenge you can try in Problem 71.

REASONABLE APPROXIMATIONS Making reasonable 
approximations is often important in solving realistic 
problems. Look for opportunities to approximate a physical 
quantity, especially when other terms appear more significant. 
But always be sure that your approximations are reasonable. 
In this example, we reasoned that the fluid’s speed at the top 

of the tank was negligible because it’s proportional to the ratio of the 
hole area to the top surface area, a very small value.

The surface area at
the top is much larger
than at the hole, so up
here fluid is hardly
moving.

FIGURE 15.14 How fast does the liquid emerge from the tank?

An incompressible fluid of density r flows through a horizontal pipe 
of cross-sectional area A1. The pipe has a venturi constriction of area 
A2, and a gauge measures the pressure difference ∆p between the un-
constricted pipe and the venturi. Find an expression for the flow speed 
in the unconstricted pipe.

INTERPRET This is a problem about incompressible fluid flow, so 
our strategy applies.

DEVELOP For a f low tube, we choose a section of pipe that in-
cludes the venturi. Figure 15.15 is a sketch showing some stream-
lines through this tube. We’re interested in the flow velocity in the 
unconstricted pipe, so any point outside the venturi will do. The other 
point should be in the venturi. The continuity equation then reads 
v1A1 = v2A2, where the subscript 1 refers to the unconstricted pipe 
and 2 to the venturi. The pipe is horizontal, so the potential-energy 
term rgh in Bernoulli’s equation is the same on both sides, and it 
drops out. Bernoulli’s equation then reads

p1 + 1
2 rv1

2 = p2 + 1
2 rv2

2

EVALUATE We can eliminate the velocity v2 by solving the con-
tinuity equation: v2 = 1A1/A22v1 = bv1, where we defined b as 

the ratio of the larger to smaller area: b = A1/A2. Using this re-
sult in Bernoulli ’s equation gives p1 + 1

2 rv1
2 = p2 + 1

2 rb2v1
2. 

In terms of the pressure difference ∆p = p1 - p2, this becomes 
∆p = 1

2 rb2v1
2 - 1

2 rv1
2 = 1

2 rv1
21b2 - 12. We then solve for v1 to get 

our answer:

v1 = A 2 ∆p

r1b2 - 12

EXAMPLE 15.7 Measuring Flow Speed: A Venturi Flowmeter

Gauge measures ∆p.

FIGURE 15.15 Our sketch of a venturi flowmeter.
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The occurrence of lower pressure with higher f low speeds, and vice versa—the 
Bernoulli effect—has numerous manifestations. The dirt around a prairie dog’s hole is 
mounded up in a way that forces wind to accelerate over the hole, resulting in lower pres-
sure above the hole. Biologists speculate that prairie dogs have evolved this design to pro-
vide natural ventilation (Figure 15.16). The Bernoulli effect is often invoked to explain 
a number of striking and counterintuitive demonstrations involving fluid flow. Because 
Bernoulli’s principle is based in the fundamental physics of energy conservation, there’s 
often a grain of truth in these Bernoulli-based explanations. But other fluid phenomena, 
including interaction of fluid flows with curved surfaces, are also involved. Ultimately, all 
phenomena involving forces on objects in fluid flows are manifestations of Newton’s third 
law—a point we’ll make explicit in the next section.

ASSESS Make sense? The pressure difference results from the 
change in speed; no flow, no pressure difference. So it’s reasonable 
that v increases with ∆p. But a given pressure difference ∆p is easier 
to get with a larger area ratio b, so flow speed depends inversely on b.  

Finally, the greater inertia of a denser fluid means a given pressure 
difference produces less acceleration, implying a lower initial speed; 
that’s why r appears in the denominator.

Low v, high p
High v, low p

FIGURE 15.16 Streamlines show higher wind speed and therefore lower pressure over a prairie 
dog burrow. Might this be a way of providing natural ventilation for the burrow?

Flight and Lift
Airplanes, helicopters, and birds fly using forces resulting from their dynamic interaction 
with the air. Hydrofoil boats, water skis, and sailboards have analogous interactions with 
water. Projectiles such as baseballs, though not supported by the air, have their trajectories 
substantially modified by aerodynamic forces.

One of the simplest examples of aerodynamic lift is the helicopter (Fig. 15.17). Its 
whirling blades are shaped and tilted so they force air downward as they move, just like a 

15.5 A large tank is filled with liquid to the level h1 shown in the figure. It drains 
through a small pipe whose diameter varies; emerging from each section of pipe are 
vertical tubes open to the atmosphere. Although the picture shows the same liquid 
level in each pipe, they really won’t be the same. Rank levels h1 through h4 in order 
from highest to lowest.

h1 h2 h3 h4
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286 Chapter 15 Fluid Motion

giant fan. By Newton’s third law, the air exerts an upward force on the blades, ultimately 
supporting the helicopter. An airplane wing works in the same way, except that it moves 
forward in a straight line instead of describing a circle. Wings are shaped to maximize the 
downward deflection of the air even with the wing horizontal, but in principle even a flat 
board would function as a wing if it were tilted to the oncoming air. Figure 15.18 shows 
the airflow around a wing. Note how the flow, initially horizontal, leaves the wing moving 
downward—a clear indication that the wing has exerted a downward force on the air. The 
third law requires a corresponding upward force, and that’s what supports the plane.

Baseball’s “curve ball” provides another example of aerodynamic lift. Figure 15.19a 
is a top view of the airflow around a baseball that’s not spinning; the flow is symmetric 
and the air isn’t deflected. But if the ball spins as shown in Fig. 15.19b, air is dragged 
around the ball and deflected. A corresponding third-law force then acts on the ball, curv-
ing its path.

Bernoulli’s equation is frequently invoked to explain lift forces. It’s true, as Figs. 15.18 
and 15.19b suggest, that flow speeds are higher, and therefore—according to Bernoulli’s 
equation—pressures are lower on top of a wing or on one side of a spinning ball. Forces 
associated with that pressure difference provide the lift, so Bernoulli can help explain 
what’s going on. But those pressure differences are manifestations of a simpler underlying 
phenomenon—namely, the paired forces of Newton’s third law.

Airflow

By Newton’s third law,
air pushes up on blades
when c

cblades push down 
on air.

FIGURE 15.17 Newton’s third law explains 
the helicopter’s flight.

F
S

The wing deflects the air
downward c

cso the air exerts an 
upward force on the wing.

FIGURE 15.18 Flow past a wing.

F
SSymmetric flow;

air undeflected

Air deflected;  third-law
force on ball

(a) (b)

FIGURE 15.19 Top views of airflow around a baseball: (a) no spin; (b) spinning, resulting in 
a curve ball.

Wind turbines extract kinetic energy from moving air. In a wind with speed v, 
Bernoulli’s equation shows that the air has kinetic-energy density 12 rv2. A chunk 
of air that passes through a wind turbine in time ∆t has length v ∆t and volume 
vA ∆t, where A is the area swept out by the blades. The kinetic energy in this vol-
ume is the energy density times the volume: ∆K = 11

2 rv221vA ∆t2 = 1
2 rv3A ∆t. 

Dividing by A ∆t gives the energy per time per unit area—that is, the power per 
unit area available from the wind:

wind power per unit area = 1
2 rv3

Unfortunately, we can’t extract all this energy because then the air would 
come to a complete stop behind the turbine, halting the flow. A careful analysis 
shows that the maximum rate for wind-energy extraction is 8

27 rv3, about 59% of 
the wind’s energy. Given air’s density of 1.2 kg/m3, this means a 10@m/s wind 
amounts to some 350 W/m2. The factor v3 shows that the available power in-
creases rapidly at higher speeds. The best practical wind turbines can achieve 
about 80% of the theoretical maximum. Wind is the fastest-growing component 
of the world’s energy supply, and in some European countries it provides as 
much as 20% of the electrical energy.

APPLICATION Wind Energy
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Summary 287

15.6 Viscosity and Turbulence
LO 15.6 Qualitatively describe the roles of viscosity and turbulence.

Moving fluid interacts with the surfaces it contacts, resulting in a kind of fluid friction 
called viscosity. Viscosity also results from the transfer of momentum among adjacent 
layers within a fluid. Viscosity is especially important right near fluid boundaries because 
viscous forces bring the fluid to a complete stop at the boundary (Fig. 15.20). This bound-
ary effect produces drag forces on objects moving through fluids—but it’s the same drag 
at the surfaces of airplane and ship propellers that exerts a force on the fluid. Without vis-
cosity, propellers would spin uselessly and planes and ships would go nowhere.

Viscosity depends on fluid properties and dimensions. Honey is more viscous than wa-
ter, but at the tiny scales of a human capillary or a bacterium wiggling its flagella for 
propulsion, water too can be extremely viscous. Viscosity is also important in stabilizing 
flows that would otherwise become turbulent, or chaotically unsteady. Turbulence results 
from the growth of waves that gain energy at the expense of the flow, turning a smooth 
flow into a chaotic mess (Fig. 15.21). Turbulence is still not fully understood and presents 
ongoing challenges to scientists and engineers.

FIGURE 15.21 Smooth flow becomes 
turbulent, shown here in a column of 
rising smoke.

Right at wall, fluid is at rest.

(a)

(b)

FIGURE 15.20 Velocity profiles in 
flows that are (a) inviscid (without 
viscosity) and (b) viscous.

Fluid is matter that readily deforms and flows under the influence of forces. 
Pressure, density, and flow velocity characterize fluids. Liquids and slowly 
moving gases are incompressible, meaning their density is essentially con-
stant. A fluid that isn’t moving is in hydrostatic equilibrium. In the presence 
of gravity, equilibrium requires that fluid pressure increase with depth.

Big Idea

SummaryChapter 15

A solid
maintains its shape.

A liquid takes
the shape of its container.

Increasing
p

A gas fills
a closed container.

(continued)
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288 Chapter 15 Fluid Motion

Key Concepts and Equations
Pressure is the force per unit area: p = F/A. 
The pressure in a fluid exerts itself equally 
in all directions.

p

Streamlines represent a moving fluid.

Closely spaced:
high v

Widely spaced:
low v

Flow tube

The continuity equation describes the conservation of mass along a flow tube:

 rvA = constant 1any fluid2
 vA = constant 1incompressible fluid2

Applications

Archimedes’ principle states that the buoyancy force F
S

b due to 
pressure on an object has the same magnitude as the weight of the 
displaced fluid. For an object less dense than a fluid, the buoyancy 
force exceeds gravity and the object floats; otherwise, it sinks or is in 
neutral buoyancy.

Here r 6 rfluid
and Fb 7 Fg, so
the object rises.

Floating: 
Submerged volume
displaces water
whose weight equals
object’s weight.

Fb
S

Fg
S

Fb
S

Fg
S

Bernoulli’s principle helps explain lift forces, although ultimately 
these are based in Newton’s third law.

F
S

High v, low p

Low v, high p

Wing

Net upward 
pressure force
on wing

Wing deflects air
downward;  Newton’s
third law gives upward
force on wing.

Bernoulli’s equation describes the conservation of energy:

p + 1
2 rv2 + rgy = constant 1incompressible fluid, neglecting viscosity2

Viscosity, or f luid friction, is especially important 
when fluids interact with solid objects.

Mastering Physics
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Go to www.masteringphysics.com to access assigned homework and self-study tools such as 
Dynamic Study Modules, practice quizzes, video solutions to problems, and a whole lot more!

Learning Outcomes After finishing this chapter you should be able to:

LO 15.1 Characterize fluids by density and pressure.
For Thought and Discussion Questions 15.1, 15.2; Exercises 
15.11, 15.12, 15.13, 15.14, 15.15, 15.16, 15.21; Problems 
15.40, 15.41, 15.42, 15.67, 15.77

LO 15.2 Describe how fluid pressure varies in hydrostatic equilibrium.
For Thought and Discussion Questions 15.3, 15.6, 15.7; 
Exercises 15.17, 15.18, 15.19, 15.20, 15.22; Problems 
15.43, 15.44, 15.45, 15.46, 15.47, 15.63, 15.64, 15.65, 
15.72, 15.73, 15.74, 15.75, 15.76, 15.78

LO 15.3 Use Archimedes’ principle as it applies to floating and  
submerged objects.

For Thought and Discussion Questions 15.4, 15.5, 15.8, 
15.9; Exercises 15.23, 15.24, 15.25, 15.26; Problems 15.48, 
15.49, 15.50, 15.51, 15.52, 15.53, 15.54, 15.60, 15.70, 15.79

LO 15.4 Apply conservation of mass and energy in fluid dynamics.
Exercises 15.27, 15.28, 15.29, 15.30, 15.31; Problem 15.66

LO 15.5 Apply Bernoulli’s principle to applications in fluid dynamics.
For Thought and Discussion Question 15.10; Problems 
15.55, 15.56, 15.57, 15.58, 15.59, 15.61, 15.62, 15.68, 
15.69, 15.71

LO 15.6 Qualitatively describe the roles of viscosity and turbulence.
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Exercises and Problems 289

For Thought and Discussion

1. Why do your ears “pop” when you drive up a mountain?
2. Water pressure at the bottom of the ocean arises from the weight 

of the overlying water. Does this mean that the water exerts pres-
sure only in the downward direction? Explain.

3. The three containers in Fig. 15.22 are filled to the same level and 
are open to the atmosphere. How do the pressures at the bottoms 
of the three containers compare?

15. The diamond anvil is used by scientists and engineers to study 
matter under extreme pressures, simulating conditions such as 
those found at the centers of planets. A typical anvil consists of 
two diamonds with parallel faces measuring some 200 μm in di-
ameter. The sample under study is placed between the diamonds, 
and a force is applied to the diamonds. Estimate the pressure that 
results when the force on the diamonds is 6 kN.

16. You unbend a paper clip made from 1.5-mm-diameter wire and 
push the end against the wall. What force must you apply to give 
a pressure of 120 atm?

Section 15.2 Hydrostatic Equilibrium
17. What’s the density of a fluid whose pressure increases at the rate 

of 100 kPa for every 6.0 m of depth?
18. A research submarine can withstand an external pressure of 62 MPa  

when its internal pressure is 101 kPa. How deep can it dive?
19. Scuba equipment provides a diver with air at the same pressure as 

the surrounding water. But at pressures higher than about 1 MPa,  
the nitrogen in air becomes dangerously narcotic. At what depth 
does nitrogen narcosis become a hazard?

20. A vertical tube open at the top contains 5.0 cm of oil with density 
0.82 g/cm3, floating on 5.0 cm of water. Find the gauge pressure 
at the bottom of the tube.

21. A child attempts to drink water through a 36-cm-long straw but 
finds that the water rises only 25 cm. By how much has the child 
reduced the pressure in her mouth below atmospheric pressure?

22. Barometric pressure in the eye of a hurricane is 0.91 atm (27.2 
in. of mercury). How does the level of the ocean surface under 
the eye compare with the level under a distant fair-weather region 
where the pressure is 1.0 atm?

Section 15.3 Archimedes’ Principle and Buoyancy
23. On land, the most massive concrete block you can carry is 25 kg.  

Given concrete’s 2200@kg/m3 density, how massive a block could 
you carry underwater?

24. A 5.4-g jewel has apparent weight 32 mN when submerged in 
water. Could the jewel be a diamond (density 3.51 g/cm3)?

25. Styrofoam’s density is 160 kg/m3. What percent error is intro-
duced by weighing a Styrofoam block in air (density 1.2 kg/m3), 
which exerts an upward buoyancy force, rather than in vacuum?

26. A steel drum has volume 0.23 m3 and mass 16 kg. Will it float in 
water when filled with (a) water or (b) gasoline (density 860 kg/m3)?

Sections 15.4 and 15.5 Fluid Dynamics and  
Applications
27. Water flows through a 2.5-cm-diameter pipe at 1.8 m/s. If the pipe  

narrows to 2.0-cm diameter, what’s the flow speed in the constriction?
28. Show that pressure has the units of energy density.
29. A typical mass flow rate for the Mississippi River is 1.8 * 107 kg/s. 

Find (a) the volume flow rate and (b) the flow speed in a region 
where the river is 2.0 km wide and averages 6.1 m deep.

30. A fire hose 10 cm in diameter delivers water at 15 kg/s. The 
hose terminates in a 2.5-cm-diameter nozzle. What are the flow 
speeds (a) in the hose and (b) at the nozzle?

31. A typical human aorta, the main artery from the heart, is 1.8 cm 
in diameter and carries blood at 35 cm/s. Find the flow speed 
around a clot that reduces the flow area by 80%.

Example Variations
The following problems are based on two worked examples from the 
text. Each set of four problems is designed to help you make connec-
tions that enhance your understanding of physics and to build your con-
fidence in solving problems that differ from ones you’ve seen before. 

BIO

BIO

FIGURE 15.22 For Thought and Discussion 3.

4. Why is it easier to float in the ocean than in fresh water?
5. Figure 15.23 shows a cork suspended from the bottom of a sealed 

container of water. The container is on a turntable rotating about 
a vertical axis, as shown. Explain the position of the cork.

v

FIGURE 15.23 For Thought and Discussion 5.

6. Why are dams thicker at the bottom than at the top?
7. It’s not possible to breathe through a snorkel from a depth greater 

than a meter or so. Why not?
8. A helium-filled balloon stops rising long before it reaches the 

“top” of the atmosphere, but a cork released from the bottom of a 
lake rises all the way to the surface. Why the difference?

9. A barge filled with steel beams overturns in a lake, spilling its 
cargo. Does the water level in the lake rise, fall, or remain the same?

10. Why do airplanes take off into the wind?

Exercises and Problems

Exercises
Section 15.1 Density and Pressure
11. The density of molasses is 1600 kg/m3. Find the mass of the mo-

lasses in a 0.75-L jar.
12. Atomic nuclei have densities around 1017 kg/m3, while water’s 

density is 103 kg/m3. Roughly what fraction of water’s volume is 
not empty space?

13. Compressed air with mass 8.8 kg is stored in a 0.050@m3 cylinder. 
(a) What’s the density of the compressed air? (b) What volume 
would the same gas occupy at a typical atmospheric density of 
1.2 kg/m3?

14. What’s the weight of a column of air with cross-sectional 
area 1 m2 extending from Earth’s surface to the top of the 
atmosphere?
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290 Chapter 15 Fluid Motion

The first problem in each set is essentially the example problem but with 
different numbers. The second problem presents the same scenario as 
the example but asks a different question. The third and fourth problems 
repeat this pattern but with entirely different scenarios.

32. Example 15.4: An iceberg derived from a Greenland glacier con-
tains gravel entrained in the ice as it moved across the land before 
calving into the sea. The entrained gravel increases the iceberg’s 
density to 952 kg/m3. What fraction of the iceberg’s volume is sub-
merged when it’s floating in ocean water with density 1030 kg/m3?

33. Example 15.4: An iceberg has mass 138,000 tonnes (1 tonne 5 
1000 kg) and is composed of pure ice with density 917 kg/m3 and 
entrained gravel from rock with density 2750 kg/m3. If 95.5% of 
the iceberg’s volume is submerged, how much of its mass is ice and 
how much is rock? Take the density of seawater to be 1030 kg/m3.

34. Example 15.4: The Michelson–Morley experiment (see 
Chapter 33) was a very precise optical experiment that helped 
pave the way for Einstein’s theory of relativity. To isolate it 
from external vibrations, the entire experiment was mounted on 
a square slab of sandstone 0.30 m thick and 1.5 m on a side, with a 
mass of 1.7 tonnes (1700 kg). The slab, in turn, floated in a trough 
of liquid mercury (density 13.69 tonnes/m3). What percentage of 
the slab’s volume was below the surface of the mercury?

35. Example 15.4: Lakes on Saturn’s moon Titan are filled with 
liquid hydrocarbons—largely methane but also some ethane. 
Suppose scientists want to send a probe to explore Titan’s largest 
lake (which is about the size of Earth’s Lake Ontario). The probe 
is to be a cylinder 56.3 cm in diameter, with a mass of 135 kg, 
and it’s supposed to float with the long dimension vertical, half 
submerged and half above the lake surface. If the liquid in the 
lake has density 482 kg/m3, what should be the probe’s length?

36. Example 15.6: A large cylindrical tank is filled with water to a 
depth of 2.68 m. There’s a small-diameter pipe emerging from 
the bottom of the tank, with a valve. If you open the valve, at 
what speed will water flow from the tank?

37. Example 15.6: You’d like to determine the depth of water in a large 
tank, but you don’t have any way to measure it directly. However, 
there’s a small-diameter pipe emerging from the bottom of the tank, 
and when you open the valve on this pipe, you observe water spray-
ing out at 5.46 m/s. What’s the depth of the water in the tank?

38. Example 15.6: A sealed tank holds water to a depth of 2.68 m. 
Above the water is air, pressurized to 186 kPa. If you open a 
small hole in the bottom of the tank, exposing the water at the 
bottom to standard atmospheric pressure, at what speed will the 
water initially emerge?

39. Example 15.6: A fire extinguisher consists of a water-filled 
sealed canister with a hose whose diameter is much smaller than 
that of the canister. What should be the pressure of the water if 
it’s to emerge initially from the hose at 18.8 m/s? Assume normal 
atmospheric pressure at the hose nozzle, and neglect pressure 
variation with height inside the container.

Problems
40. When a couple with total mass 120 kg lies on a water bed, 

 pressure in the bed increases by 4700 Pa. What surface area of 
the two bodies is in contact with the bed?

41. A fully loaded Volvo station wagon has mass 1950 kg. If each of 
its four tires is inflated to a gauge pressure of 230 kPa, what’s the 
total tire area in contact with the road?

42. You’re stuck in the exit row on a long flight, and you suddenly 
worry that your seatmate, who’s next to the window, might pull the 
emergency window inward while you’re in flight. The window mea-
sures 40 cm by 55 cm. Cabin pressure is 0.77 atm, and atmospheric 
pressure at the plane’s altitude is 0.22 atm. Should you worry?

Water

2.0 cmOil
h = ?

FIGURE 15.24 Problem 45

43. A vertical tube 1.0 cm in diameter and open at the top contains 5.0 
g of oil (density 0.82 g/cm3) floating on 5.0 g of water. Find the 
gauge pressure (a) at the oil–water interface and (b) at the bottom.

44. Dam breaks present a serious risk of widespread property dam-
age and loss of life. You’re asked to assess a 1500-m-wide dam 
holding back a lake 95 m deep. The dam was built to withstand 
a force of 100 GN, which is supposed to be at least 50% over 
the force it actually experiences. Should the dam be reinforced? 
(Hint : You’ll need your calculus skills.)

45. A U-shaped tube open at both 
ends contains water and a quan-
tity of oil occupying a 2.0-cm 
length of the tube, as shown in 
Fig. 15.24. If the oil’s density is 
82% of water’s, what’s the height 
difference h?

46. You’re a robotics engineer de-
signing a hydraulic system to 
move a robotic arm. The hy-
draulic cylinder that drives the 
arm has diameter 5.0 cm and can exert a maximum force of 5.6 
kN. Hydraulic tubing comes rated in multiples of 1/2 MPa, and 
for safety, you’re to specify tubing capable of withstanding 50% 
greater pressure than it will ever experience in use. What pres-
sure rating do you specify?

47. Hydraulic brake systems are increasingly common on bicycles, 
especially those using disc brakes. The Magura MT4 brake sys-
tem, widely used on mountain bikes, has a small piston and cyl-
inder of diameter 1.04 cm connected to the brake actuation lever 
on the handlebars, and a larger 2.10-cm-diameter piston/cylinder 
that pushes the brake pads against the rotating brake disc. (a) 
What force must be applied to the smaller piston to produce a 
force of 3.25 kN on the larger piston? (b) If the smaller piston 
moves a maximum of 8.80 mm, what’s the corresponding motion 
of the larger piston? (c) How much work is done on each piston 
as they undergo the motions of part (b)?

48. Archimedes purportedly used his principle to verify that the king’s 
crown was pure gold by weighing the crown submerged in water. 
Suppose the crown’s actual weight was 25.0 N. What would be its 
apparent weight if it were made of (a) pure gold and (b) 75% gold 
and 25% silver, by volume? The densities of gold, silver, and water 
are 19.3 g/cm3, 10.5 g/cm3, and 1.00 g/cm3, respectively.

49. You’re testifying in a drunk-driving case for which a blood alco-
hol measurement is unavailable. The accused weighs 140 lb, and 
would be legally impaired after consuming 36 oz of beer. The 
accused was observed at a beach party where a keg with interior 
diameter 40 cm was floating in the lake to keep it cool. After 
the accused’s drinking stint, the keg floated 1.2 cm higher than 
before. Beer’s density is essentially that of water. Does your tes-
timony help or hurt the accused’s case?

50. A glass beaker measures 14 cm high by 5.0 cm in diameter. 
Empty, it floats in water with one-third of its height submerged. 
How many 12-g rocks can be placed in the beaker before it sinks?

51. A typical supertanker has mass 2.0 * 106 kg and carries twice 
that much oil. If 9.0 m of the ship is submerged when it’s empty, 
what’s the minimum water depth needed for it to navigate when 
full? Assume the sides of the ship are vertical.

52. A balloon contains gas of density rg and is to lift a mass M, in-
cluding the balloon but not the gas. Show that the minimum mass 
of gas required is mg = Mrg/1ra - rg2, where ra is the atmo-
spheric density.

53. (a) How much helium (density 0.18 kg/m3) is needed to lift a balloon 
carrying two people, if the total mass of people, basket, and balloon 
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Exercises and Problems 291

how high air pressure can lift the well water. Suppose a given 
 shallow-well pump can produce a partial vacuum whose pressure 
is 33.3% of standard atmospheric pressure. What’s the maximum 
well depth at which this pump will function?

64. In 2012, film producer James Cameron (Terminator, Titanic, 
Avatar) rode his submersible Deepsea Challenger to the bottom 
of the 11-km-deep Marianas Trench, the deepest spot in Earth’s 
oceans. Cameron could barely fit into Deepsea Challenger’s crew 
compartment, a steel sphere with inside diameter 109 cm and walls 
6.4 cm thick. Find the total pressure force exerted on the sphere at 
the bottom of the trench. (The total force is the sum of all pressure 
forces without regard to direction; it’s not the same as the buoy-
ancy force, which is the net pressure force—a vectorial sum.)

65. A probe descending through Mars’ atmosphere records pressure 
as a function of altitude; the data are in the table below. Plot the 
natural logarithm of the pressure versus altitude and fit a line to 
your plotted points. Mars’ atmospheric pressure is governed by 
the same equation that describes Earth’s; see Problem 72. Use 
your fitted line, in connection with that equation, to determine 
(a) Mars’ surface pressure and (b) the scale height h0.

Altitude (km) 10 20 30 40 50 60

Pressure (Pa) 242 98.7 37.6 16.2 7.21 2.38

66. Water emerges from a faucet of diameter d0 in steady, near- 
vertical flow with speed v0. Show that the diameter of the falling 
water column is given by d = d03v 2

0 /1v 2
0 + 2gh241/4, where h is 

the distance below the faucet (Fig. 15.27).

DATA

CH

(but not gas) is 280 kg? (b) Repeat for a hot-air balloon whose air 
density is 10% less than that of the surrounding atmosphere.

54. A newfangled swim float, the MaxRaft by WaterMat, measures 
1.8 m *  2 .4 m and is only 10 cm thick. Its mass is 20 kg. How 
many 50-kg children can the float accommodate before the water 
comes over its top surface? Assume the float stays perfectly level.

55. If the blood pressure in the unobstructed artery of Exercise 31 is 16 kPa 
gauge (about 120 mm of mercury, the unit commonly reported by doc-
tors), what will it be at the clot? (Note : Blood’s density is 1.06 g/cm3.)

56. You’re a consultant for maple syrup producers. They tap ma-
ple trees and collect sap with plastic tubing that connects to a 
common pipe delivering sap to an evaporator. There it’s boiled 
to produce thick, tasty syrup. The system can be modeled as a 
pipe with one end, of cross-sectional area A, exposed to atmo-
spheric pressure. The pipe drops through a vertical distance h1 
while its area decreases to 
A/2, as shown in Fig. 15.25. 
A small vertical glass tube 
extends from the lower por-
tion, as shown, and is open to 
atmospheric pressure. You’re 
asked to provide a formula for 
the volume f low rate of the 
sap as a function of the height 
h2 of sap in the tube.

57. The water in a garden hose is at 140-kPa gauge pressure and is 
moving at negligible speed. The hose terminates in a sprinkler con-
sisting of many small holes. Find the maximum height reached by 
the water emerging from the holes.

58. The venturi flowmeter shown in 
Fig. 15.26 is used to measure the 
flow rate of water in a solar col-
lector system. The flowmeter is 
inserted in a pipe with diameter 
1.9 cm; at the venturi the  diameter 
is 0.64 cm. The manometer tube 
contains oil with density 0.82 
times that of water. If the differ-
ence in oil levels on the two sides 
of the manometer tube is 1.4 cm, 
what’s the volume flow rate?

59. A 1.0-cm-diameter venturi flowmeter is inserted in a 2.0-cm- 
diameter pipe carrying water (density 1000 kg/m3). Find (a) the 
flow speed in the pipe and (b) the volume flow rate if the pressure 
difference between venturi and unconstricted pipe is 17 kPa.

60. A balloon’s mass is 1.6 g when it’s empty. It’s inflated with he-
lium (density 0.18 kg/m3) to form a sphere 28 cm in diameter. 
How many 0.63-g paper clips can you hang from the balloon be-
fore it loses buoyancy?

61. Blood with density 1.06 g/cm3 and 10-kPa gauge pressure flows 
through an artery at 30 cm/s. It encounters a plaque deposit 
where the pressure drops by 5%. What fraction of the artery’s 
area is obstructed?

62. A venturi flowmeter in an oil pipeline has a radius half that of the 
pipe. Oil flows in the unconstricted pipe at 1.9 m/s. If the pres-
sure difference between unconstricted flow and venturi is 16 kPa, 
what’s the oil’s density?

63. Homes in rural areas of the developed world generally get their 
water from wells. Two types of pumps are used to move water 
from the well to the house. For shallow wells, a pump mounted 
inside the home produces a partial vacuum that results in air 
pressure pushing water out of the well. Deeper wells, on the 
other hand, require submerged pumps, because there’s a limit to 

BIO

BIO

Oil

Water

Flow

FIGURE 15.26 Problem 58

h2

h1

A

1
2 A

FIGURE 15.25 Problem 56

FIGURE 15.27 Problem 66

67. Assuming normal atmospheric pressure, how massive an object 
can a 5.0-cm-diameter suction cup support on a vertical wall, if the 
coefficient of friction between cup and wall is 0.72?

68. Figure 15.28 shows a simplified 
diagram of a Pitot tube, used for 
measuring aircraft speeds. The 
tube is mounted on the aircraft 
with opening A at right angles to 
the flow and opening B pointing 
into the flow. The gauge pre-
vents airflow through the tube. 
Use Bernoulli’s equation to 
show that the plane’s speed rela-
tive to the air is v = 12 ∆p/r, 
where ∆p is the pressure differ-
ence between the tubes and r is the density of air. (Hint : The flow 
must be stopped at B, but continues past A with its normal speed.)

69. At a hearing on a proposed wind farm, a wind-energy advocate says 
an installation of 800 turbines, with blade diameter 95 m, could dis-
place a 1-GW nuclear power plant. You’re asked if that’s really possi-
ble. How do you answer, given an average wind speed of 12 m/s and a 
turbine power output that averages 30% of the theoretical maximum?

Pressure
difference
indicator

Fuselage

Airflow

A

B

FIGURE 15.28 Problem 68
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292 Chapter 15 Fluid Motion

70. A pencil is weighted so it f loats vertically with length L sub-
merged. It’s pushed vertically downward without being totally 
submerged, then released. Show that it undergoes simple har-
monic motion with period T = 2p1L/g.

71. A can of height h and cross-sectional area A0 is initially full of 
water. A small hole of area A1 66 A0 is cut in the bottom of the 
can. Find an expression for the time it takes all the water to drain 
from the can. (Hint: Call the water depth y, use the continuity 
equation, and integrate.)

72. In the approximation of constant atmospheric temperature, density 
and pressure in Earth’s atmosphere are related by r = p/h0 g, where 
h0 = 8.2 km is a constant called the scale height and g is the gravi-
tational acceleration. (a) Integrate Equation 15.2 for this case to show 
that atmospheric pressure as a function of height h above the surface 
is given by p = p0 e

- h/h0, where p0 is the surface pressure. (b) At 
what height will the pressure have dropped to half its surface value?

73. (a) Use the result of Problem 72 to express Earth’s atmospheric 
density as a function of height. (b) Use your result from (a) to 
find the height below which half of Earth’s atmospheric mass lies 
(this will require integration).

74. A circular pan of liquid with 
density r is centered on a hori-
zontal turntable rotating with an-
gular speed v, as shown in Fig. 
15.29. Atmospheric pressure is 
pa. Find expressions for (a) the 
pressure at the bottom of the pan 
and (b) the height of the liquid 
surface, both as functions of the 
distance r from the axis, given 
that the height at the center is h0.

75. Find the torque that the water exerts about the bottom edge of the 
dam in Problem 44.

76. One vertical wall of a swimming pool is a regular trapezoid, with 
its bottom 15 m long and its top 22 m long. The pool is 3.3 m 
deep, and it’s full to the brim with water. Find the pressure force 
the water exerts on this side of the pool.

77. You’re a private investigator assisting a large food manufacturer in 
tracking down counterfeit salad dressing. The genuine dressing is 
by volume one part vinegar (density 1.0 g/cm3) to three parts olive 
oil (density 0.92 g/cm3). The counterfeit dressing is diluted with 
water (density 1.0 g/cm3). You measure the density of a dressing 
sample and find it to be 0.97 g/cm3. Has the dressing been altered?

78. A plumber comes to your ancient apartment building where you 
have a part-time job as caretaker. He’s checking the hot-water 
heating system, and notes that the water pressure in the basement 
is 18 psi. He asks, “How high is the building?” “Three stories, 
each about 11 feet,” you reply. “OK, about 33 feet,” he says, paus-
ing to do some calculations in his head. “The pressure is fine,” he 
declares. On what ba-
sis did he come to that 
conclusion?

79. Your class in naval ar-
chitecture is working 
on the design for a ship 
with a V-shaped cross 
section, as shown in 
Fig. 15.30. The ship 
has total length L and 
keel-to-deck height h0. 
When empty, the dis-
tance from waterline to 
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v

h0

FIGURE 15.29 Problem 74

uh0 h1

FIGURE 15.30 Problem 79

keel is h1. You’re asked for the maximum load the ship can carry 
below deck if water is not to come over the deck. Answer in terms 
of h0, h1, L, u, and the water density r.

Passage Problems
Arterial stenosis is a constriction of an artery, often due to plaque 
buildup on the artery’s inner walls. Serious medical conditions 
can result, depending on the affected artery. Stenosis of the ca-
rotid  arteries that supply blood to the brain is a leading cause of 
stroke, while stenosis of the renal arteries can lead to kidney failure. 
Pulmonary artery stenosis results from birth defects, and can result 
in insufficient oxygen supply. Because the heart has to work harder 
to get blood through a constricted artery, stenosis can contribute to 
high blood pressure.

In answering the questions below, assume steady flow (which is 
true in arteries only on short timescales).

80. How does the volume flow rate of blood at a stenosis compare 
with the rate in the surrounding artery?
a. lower
b. the same
c. higher

81. How does the blood flow speed at a stenosis compare with the 
speed in the surrounding artery?
a. lower
b. the same
c. higher

82. Which of the following medical problems is more likely to 
occur?
a. An artery might collapse because of lower blood pressure at 

the stenosis.
b. An artery might burst because of higher blood pressure at the 

stenosis.
c. Neither; pressure at the stenosis is the same as in the sur-

rounding artery.
83. If the artery has circular cross section even at the stenosis, but the 

diameter at the stenosis is half that in the surrounding artery, the 
blood flow speed in the stenosis will be
a. one-fourth that in the surrounding artery.
b. one-half that in the surrounding artery.
c. the same as in the surrounding artery.
d. 12 times that in the surrounding artery.
e. four times that in the surrounding artery.

Answers to Chapter Questions

Answer to Chapter Opening Question
Because the density of ice is only slightly less than that of water.

Answers to GOT IT? Questions
15.1 (c)
15.2  (c) F

S
moves the small piston a lot farther than the upward 

 pressure force moves the large piston; the products of force and 
displacement are the same for both pistons, so the work done is 
the same.

15.3 (a)
15.4 (a) over the top where the streamlines are closer together
15.5  h1 7 h4 7 h2 7 h3 reflecting higher pressure with lower flow 

speed
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Oscillations, Waves, and Fluids

Fluids in hydrostatic equilibrium exhibit 
a depth-dependent pressure that results in 
an upward buoyancy force F

S
b.

Archimedes’ prin-
ciple states that the 
buoyancy force is 
equal to the weight of 
the displaced fluid.

Oscillatory motion describes the back-and-forth motion of a sys-
tem disturbed from a stable equilibrium.

When the force or torque tending to restore equilibrium is directly 
proportional to the displacement, the result is simple harmonic 
motion.

2p

v
T = 

v = 

F = -kx

x = A cosvt

k
m

t
A

k
mA

A wave is a propagating distur-
bance that carries energy but not 
matter.

Simple harmonic waves are 
sinusoidal:

y1x, t2 = A cos1kx - vt2
Angular frequency: v = 2pf

Wave number: k =
2p
l

Wave period: T =
1
f

Wave speed: v =
v

k
=

l

T
= fl

When waves overlap, the result is inter-
ference, which is constructive when the 
waves reinforce and destructive when they 
tend to cancel.

Nodal lines:
destructive
interference

Large amplitude:
constructive
interference

Standing waves occur when the medium has limited extent. Only certain wavelengths and fre-
quencies are allowed, depending on the medium’s length:

Two of the
allowed standing
waves on a string
fixed at both ends.

This wavelength
isn’t allowed.

fluids. Behind these more complex motions are the fundamental concepts 
of force, mass, and energy and their roles in characterizing motion.

Part Two has extended Newtonian mechanics to systems that undergo 
oscillatory motion and wave motion or that involve the motion of 

Summary

y

y

x

v
A

Wavelength
l

Wave in
space

Wave in
time

t

Period
TA

Fb
S

Fg
S

Moving fluids obey conservation of mass and, in the absence of fluid friction (viscosity), they 
also conserve energy.

In fluid dynamics, the continuity equation and Bernoulli’s equation express these conservation 
laws. Both equations hold along a flow tube:

Continuity: rvA = constant
Bernoulli:

p + 1
2 rv2 + rgy = constant

Closely spaced:
high v

Widely spaced:
low v

Flow tube

Part Two Challenge Problem
A cylindrical log of total mass M and uniform diameter d has an uneven mass distribution that causes it to float in a 
vertical position, as shown in the figure. (a) Find an expression for the length L of the submerged portion of the log 
when it’s floating in equilibrium, in terms of M, d, and the water density r. (b) If the log is displaced vertically from 
its equilibrium position and released, it will undergo simple harmonic motion. Find an expression for the period of this 
motion, neglecting viscosity and other frictional effects.

d

L

PART TWO
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PART THREE

OVERVIEW

Thermodynamics

Humanity consumes energy at the prodigious rate 
of some 2 * 1013 watts. Nearly all that energy 
comes from the combustion of fossil fuels—a 

process governed by the laws of thermodynamics. En-
gines that extract mechanical energy from burning 
fuels propel our cars, trucks, and airplanes, and pro-
duce most of our electricity. Despite the  efforts of the 
cleverest engineers, the laws of thermodynamics set 
fundamental limitations on our  ability to convert ther-
mal energy to mechanical energy. Many of the energy 
and environmental challenges humanity faces today 
are grounded in thermodynamics.

Many natural systems are also thermodynamic. 
Without the Sun’s energy, radiated across a hundred 

million miles of empty space, Earth would be a life-
less, frozen rock. Heat flowing throughout Earth, 
its oceans, and its atmosphere governs  processes 
ranging from continental drift to ocean currents to 
weather and climate. Concern over human- induced 
climate change is rooted in thermodynamic proper-
ties of the atmosphere as they affect energy flows. 
On a grander scale, thermodynamic principles 
 govern much of the energy that flows throughout 
the universe.

Thermodynamics—the study of heat and its con-
nection to the all-important concept of energy—is the 
subject of the next four chapters.

This huge steam turbine converts the energy of high-pressure steam to mechanical energy and then, via the generator at the right end of the 
 system, to electricity. The inset shows the turbine blades that spin when struck by high-pressure steam. Systems like this one produce nearly all 
the world’s electrical energy, and their operation and efficiency are governed by the laws of thermodynamics.
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Your own body gives you a good sense of “hot” and “cold.” Questions 
about heat and temperature are ultimately about energy, and these 

concepts are crucial to understanding the energy flows that drive natu-
ral systems like Earth’s climate and technologies such as engines, power 
plants, and refrigerators.

Properties like mass and kinetic energy apply equally to microscopic at-
oms and molecules and to cars and planets. But other properties, including 
temperature and pressure, apply only to macroscopic systems. It makes no 
sense to talk about the temperature or pressure of a single air molecule. 
Thermodynamics is the branch of physics that deals with these macroscopic 
properties. Ultimately, the thermodynamic behavior of matter follows from 
the motions of its constituent particles in response to the laws of mechanics. 
Statistical mechanics relates the macroscopic description of matter to the 
underlying microscopic processes. Historically, thermodynamics developed 
before the atomic theory of matter was fully established. The subsequent  
explanation of thermodynamics through statistical  mechanics—the 
 mechanics of atoms and molecules—was a triumph for physics.

16.1 Heat, Temperature, and 
Thermodynamic Equilibrium
LO 16.1 Define heat, temperature, and thermodynamic equilibrium, 

and convert between temperature scales.

Take a bottle of soda from the refrigerator, and eventually it reaches room 
temperature. At that point the soda and the room are in thermodynamic 
 equilibrium, a state in which their macroscopic properties are no longer 

Skills & Knowledge You’ll Need
■■ The concept of energy (Chapters 6 

and 7)

■■ The distinction between energy and 
power (Section 6.5)

Learning Outcomes
After finishing this chapter you should be able to:

LO 16.1 Define heat, temperature, and thermodynamic equilibrium, 
and convert between temperature scales.

LO 16.2 Solve problems involving heat capacity and specific heat.

LO 16.3 Describe the three main heat-transfer mechanisms.

LO 16.4 Solve problems involving conductive heat transfer, including 
applications to building insulation.

LO 16.5 Solve problems involving radiative heat transfer.

LO 16.6 Evaluate temperatures for systems in thermal-energy 
 balance, including applications in climate science.

Temperature and Heat

18
Heat, Work, and 
the First Law of 

Thermodynamics

17
The Thermal Behavior 

of Matter1615
Fluid Motion

14
Wave Motion

How does this infrared photo reveal heat loss 
from the house? And how can you tell that the 
car was recently driven?
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296 Chapter 16 Temperature and Heat

changing. To check for thermodynamic equilibrium we can consider any macroscopic 
property—length, volume, pressure, electrical resistance, whatever. If any macroscopic 
property changes when two systems are placed together, then they weren’t originally in 
thermodynamic equilibrium. When changes cease, the systems have reached equilibrium.

The phrase “placed together” here has a definite meaning, stated more precisely as 
“placed in thermal contact.” Two systems are in thermal contact if heating one of them re-
sults in macroscopic changes in the other. If that doesn’t readily happen—for example, with 
a Styrofoam cup of coffee and its surroundings—then the systems are thermally insulated.

We can now begin to define temperature: Two systems have the same temperature if 
they are in thermodynamic equilibrium. Consider two systems A and C in thermal con-
tact with a third system B but not with each other (Fig. 16.1a). Even though they’re not in 
direct contact, A and C have the same temperature; that is, if you place A and C in thermal 
contact (Fig. 16.1b), no further changes occur. This fact—that two systems in equilibrium 
with a third system are therefore in equilibrium with each other—is so fundamental that 
it’s called the zeroth law of thermodynamics.

A thermometer is a system with a conveniently observed macroscopic property that 
changes with temperature. It could be the length of a mercury column, gas pressure, 
electrical resistance, or the bending of a bimetal strip in a dial thermometer. Let the 
thermometer come to equilibrium with some system, and its temperature-dependent 
physical property provides a measure of temperature. The zeroth law assures consis-
tency, in that two systems for which the thermometer gives the same reading must have 
the same temperature.

The Kelvin Scale and Gas Thermometers
One of the most versatile thermometers is the constant-volume gas thermometer 
(Fig. 16.2), in which the pressure of a gas provides an indication of temperature. Gas 
thermometers function over a wide range, including very low temperatures, and before 
2019 they provided the definition of the Kelvin temperature scale used in the SI system. 
As Fig. 16.3 shows, the zero of the Kelvin scale was defined as the temperature at which 
the gas pressure would become zero. Since a gas can’t have negative pressure, this point is 
absolute zero—a concept whose meaning we’ll explore further in Chapter 19. A second 
fixed temperature was provided by the so-called triple point of water, the unique tempera-
ture at which solid, liquid, and gaseous water can coexist in equilibrium (more on this in 
Chapter 17). In the pre-2019 SI definition, water’s triple point was defined to be exactly 
273.16 kelvins (symbol K; not “degrees kelvin” or °K). Other temperatures then followed 
by linear extrapolation, as suggested in Fig. 16.3. Although the triple-point definition of 
the kelvin was, in principle, a reproducible operational standard, issues with purity and the 
isotopic composition of water made this standard less than ideal.

In the 2019 revision of the SI unit system, the kelvin was given a new 
 explicit-constant definition, by setting an exact value for the so-called Boltzmann 
constant. This constant establishes a direct relation between temperature and mo-
lecular energy, which we’ll explore further in Chapter 17. With this new defini-
tion, the triple point of water becomes a measured quantity very close to 273.16 K 
but, as with all measured quantities, involving some uncertainty.

Temperature Scales
Other temperature scales include Celsius 1°C2, Fahrenheit 1°F2, and Rankine 
1°R2 (Fig. 16.4). One Celsius degree represents the same temperature difference 
as one kelvin, but the zero of the Celsius scale occurs at 273.15 K, so

TC = T - 273.15             (16.1)

where T is the temperature in kelvins. On the Celsius scale the melting point of 
ice at standard atmospheric pressure is exactly 0°C, while the boiling point is 
100°C. The triple point of water occurs at 0.01°C, which accounts for the 273.15 
difference between the kelvin and Celsius scales. Equation 16.1 shows that abso-
lute zero occurs at -273.15°C.

Systems A and C
are each in 
thermodynamic
equilibrium with B.

If A and C are placed in
thermal contact, their
macroscopic properties
don’t change—showing
that they’re already in
equilibrium.

(a) (b)

A B C A C

FIGURE 16.1 The zeroth law of 
thermodynamics.

Gas

Mercury

Vacuum

Flexible tube

h

System whose 
temperature is 
to be measured

The mercury level in the left-hand side 
of the tube is maintained constant at 
this level c

cby moving the right-
hand side up or down.

The height difference h between the two 
mercury levels is a measure of the gas 
pressure and therefore of the temperature.

FIGURE 16.2 A constant-volume gas 
thermometer.
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T = 273.16 p>p 3
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FIGURE 16.3 Two points establish a temperature 
scale. Before the 2019 SI revision, the kelvin scale 
was defined by the values of absolute zero and the 
unique temperature of water’s triple point, whose 
pressure is designated p3 and whose temperature 
was defined as 273.16 K.
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16.2  Heat Capacity and Specific Heat 297

The Fahrenheit and Rankine scales, from the British unit system, are used primarily  
in the United States. Fahrenheit has water melting at 32°F and boiling at 212°F, so the 
 relation between Fahrenheit and Celsius temperatures is

 TF = 9
5 TC + 32 (16.2)

A Rankine degree is the same size as a Fahrenheit degree, but the zero of the Rankine 
scale is at absolute zero (Fig. 16.4). Engineers in the United States often use Rankine.

Heat and Temperature
A match will burn your finger, but it doesn’t provide much heat. This example shows 
our intuitive sense of temperature and heat: Heat measures an amount of “something,” 
whereas temperature is the intensity of that “something.”

Scientists once considered heat to be a material fluid, called caloric, that flowed from 
hot bodies to colder ones. But in the late 1700s, the American-born scientist Benjamin 
Thompson observed essentially limitless amounts of heat being produced in the boring 
of cannon, and he concluded that heat could not be a conserved fluid. Instead, Thompson 
suggested, heat was associated with mechanical work done by the boring tool. In the next 
half-century, a series of experiments confirmed the association between heat and energy. 
These culminated in the work of the British physicist James Joule (1818–1889), who 
quantified the relation between heat and energy. In so doing, Joule brought thermal phe-
nomena under the powerful conservation-of-energy principle. In recognition of this major 
synthesis in physics, the SI energy unit bears Joule’s name. The 2019 redefinition of the 
kelvin formalized the relation between temperature and energy, since the Boltzmann con-
stant, which now defines the kelvin, has the units of J/K.

We rarely make statements about the amount of “heat” in an object; we’re more con-
cerned that the temperature be appropriate. Rather, we think of heat as something that gets 
transferred from one object to another, causing a temperature change. The scientific defi-
nition reflects this sense of heat as energy in transit: Heat is energy being transferred 
from one object to another because of a temperature difference alone. Strictly speak-
ing, heat refers only to energy in transit. Following heat transfer, we say that the internal 
energy or thermal energy of the object has increased, not that it contains more heat. This 
distinction reflects the fact that processes other than heating—such as transfer of mechan-
ical or electrical energy—can also change an object’s temperature. We briefly explored 
internal energy and its relation to mechanical energy transfers when we dealt with noncon-
servative forces in Chapter 7.
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FIGURE 16.4 Relationships among four  
temperature scales.

16.1 Is there (a) no temperature, (b) one temperature, or (c) more than one tempera-
ture where the Celsius and Fahrenheit scales agree?

G
O

T 
IT

?

16.2 Heat Capacity and Specific Heat
LO 16.2 Solve problems involving heat capacity and specific heat.

Because temperature and energy are related, it’s not surprising that the heat energy Q trans-
ferred to an object and the resulting temperature change ∆T  are proportional: Q = C ∆T, 
where the proportionality constant C is called the heat capacity of the object. Since heat 
is a measure of energy transfer, the units of heat capacity are J/K. The heat capacity C 
applies to a specific object and depends on its mass and on the substance from which it’s 
made. We characterize different substances in terms of their specific heat c, or heat capac-
ity per unit mass. The heat capacity of an object is then the product of its mass and specific 
heat, so we can write

 Q = mc ∆T  (16.3)

The SI units of specific heat are J/kg #K. Table 16.1 lists specific heats of common materials.
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298 Chapter 16 Temperature and Heat

Table 16.1 Specific Heats of Some Common Materials*

Specific Heat, c

Substance SI Units: J/kg #K cal/g #°C, kcal/kg #°C, or Btu/lb #°F 

Aluminum 900 0.215

Concrete (varies with mix) 880 0.21

Copper 386 0.0923

Iron 447 0.107

Glass 753 0.18

Mercury 140 0.033

Steel 502 0.12

Stone (granite) 840 0.20

Water:

Liquid 4184 1.00

Ice, -10°C 2050 0.49

Wood 1400 0.33
*Temperature range 0°C to 100°C except as noted.

Scientists first studied thermodynamic phenomena before they knew the relation be-
tween heat and energy, and they used other units for heat. The calorie (cal) was defined 
as the heat needed to raise the temperature of 1 g of water from 14.5°C to 15.5°C; conse-
quently, the specific heat of water is 1 cal/g 

#
 °C. Several different definitions of the calorie 

exist today, based on different methods for establishing the heat–energy equivalence. In 
this book we use the so-called thermochemical calorie, defined as exactly 4.184 J. The 
“calorie” used in describing the energy content of foods is actually a kilocalorie. In the 
British system, still widely used in engineering in the United States, the unit of heat is  
the British thermal unit (Btu). One Btu is the amount of heat needed to raise the tem-
perature of 1 lb of water from 63°F to 64°F, and is equal to 1054 J.

Your whole family has showered before you, dropping the temperature 
in the water heater to 18°C. If the heater holds 150 kg of water, how 
much energy will it take to bring it up to 50°C? If the energy is sup-
plied by a 5.0-kW electric heating element, how long will that take?

INTERPRET Here we’re interested in the energy it takes to raise the wa-
ter temperature, so we interpret this problem as involving specific heat. 
For the second part, we’re given the heater’s power output and asked for 
the time, so we need to recall (Chapter 6) that power is energy per time.

DEVELOP Equation 16.3, Q = mc ∆T, relates energy and tempera-
ture change via specific heat, so our plan is to calculate the required 
energy from this equation. We’ll then use the relation between power 
and energy to find the time.

EVALUATE Equation 16.3 gives the energy:

Q = mc ∆T = 1150 kg214184 J/kg 

#
 K2150°C - 18°C2 = 20 MJ

where we found the specific heat of water in Table 16.1. The heating 
element supplies energy at the rate of 5.0 kW or 5.0 * 103 J/s. At that 
rate the time needed to supply 20 MJ is

∆t =
2.0 * 107 J

5.0 * 103 J/s
= 4000 s

or a little over an hour.

ASSESS That’s a long time to wait, but it’s not an unreasonable 
answer!

  IS THAT °C OR K? It doesn’t matter when we’re talking 
about temperature differences. That’s why we could mix 
units, multiplying the specific heat in J/kg 

#
 K by the difference 

of Celsius temperatures.

Specific Heat: Waiting to ShowerEXAMPLE 16.1

For common materials around room temperature, specific heat is nearly constant 
over a substantial temperature range. But at very low temperatures, specific heat varies 
 significantly with temperature. When that’s the case, we write Equation 16.3 in terms of 
infinitesimal heat flows dQ and corresponding temperature changes dT: dQ = mc1T2 dT .  
We can then integrate to relate the overall heat flow and temperature change over a wide 
temperature range. Problems 75 and 76 explore this situation.
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16.3 Heat Transfer 299

Specific heat also depends on whether an object’s pressure or its volume changes when 
it’s heated. For solids and liquids, which don’t expand much, that distinction isn’t very 
important. But it makes a big difference whether a gas is confined or allowed to expand 
when heated. Consequently, gases have two different specific heats, depending on whether 
volume or pressure is constant. We’ll deal with that issue in Chapter 18, where we explore 
the thermodynamic behavior of gases.

The Equilibrium Temperature
When objects at different temperatures are in thermal contact, heat flows from the hotter 
object to the cooler one until they reach thermodynamic equilibrium. If the objects are 
thermally insulated from their surroundings, then all the energy leaving the hotter object 
ends up in the cooler one. Mathematically, this statement reads

 m1c1 ∆T1 + m2c2 ∆T2 = 0 (16.4)

For the hotter object, ∆T  is negative, so the two terms in Equation 16.4 have opposite 
signs. One term represents the outflow of heat from the hotter object, the other inflow 
into the cooler one. Example 16.2 explores the application of Equation 16.4 in finding the 
equilibrium temperature.

16.2 A hot rock with mass 250 g is dropped into an equal mass of cool water. Which 
temperature changes more, that of (a) the rock or (b) the water? Explain.
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An aluminum frying pan of mass 1.5 kg is at 180°C when it’s plunged 
into a sink containing 8.0 kg of water at 20°C. Assuming that none of 
the water boils and that no heat is lost to the surroundings, find the 
equilibrium temperature of the water and pan.

INTERPRET Here we have two objects, initially at different tempera-
tures, that come to thermal equilibrium. So this is a problem about the 
equilibrium temperature, with the system of interest comprising the 
pan and the water.

DEVELOP Equation 16.4, m1c1 ∆T1 + m2c2 ∆T2 = 0, applies. How-
ever, we’re asked for the common equilibrium temperature T, so we 
write the temperature differences ∆T  in terms of T and the initial 

temperatures Tp and Tw of pan and water. Equation 16.4 then becomes 
mpcp1T - Tp2 + mwcw1T - Tw2 = 0.

EVALUATE We now solve for the equilibrium temperature T:

T =
mpcpTp + mwcwTw

mpcp + mwcw

Using the given values of mp, Tp, mw, and Tw, and taking cp and cw 
from Table 16.1, we get T = 26°C.

ASSESS The water has much greater mass and higher specific heat, 
so it makes sense that its 6°C temperature change is a lot less than the 
154°C drop in the pan’s temperature.

Finding the Equilibrium Temperature: Cooling Down
Worked Example with Variation Problems

EXAMPLE 16.2

16.3 Heat Transfer
LO 16.3 Describe the three main heat-transfer mechanisms.

LO 16.4 Solve problems involving conductive heat transfer, including applica-
tions to building insulation.

LO 16.5 Solve problems involving radiative heat transfer.

How is heat transferred? Engineers need to know so they can design heating and cooling 
systems. Scientists need to know so they can anticipate temperature changes, as in global 
warming. Here we’ll consider three common heat-transfer mechanisms: conduction, con-
vection, and radiation. In some situations, a single mechanism dominates; in other cases, 
we may need to take all three into account.
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300 Chapter 16 Temperature and Heat

Conduction
Conduction is heat transfer through direct physical contact. It occurs as molecules in a hot-
ter region collide with and transfer energy to those in an adjacent cooler region. Thermal 
conductivity (symbol k; SI unit W/m 

#
 K) characterizes this process. Common materials 

exhibit a broad range of thermal conductivities, from about 400 W/m 

#
 K for copper—a 

good conductor—to 0.029 W/m 

#
 K for Styrofoam, a good thermal insulator. Table 16.2 lists 

some thermal conductivities; they’re given in both SI and British units because the latter are 
widely used in heat-loss calculations for buildings. The k values in Table 16.2 reflect phys-
ical properties of the materials. Metals, for example, are good thermal conductors because 
they contain free electrons that move quickly. Insulators like fiberglass and Styrofoam owe 
their insulating properties to a physical structure that traps small volumes of air or other gas.

Figure 16.5 shows a slab of thickness ∆x and area A. One side is at temperature T 
and the other at T + ∆T. The temperature difference ∆T  drives a conductive heat flow 
through the slab. That heat flow is proportional to the temperature difference, the slab 
area, and the thermal conductivity k. The thicker the slab, on the other hand, the more re-
sistance to heat flow, so the flow depends inversely on thickness. Therefore,

 H = -kA
∆T
∆x
 1conductive heat flow2 (16.5)

where H = dQ/dt is the rate of heat flow in watts, and where the minus sign shows that 
the flow is opposite the direction of increasing temperature—that is, from hotter to cooler.

Equation 16.5 is strictly correct only when the temperature varies uniformly from one 
surface to the other. That’s the case when two surfaces at different temperatures have the 
same area. With other geometries—as in the insulation surrounding a cylindrical pipe—we 
need to write ∆T/∆x as the derivative dT/dx and integrate to find the heat flow. Problem 
78 explores this situation.

H is heat flow by 
conduction through 
a slab of material, 
measured in watts.

k is the thermal 
conductivity of the 
material.

∆T  is the  
temperature  
difference between 
two faces of the slab.

The minus sign 
shows that the heat 
flows from hotter to 
cooler.

A is the 
slab’s 
area…

…and ∆x is 
its thickness.

Table 16.2 Thermal Conductivities*

Thermal Conductivity, k

Material SI Units: W/m  

#
 K British Units: Btu 

#
 in / h 

#
 ft2 #  °F 

Air 0.026 0.18

Aluminum 237 1644

Concrete (varies with mix) 1 7

Copper 401 2780

Fiberglass 0.042 0.29

Glass 0.7–0.9 5–6

Goose down 0.043 0.30

Helium 0.14 0.97

Iron 80.4 558

Steel 46 319

Styrofoam 0.029 0.20

Water 0.61 4.2

Wood (pine) 0.11 0.78

*Temperature range 0°C to 100°C. 

Area A
Temperature T

H

∆x

x

Temperature
T + ∆T

FIGURE 16.5 Heat flows from the 
 hotter to the cooler face of the slab.
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Often heat flows through several different materials. A building wall, for example, may 
contain wood, drywall, and fiberglass insulation. Figure 16.7 shows such a composite 
structure, with temperature T1 on one side and T3 on the other. The heat-flow rate H must 
be the same through both slabs so energy doesn’t accumulate at the interface between the 
two. Then Equation 16.5 gives

H = -k1 A 

T2 - T1

∆x1
= -k2 A 

T3 - T2

∆x2

where k 1  and k 2  are the thermal conductivities of the two materials, and T2  is the tempera-
ture at the interface. We can express the heat-flow rate in terms of the surface temperatures 
T1  and T3  alone if we define the thermal resistance R of each slab:

 R =
∆x
kA

 (16.6)

The SI units of R are K/W. Unlike the thermal conductivity k, which is a property of a  
material, R is a property of a particular piece of material, reflecting both its conductivity 
and its geometry. In terms of thermal resistance, our heat-flow equation becomes

H = -
T2 - T1

R1
= -

T3 - T2

R2

so R1H = T1 - T2 and R2H = T2 - T3. Adding these two equations gives

1R1 + R22H = T1 - T2 + T2 - T3 = T1 - T3

or

 H =
T1 - T3

R1 + R2
 (16.7)

Equation 16.7 shows that the composite slab acts like a single slab whose thermal resis-
tance is the sum of the resistances of the two slabs that compose it. We could easily extend 
this treatment to show that the thermal resistances of three or more slabs add when the 
slabs are arranged so the same heat flows through all of them.

A lake with a flat bottom and steep sides has surface area 1.5 km2 and is 
8.0 m deep. On a summer day, the surface water is at 30°C and the bot-
tom water at 4.0°C. What’s the rate of heat conduction through the lake?

INTERPRET This is a problem about heat conduction.

DEVELOP Our sketch, Fig. 16.6, shows that we can treat the lake like 
the slab shown in Fig. 16.5, provided we neglect heat flow out the sides. 
Then Equation 16.5, H = -kA1∆T/∆x2, will give the heat-flow rate.

EVALUATE Substituting numerical values, including water’s thermal 
conductivity from Table 16.2, we get

 H = -kA  

∆T
∆x

 = -10.61 W/m # K211.5 * 106 m22 

30°C - 4.0°C
8.0 m

= -3.0 MW

ASSESS This is a significant energy flow, but with direct sunlight 
averaging about 1 kW on every square meter, the lake’s 1.5@km2 
surface area absorbs plenty of solar energy, and that’s what main-
tains the temperature difference that drives the conductive heat flow. 
Figure 16.5 shows x increasing in the direction of increasing tem-
perature, so the negative sign in our answer indicates that the flow 
is downward.

Conduction: Warming a LakeEXAMPLE 16.3

FIGURE 16.6 Our sketch for Example 16.3.

If H weren’t the same through both
slabs, energy would accumulate
at the interface.

T3

T2

Area A
Temperature T1

∆x1

H

∆x2

R1

R2

FIGURE 16.7 A composite slab.
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302 Chapter 16 Temperature and Heat

Insulating properties of building materials are described by the R@factor, which is the 
thermal resistance for a slab of unit area:

 R = RA =
∆x
k

 (16.8)

The SI units of R are m2  #  K/W, and that’s how you’ll find it listed if you buy insulation in 
Europe or other SI-based regions. In the United States, R is in ft2 # °F # h/Btu, although the 
units are almost never stated. This means that R@19 fiberglass insulation loses 1

19 Btu per 
hour for each square foot of insulation for each degree Fahrenheit temperature across the 
insulation (Fig. 16.8). The inverse of the R@factor is the U  value, often used in character-
izing heat loss through windows.

Hot
Cool

∆T1

∆T2

∆T3

k 3k
2k

16.3 The figure shows three slabs with the same thick-
ness but different thermal conductivities: k, 3k, and 2k; the 
left side is hotter, as shown. Rank in order, from smallest 
to largest, the three temperature differences ∆T.G

O
T 

IT
?

1 ft2

H
∆T

FIGURE 16.8 Each square foot of this 
R-19 fiberglass insulation loses 1

19 Btu 
per hour for every °F of temperature 
difference ∆T.

Figure 16.9 shows a house whose walls consist of drywall 
1R = 0.452, R@11 fiberglass insulation, plywood 1R = 0.652, and 
cedar shingles 1R = 0.552. The roof has the same construction except 
it uses R@30 fiberglass insulation. The average outdoor temperature 
in winter is 20°F, and the house is maintained at 7 0 °F. The house’s 
oil furnace produces 100,000 Btu for every gallon of oil, and oil costs 
$2.87 per gallon. How much does it cost to heat the house for a month?

INTERPRET Although the problem asks for the monthly cost of oil, 
this isn’t economics! We interpret this as a problem about heat loss 
and identify the walls and roof as systems for which we need to know 
the heat flow. This is a rare case of a problem stated in English units.

DEVELOP We’re given the drawing in Fig. 16.9. We have the 
R@factors; in English units, their inverses give the heat-loss rate on 
a square-foot basis. So our plan is to find the square footage of the 
walls and roof separately, calculate the total heat-loss rate, and then 
find the amount and cost of oil to compensate for a month’s heat loss.

EVALUATE The R@factors for the wall materials sum to give 
Rwall = 12.65; similarly, Rroof = 31.65. The perimeter of the 
house measures 2 *  28 ft + 2 *  36 ft = 128 ft, so the 10-ft vertical 
walls have area 1280 ft2. There are also the triangular gables. Since 
there are two of them, each with area 1

2  b h ,  they give another bh or 
128 ft2114 ft tan 30°2 = 226 ft2, so Awall = 1506 ft2. These R@12.65 
walls lose 1/12.65 Btu/h/ft2/°F. With 1506 ft2 and a temperature differ-
ence of 50°F, the total heat-loss rate through the walls is

Hwall = 1 1
12.65  Btu/h/ft2/°F211506 ft22150°F2 = 5953 Btu/h

The area of the pitched roof is larger than that of a flat roof by the 
factor 1/cos 30°, so the heat-loss rate through the roof is

Hroof = 1 1
31.65  Btu/h/ft2/°F2  

136 ft2128 ft2
cos 30°

 150°F2 = 1839 Btu/h

The total heat-loss rate is then 7792 Btu/h. In a month, this results 
in a heat loss of Q = 17792 Btu/h2130 days/month2124 h/day2 =  
5.61 MBtu.

Now for the oil: With 105 Btu (0.1 MBtu) per gallon, we’ll burn 
56.1 gallons per month to produce that 5.61 MBtu. At +2.87/gal, that 
will cost $161.

ASSESS If you’ve paid for heat in a northern climate, you know that 
this figure is, if anything, low. That’s because we neglected heat losses 
through windows, doors, and the floor, as well as cold-air infiltration. 
On the other hand, we also left out any solar energy gained through 
the windows on sunny days. Problem 71 provides a more realistic look 
at this house.

Calculating Heat Loss: The Cost of OilEXAMPLE 16.4

1 14 ft
cos302

10 ft

30°

28 ft

h = 14 ft * tan30

A = 136 ft2

36 ft

FIGURE 16.9 House for Example 16.4.
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Convection
Convection is heat transfer by fluid motion. It occurs as heated fluid becomes less dense 
and therefore rises. Figure 16.10a shows two plates at different temperatures, with fluid 
between them. Fluid heated by the lower plate rises and transfers heat to the upper plate. 
The cooled fluid sinks, and the process repeats. The pattern of rising and sinking fluid 
often acquires a striking regularity, as shown in Fig. 16.10b.

Convection is important in many technological and natural environments. When you 
heat water on a stove, convection carries heat through the water. Houses usually rely on 
convection from heat sources near floor level to circulate warm air throughout a room. 
Insulating materials trap air and thereby inhibit convection that would otherwise cause 
excessive heat loss. Convection associated with solar heating of Earth’s surface drives the 
vast air movements that establish our overall climate. Violent convection, as in thunder-
storms, is associated with localized temperature differences. On a much longer time scale, 
convection in Earth’s mantle drives continental drift. Convection plays a crucial role in 
many astrophysical processes, including the generation of magnetic fields in stars and 
planets.

As with conduction, the convective heat-loss rate often is approximately proportional 
to the temperature difference. But the calculation of convective heat loss is complicated 
because of the associated fluid motion. The study of convection processes is an important 
research area in many fields of contemporary science and engineering.

Radiation
Turn an electric stove burner to “high” and it glows brightly; turn it to “low” and you can 
still sense its heat although it doesn’t glow visibly. Either way, the burner loses energy 
by emitting electromagnetic waves, or radiation. The radiated power P increases rapidly 
with temperature, as described by the Stefan–Boltzmann law:

 P = es AT4 aStefan-Boltzmann law;
radiated power b  (16.9)

where A is the area of the emitting surface, T the temperature in kelvins, and s the  
Stefan–Boltzmann constant, approximately 5.67 * 10-8 W/m2 #  K4. The quantity e is the 
emissivity, a number from 0 to 1 that measures the material’s effectiveness in emitting 
radiation. For radiation of a given wavelength, a material is equally good at emitting and 
absorbing radiation. A perfect emitter has e = 1 and is also a perfect absorber. Such an 
object would appear black at room temperature and is therefore called a blackbody. A 
shiny object, in contrast, reflects most of the radiation that hits it and is therefore also a 
poor emitter. Wood stoves are often painted black to increase their emissivity; Thermos 
bottles, on the other hand, have a shiny coating to reduce radiation.

Because of the strong T4 temperature dependence, radiation is generally the domi-
nant heat-loss mechanism at high temperatures but is less important at low temperatures. 
Radiation also dominates for objects in vacuum, since there’s no material to carry con-
ductive or convective heat flows; that makes Equation 16.9 crucial in understanding the 
climates of Earth and other planets.

Objects also absorb radiant energy from their surroundings, at a rate given by 
Equation 16.9 using the ambient temperature Ta, so the net radiated power becomes 
P = esA1T4 - T4

a2. For an object that’s much hotter than its surroundings, the second 
term is negligible. But for an object that’s only a little warmer, like a human body, it’s 
significant.

A is the 
surface 
area…

P is the power, in watts, 
radiated by a surface.

s is a constant with SI value 
5 .67 * 10- 8 W/m2

 
#K4.

Emissivity e ranges between 
0 and 1, and describes how 
effective the surface is at 
radiating.

…and T is the  surface 
temperature in  
kelvins.

Cool

Hot

Sinking
fluid

Rising
fluid

(b)

(a)

FIGURE 16.10 (a) Convection between 
two plates at different temperatures. 
(b) Top view of convection cells in a 
laboratory experiment. Fluid rises at 
the centers and sinks at the edges of 
the convection cells.
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304 Chapter 16 Temperature and Heat

It’s not just the amount of radiation that changes with temperature; as our stove burner 
example suggests, it’s also the wavelength. Objects at room temperature, for example, 
emit mostly invisible infrared radiation, while very hot objects like the Sun emit more 
visible light. We’ll take a quantitative look at this relation in Chapter 34.

16.4 Name the dominant form of heat transfer from (1) a red-hot stove burner with 
nothing on it, (2) a burner in direct contact with a pan of water, and (3) the bottom to 
the top of the water in the pan once it’s begun to boil.
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The Sun radiates energy at the rate P = 3.83 * 1026 W, and its radius 
is 6.96 * 108 m. Treating the Sun as a blackbody 1e = 12, find its sur-
face temperature.

INTERPRET This is a problem about the radiation from a hot object.

DEVELOP The Stefan–Boltzmann law, Equation 16.9, gives the radi-
ated power in terms of the temperature, emissivity, and surface area: 
P = esAT4. Our plan is to solve this equation for T. For the Sun, ra-
diation comes from the entire spherical surface of area 4pR2, as our 
sketch shows (Fig. 16.11).

EVALUATE Using the Sun’s spherical surface area and solving 
Equation 16.9 for T gives

 T = a P

4pR2s
b

1/4

 = c 3.83 * 1026 W

4p16.96 * 108 m2215.67 * 10-8 W/m2 # K42d
1/4

= 5770 K

ASSESS Make sense? Yes: Our answer has the unit of temperature 
and agrees with observational measurements. Despite its bright glow, 
the Sun is essentially a blackbody, because it absorbs all radiation in-
cident on it. But the Sun is so much hotter than its surroundings that 
we can neglect absorbed radiation in this calculation.

Calculating Radiation: The Sun’s TemperatureEXAMPLE 16.5

FIGURE 16.11 The Sun radiates from its spherical surface area 4pR2 .

CONCEPTUAL EXAMPLE 16.1 Energy-Saving Windows

Why do double-pane windows reduce heat loss greatly compared 
with single-pane windows? Why is a window’s R-factor higher if the 
spacing between panes is small? And why do the best windows have 
“low-E” coatings?

EVALUATE Table 16.2 gives glass’s thermal conductivity as around 
0.8 W/m#K, while good insulators like air and Styrofoam have 
k ∼ 0.03 W/m 

#
 K. That’s why a layer of air between window panes 

greatly increases the window’s R-factor. But if the pane spacing is 
too great, convection currents develop between the sheets of glass, 
transferring heat from the warmer to the cooler surface; that’s why 
narrower pane spacing is better. Finally, warm glass loses energy by 
radiation, and a thin coating of material with low emissivity (“low-E”) 
reduces radiant heat loss.

ASSESS High-quality windows include all three features described 
here, so they suppress all three kinds of heat loss we’ve discussed. The 
best windows also use an inert gas—usually argon—between panes to 
reduce heat loss further.

MAKING THE CONNECTION Compare the R-factor for a single-pane 
window made from 3.0-mm-thick glass with that of a double-pane 
window made from the same glass with a 5.0-mm air gap between 
panes.

EVALUATE Compute the R-factors for the glass and air space, and 
you’ll get about 0.004 m 2  #  K/ W for the single pane and, adding two 
layers of glass and the air space, 0.2 m2 #  K/W for the double-pane 
window. That’s a factor of 50 improvement! In English units our 
answers translate into R-factors of 0.02 and 1.1—although again 
they’re lower than for actual windows because they neglect “dead 
air” layers and the other improvements discussed above. The best 
commercially available windows, in fact, achieve R-factors of 5 and 
higher, and some multilayer windows exceed R@10.
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16.4 Thermal-Energy Balance 305

16.4 Thermal-Energy Balance
LO 16.6 Evaluate temperatures for systems in thermal-energy balance,  

including applications in climate science.

You keep your house at a comfortable temperature in winter by balancing heat loss with 
 energy from your heating system (Fig. 16.12). This state of thermal-energy balance occurs 
throughout science and engineering. Understanding thermal-energy balance enables engi-
neers to specify a building’s heat sources and helps scientists predict Earth’s future climate.

Engineered systems actively control the thermal-energy balance to achieve a desired 
temperature. But even without active control, systems with a fixed rate of energy input 
naturally tend toward energy balance. That’s because all heat-loss mechanisms give in-
creased loss with increasing temperature. If the rate of energy input to a system is greater 
than the loss rate, then the system gains energy and its temperature increases—and so, 
therefore, does the loss rate. Eventually the two come to balance at some fixed tempera-
ture. If the loss exceeds the gain, the system cools until again it’s in balance. Problems 
involving thermal-energy balance are similar regardless of the energy-loss mechanism or 
whether the application is to a technological or a natural system.

Energy from the
furnace c cbalances

loss through
walls and roof c

cthus 
maintaining
a comfortable
temperature c

ccompared
with outside.

FIGURE 16.12 A house in thermal-energy 
balance.

INTERPRET Interpret the problem to be sure it deals with heat gains and losses. Identify the 
system of interest, the source(s) of energy input to the system, and the significant heat-loss 
mechanism(s).

DEVELOP Determine which equation(s) govern the heat loss; these will necessarily involve 
the system’s temperature. Your plan is then to equate the rate of energy loss with the rate of 
energy input.

EVALUATE Write an equation that expresses equality of energy loss and input. Then evaluate 
by solving for the quantity the problem asks for—often the system’s temperature.

ASSESS If your answer is a temperature, does it seem reasonable? Is the temperature of a 
heated system higher than that of its surroundings?

PROBLEM-SOLVING STRATEGY 16.1 Thermal-Energy Balance

A poorly insulated electric water heater loses heat by conduction at 
the rate of 120 W for each Celsius degree difference between the wa-
ter and its surroundings. It’s heated by a 2.5-kW electric heating el-
ement and is located in a basement kept at 15°C. What’s the water 
temperature if the heating element operates continuously?

INTERPRET The concept here is energy balance, and we identify the 
system of interest as the water. Its energy input comes from the heat-
ing element at the rate of 2.5 kW. The heat loss is by conduction.

DEVELOP Figure 16.13 is a sketch suggesting energy balance in the 
heater. We’re given the conductive heat loss of 120 W/ °C, meaning that 
the total heat-loss rate is H = 1120 W/ °C21∆T2. We then equate the 
heat-loss rate to the energy-input rate: 1120 W/ °C21∆T2 = 2.5 kW.

EVALUATE Solving for ∆T gives

∆T =
2.5 kW

120 W/ °C
= 21°C

With the basement at 15°C, the water temperature is then 36°C.

ASSESS Is this answer reasonable? Not if you want a hot shower; our 
answer is 1°C below body temperature! But we’re told the insulation 
is bad, so it’s time for a new water heater!

Thermal-Energy Balance: Hot WaterEXAMPLE 16.6

FIGURE 16.13 Balance between the heat supplied by the electric ele-
ment and the conductive loss determines the water temperature.
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A solar greenhouse has 300 ft2 of opaque R@30 walls and 250 ft2 of 
R@1.8 double-pane glass that admits solar energy at the average rate 
of 40 Btu/h/ft2. Find the greenhouse temperature on a day when the 
outdoor temperature is 15°F.

INTERPRET Again the concept is energy balance, now with the green-
house as the system of interest. We’re given R@factors, suggesting that 
the energy loss is by conduction through walls and glazing. The en-
ergy input is sunlight.

DEVELOP As we saw in Example 16.4, the R@factor determines a 
heat-loss rate that is related directly to area and temperature difference 
and inversely to the R@factor. So we have

Hw =
Aw ∆T

Rw
= a300

30
b∆T = 110 Btu/h/°F2∆T

for the heat loss through the walls and

Hg =
Ag ∆T

Rg
= a250

1.8
b∆T = 1139 Btu/h/°F2∆T

for the heat loss through the glass, giving a total heat loss 
H = 1149 Btu/h/°F2∆T. Meanwhile, the energy input through the 

entire 250 ft2 of glass is 140 Btu/h/ft221250 ft22 = 1.0 * 104 Btu/h. 
Our plan is to equate energy input and loss and then solve for ∆T.

EVALUATE Equating loss and gain gives

1149 Btu/h/°F2∆T = 1.0 * 104 Btu/h.

We then solve for ∆T:

∆T =
1.0 * 104 Btu/h
149 Btu/h/°F

= 67°F

So when it’s 15°F outside, the greenhouse is at a tropical 82°F.

ASSESS This seems a reasonable greenhouse temperature. Our cal-
culation assumes that solar input remains constant; in a real green-
house the temperature would fluctuate as the Sun’s angle changes and 
clouds pass over. We could minimize these fluctuations by giving the 
greenhouse a large heat capacity, perhaps by incorporating a massive 
concrete slab or concrete walls.

Thermal-Energy Balance: A Solar Greenhouse
Worked Example with Variation Problems

EXAMPLE 16.7

16.5 A house’s thermostat fails, leaving the furnace running continuously. As a re-
sult, will the temperature of the house (a) increase indefinitely, (b) eventually stabi-
lize, or (c) drop below the thermostat setting? Explain.
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Poutgoing = s4pR 2
E T4

where T is Earth’s average temperature. Equating this outgoing power to the 
rate at which solar energy arrives from the Sun gives a statement of energy 
balance:

pR 2
E S = s4pR 2

E T4

Solving for the temperature then gives T = 255 K = -18°C or 0°F. Is 
this reasonable? It’s certainly in the right ballpark—not so hot as to boil the 
oceans or so cold as to freeze the atmosphere. But 0°F seems a bit cold for a 
global average temperature. And it is: Earth’s average temperature is around 
15°C or 59°F. Why the discrepancy?

The answer lies with Earth’s atmosphere. The dominant atmospheric 
gases, nitrogen and oxygen, are largely transparent to both incoming sunlight 
and outgoing infrared. But others—the so-called greenhouse gases, especially 
water vapor and carbon dioxide—let sunlight pass through but impede outgo-
ing infrared. As a result, Earth’s surface temperature has to be higher to get 
the same total radiation to space. This is the natural greenhouse effect, and it 
explains the 33°C temperature difference between our simple calculation and 
Earth’s actual surface temperature. Neighbor planets confirm this reasoning. 
Mars, with very little atmosphere, exhibits almost no greenhouse warming. 
Venus, whose atmosphere is 100 times denser than Earth’s and largely CO2, 
has a “runaway” greenhouse effect that keeps its surface hotter than an oven. 
You can explore the climates of our neighbor planets in Problem 77.

Sunlight is absorbed by an
effective area equal to Earth’s
cross-sectional area pRE

2 c

cbut it’s radiated from the planet’s
entire surface area, 4pRE

2

Incident sunlight

Outgoing infrared

APPLICATION The Greenhouse Effect and Global Warming

emissivity for infrared radiation is essentially 1, so Earth radiates energy at a 
rate given by the Stefan–Boltzmann law, Equation 16.9:

The Earth–atmosphere system absorbs energy from the Sun at an average rate 
of 960 W for each square meter of the planet’s cross-sectional area, pR 2

E ,  
where RE is Earth’s radius (see the diagram). This quantity is designated S, so 
we write S = 960 W/m2. This value accounts for night and day; for clouds; 
and for the reflection of sunlight from ice, snow, deserts, and other highly 
reflective surfaces and especially from particulate matter in the atmosphere. 
Therefore, the rate at which the entire Earth–atmosphere system absorbs en-
ergy is Pincoming = pR 2

E S. This incoming energy causes Earth to warm un-
til it loses energy at the same rate. Since it’s surrounded by the vacuum of 
space, Earth can only lose energy by radiation. Since Earth is much cooler 
than the Sun, that radiation is in the form of invisible infrared. Furthermore, as 
the diagram shows, Earth radiates from its entire surface area, 4pR 2

E . Earth’s 
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16.3 Heat Transfer 307

processes like deforestation and cement production also contribute. Other 
greenhouse gases, such as methane, also contribute to humankind's en-
hancement of the greenhouse effect. Basic physics then dictates that Earth’s 
surface temperature should rise. How much and how fast depend on com-
plex interactions among atmosphere, surface, oceans, and life, and on future 
 greenhouse-gas emissions. Nevertheless, a consensus among climate scientists 
suggests that Earth has warmed by some 1°C since the mid-19th century, with 
most of this warming attributable to human activities—especially combustion 
of fossil fuels and the resulting CO2 emissions (see the graph). Further warm-
ing in the range of 1.5°C95°C is projected by the year 2100, with the low end 
requiring substantial curtailing of greenhouse-gas emissions and the high end 
corresponding to “business as usual.”

Although even a 5°C increase may seem modest, the rate of increase in all 
scenarios for the 21st century is far greater than most natural climate change. 
Furthermore, as the map shows, warming will not be distributed evenly over 
the globe but will be greatest in the arctic and over most land masses. One 
of many serious consequences of this rapid warming is a rise in sea level, 
which is already occurring substantially more rapidly than its average rate 
over the past 2000 years. During the last so-called interglacial warm period, 
some 120,000 years ago, sea level was between 5 and 10 m higher than it 
is today—enough to swamp Earth’s coastal cities. The temperature at that 
time was likely only a little more than 2°C above the pre-industrial tempera-
ture of the 18th and 19th centuries. Considerations such as this have led the 
world’s governments to adopt the goal of limiting the planet’s  industrial-era 
temperature rise to no more than 2°C. Given that we’re about halfway there 
already, achieving this goal will require drastic changes in the way we pro-
duce energy.
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As the graph shows, humans have increased atmospheric carbon diox-
ide more than 40% since the start of the industrial era, to a level—now over 
410 parts per million—that the planet has not seen for millions of years. 
Combustion of fossil fuels is the dominant source of this CO2, although 
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Chapter 16 Summary

Big Ideas
The big ideas here are temperature and heat. Temperature is a property common to 
systems in thermodynamic equilibrium. Temperature is quantified in SI units using 
the Kelvin scale, currently defined in terms of gas-based thermometers.

Systems A and B
have been in thermal
contact with no
further macroscopic
changes.

They’ve reached
thermodynamic
equilibrium and
so have the same
temperature.

A B

Heat is energy in transit as a result of a temperature 
difference.

For TA 7 TB, heat flows
from A to B.

A

TA TB

B

Key Concepts and Equations
Heat capacity and specific heat quantify the energy 
Q required to raise an object’s temperature by ∆T:

Mass m
Add energy

QSpecific
heat c

Temperature T

Temperature
increase ∆T

Q = mc ∆T
Q = mc ∆T

Applications
Temperature scales include Kelvin (K), 
Celsius 1°C2, Fahrenheit 1°F2, and Rankine 
1°R2.

357

-273

-196
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iu
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1134

0

139
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672

Ran
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-460

-321

32

212
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nheit

Mercury
boils

Steam
point

Ice point

Nitrogen
boils

Absolute zero

630

0

77

273

373

Kelv
in

The Kelvin and Celsius scales are  related 
by TC = T - 273.15.  The relat ion be-
tween Fahrenheit and Celsius scales is 
TF = 9

5 TC + 32.

Equilibrium temperature: Combining 
two systems at different temperatures results 
in a common equilibrium temperature given 
by m1c1 ∆T1 + m2c2 ∆T2 = 0.

T

m2, c2, T2

m1, c1, T1

Insulated Same T

T

Energy balance: A system experiencing 
both energy input and energy loss comes to 
energy balance at the temperature for which 
the energy-loss rate equals the rate of energy 
input.

Energy in

Energy
out

Incident sunlight

Outgoing infrared

Three important heat-transfer mechanisms are:

A, T

T

Area AT + ∆T

H

∆x

Cool

Hot

Sinking
fluid

Rising
fluid

H = -kA 
∆T
∆x

 P = esAT4

1conductive heat flow2 aStefan-Boltzmann law;
radiated power b

Conduction Convection Radiation
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Exercises and Problems 309

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems COMP Computer problems

Mastering Physics Go to www.masteringphysics.com to access assigned homework and self-study tools such as 
Dynamic Study Modules, practice quizzes, video solutions to problems, and a whole lot more!

Learning Outcomes After finishing this chapter you should be able to:

LO 16.1 Define heat, temperature, and thermodynamic equilibrium, 
and convert between temperature scales.
For Thought and Discussion Questions 16.1, 16.2, 16.3; 
Exercises 16.11, 16.12, 16.13, 16.14, 16.15, 16.16, 16.17; 
Problems 16.43, 16.44, 16.45

LO 16.2 Solve problems involving heat capacity and specific heat.
For Thought and Discussion Questions 16.4, 16.5, 16.10; 
Exercises 16.18, 16.19, 16.20, 16.21, 16.22, 16.23; 
Problems 16.46, 16.47, 16.48, 16.49, 16.50, 16.51, 16.52, 
16.53, 16.54, 16.55, 16.57, 16.58, 16.59, 16.60, 16.67, 
16.68, 16.74, 16.75, 16.76

LO 16.3 Describe the three main heat-transfer mechanisms.
For Thought and Discussion Questions 16.6, 16.7

LO 16.4 Solve problems involving conductive heat transfer, includ-
ing applications to building insulation.
For Thought and Discussion Questions 16.8, 16.9; Exercises 
16.24, 16.25, 16.26, 16.27, 16.28, 16.29; Problems 16.61, 
16.62, 16.65, 16.66, 16.71, 16.78, 16.80

LO 16.5 Solve problems involving radiative heat transfer.
Exercise 16.30; Problems 16.56, 16.65, 16.69, 16.70, 16.72, 
16.73

LO 16.6 Evaluate temperatures for systems in thermal-energy bal-
ance, including applications in climate science.
Exercises 16.31, 16.32, 16.33, 16.34; Problems 16.63, 
16.64, 16.77, 16.79, 16.81, 16.82

For Thought and Discussion

1. Does a thermometer measure its own temperature or the tempera-
ture of its surroundings? Explain.

2. Compare the relative sizes of the kelvin, the degree Celsius, the 
degree Fahrenheit, and the degree Rankine.

3. If you put a thermometer in direct sunlight, what do you measure: 
the air temperature, the temperature of the Sun, or some other 
temperature?

4. Why does the temperature in a stone building usually vary less 
than in a wooden building?

5. Why do large bodies of water exert a temperature-moderating ef-
fect on their surroundings?

6. Stainless-steel cookware often has a layer of aluminum or copper 
embedded in the bottom. Why?

7. What method of energy transfer dominates in baking? In broiling?
8. Glass and fiberglass are made from the same material, yet have 

dramatically different thermal conductivities. Why?
9. To keep your hands warm while skiing, you should wear mittens 

instead of gloves. Why?
10. Global warming at Earth’s surface is generally producing greater 

temperature rises over land than over the oceans. Why might this be?

Exercises and Problems

Exercises

Section 16.1 Heat, Temperature, and Thermodynamic 
Equilibrium
11. A 2017 Stanford University study suggests there’s a 50% chance 

that the global temperature increase by the year 2100 will lie in 
the range 3.0°C to 4.2°C. Translate this range into Fahrenheit.

12. A Canadian meteorologist predicts an overnight low of -15°C. 
How would a U.S. meteorologist express that prediction?

13. Normal room temperature is 68°F. What’s this in Celsius?
14. The outdoor temperature rises by 10°C. What’s that rise in 

Fahrenheit?

15. At what temperature do the Fahrenheit and Celsius scales coincide?
16. The normal boiling point of nitrogen is 77.3 K. Express this in 

Celsius and Fahrenheit.
17. A sick child’s temperature reads 39.1 on a Celsius thermometer. 

What’s the temperature in Fahrenheit?

Section 16.2 Heat Capacity and Specific Heat
18. Find the heat capacity of a 55-tonne concrete slab.
19. Find the energy needed to raise the temperature of a 2.0-kg chunk 

of aluminum by 18°C.
20. What’s the specific heat of a material if it takes 7.5 kJ to increase 

the temperature of a 1-kg sample by 3.0°C?
21. The average human diet contains about 2000 kcal per day. If all 

this food energy is released rather than stored as fat, what’s the 
approximate average power output of the human body?

22. Walking at 3 km/h requires an energy expenditure rate of about 
200 W. How far would you have to walk to “burn off” a 420-kcal 
hamburger?

23. (a) How much heat does it take to bring a 3.4-kg iron skillet from 
20°C to 130°C? (b) If the heat is supplied by a stove burner at the 
rate of 2.0 kW, how long will it take to heat the pan?

Section 16.3 Heat Transfer
24. Building heat loss in the United States is usually expressed in 

Btu/h. What’s 1 Btu/h in SI units?
25. Find the magnitude of the heat-loss rate per square meter through 

slabs of (a) wood and (b) Styrofoam, each 2.0 cm thick, if one 
surface is at 20°C and the other is at 0°C.

26. You’re a builder who’s advising a homeowner to have her foun-
dation walls insulated with 2 inches of Styrofoam. To make 
your point, you tell her how thick the concrete walls (normally 
8 inches) would have to be to have the same insulating value as 
2 inches of Styrofoam. What’s this thickness?

27. An 8.0 m by 12 m house is built on a concrete slab 23 cm thick. 
Find the heat-loss rate through the floor if the interior is at 20°C 
while the ground is at 10°C.

28. Find the R-factor for a wall that loses 0.040 Btu each hour 
through each square foot for each °F temperature difference.
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310 Chapter 16 Temperature and Heat

29. Compute the R-factors for 1-inch thicknesses of air, concrete,  
fiberglass, glass, Styrofoam, and wood.

30. A horseshoe has surface area 50 cm2, and a blacksmith heats it to 
a red-hot 810°C. At what rate does it radiate energy?

Section 16.4 Thermal-Energy Balance
31. An oven loses energy at the rate of 14 W per °C temperature 

 difference between its interior and the 20°C temperature of  
the kitchen. What average power must be supplied to maintain the 
oven at 180°C?

32. You’re having your home’s heating system replaced, and the heat-
ing contractor has specified a new system that supplies energy 
at the maximum rate of 40 kW. You know that your house loses 
 energy at the rate of 1.3 kW per °C temperature difference be-
tween interior and exterior, and the minimum winter temperature 
in your area is -15°C. You’d like to maintain 20°C 168°F2 indoors. 
Should you go with the system your contractor recommends?

33. The filament of a 100-W lightbulb is at 3.0 kK. What’s the fila-
ment’s surface area?

34. A typical human body has surface area 1.4 m2 and skin tem-
perature 33°C. If the body’s emissivity is about 1, what’s the net 
 radiation from the body when the ambient temperature is 18°C?

Example Variations
The following problems are based on two worked examples from the 
text. Each set of four problems is designed to help you make connec-
tions that enhance your understanding of physics and to build your 
confidence in solving problems that differ from ones you’ve seen be-
fore. The first problem in each set is essentially the example problem 
but with different numbers. The second problem presents the same sce-
nario as the example but asks a different question. The third and fourth 
problems repeat this pattern but with entirely different scenarios.

35. Example 16.2: An iron frying pan of mass 2.65 kg is at 144°C 
when it’s plunged into a sink full of 10.9 kg of water at 21.0°C. 
Assuming no heat loss, what’s the equilibrium temperature of the 
water and pan?

36. Example 16.2: You’ve got a 2.33-kg aluminum skillet on a hot 
stove burner, and the skillet is at a sizzling 286°C. You plan to 
plunge the skillet into 25°C water to cool it. What’s the minimum 
amount of water that will keep the equilibrium temperature below 
40°C?

37. Example 16.2: During the refueling of a nuclear power plant, 
248 spent fuel assemblies are moved from the reactor to a spent 
fuel pool. Each fuel assembly has mass 322 kg and specific heat  
284 J/kg·K, and they come from the reactor at an average tem-
perature of 658°C. The spent fuel pool contains 1720 tonnes (1720 
Mg) of water initially at 15.0°C. By how much does the water 
temperature increase once it comes to equilibrium with the fuel 
rods? (In this situation, though, the water temperature rises further 
because of energy generated by radioactive decay in the fuel rods.)

38. Example 16.2: A manufacturer of brass starts with 755 kg of mol-
ten copper at 1350°C, then adds molten zinc at 469°C. The specific  
heats of molten copper and zinc are respectively 572 J/kg·K and 
497 J/kg·K. If the equilibrium temperature of the mix is 1170°C, 
what percent of the alloy’s mass is zinc?

39. Example 16.7: A solar greenhouse has 435 ft2 of R-45 walls and 
285 ft2 of R-2.1 glass that admits solar energy at the average rate 
of 35.6 Btu/h/ft2. Find the greenhouse temperature on a day when 
the outdoor temperature is –10.5°F.

40. Example 16.7: A solar greenhouse in Europe has 51.5 m2 of 
walls insulated to R = 9.56 m2·K/W and 32.3 m2 of glass with  

R = 0.21 m2·K/W that admits solar energy at the average rate of 
112 W/m2. What’s the minimum outdoor temperature for which 
the greenhouse interior will stay above freezing?

41. Example 16.7: An asteroid in the belt between Mars and Jupiter 
absorbs solar energy at the average rate of 96.2 W for every 
square meter of its surface. If the asteroid behaves like a black-
body, what’s its surface temperature?

42. Example 16.7: The habitable zone around a given star is defined 
as the region in which a planet’s surface temperature is consistent 
with the existence of liquid water. The red dwarf star Trappist-1 has 
a luminosity (total power output) only 0.000522 that of the Sun. 
Determine the range of distances from Trappist-1 that mark its hab-
itable zone. Assume terrestrial atmospheric pressure, under which 
water freezes at 0°C and boils at 100°C. Assume also that any planet 
in this range behaves like a blackbody and, for the reason described 
this chapter’s Application: The Greenhouse Effect and Global 
Warming, that a planet absorbs solar energy over its cross-sectional 
area but radiates from its entire surface. Hint: You’ll need to consult 
the inside back cover and maybe review Section 14.4. (There are, in 
fact, seven planets in Trappist-1’s habitable zone.)

Problems
43. A constant-volume gas thermometer is filled with air whose pres-

sure is 101 kPa at the normal melting point of ice. What would its 
pressure be at (a) the normal boiling point of water (373 K), (b) 
the normal boiling point of oxygen (90.2 K), and (c) the normal 
boiling point of mercury (630 K)?

44. A constant-volume gas thermometer is at 55-kPa pressure at the 
triple point of water. By how much does its pressure change for 
each kelvin temperature change?

45. In Fig. 16.2’s gas thermometer, the height h is 60.0 mm at the tri-
ple point of water. When the thermometer is immersed in boiling 
sulfur dioxide, the height drops to 57.8 mm. What is the boiling 
point of SO2 in kelvins and in degrees Celsius?

46. If your mass is 60 kg, what’s the minimum number of Calories 
(kcal) you would “burn off” climbing a 1700-m-high mountain? 
(Note: The actual metabolic energy used would be much greater.)

47. Typical fats contain about 9 kcal per gram. If the energy in body fat 
could be utilized with 100% efficiency, how much mass would a run-
ner lose in a 26.2-mile marathon while consuming 125 kcal/mile?

48. A circular lake 1.0 km in  diameter 
is 10 m deep (Fig. 16.14). Solar 
energy is incident on the lake at 
an average rate of 200 W/m2. 
If the lake absorbs all this en-
ergy and does not exchange heat 
with its surroundings, how long 
will it take to warm from 10°C  
to 20°C?

49. How much heat is required to raise an 800-g copper pan from 
15°C to 90°C if (a) the pan is empty or contains (b) 1.0 kg of water 
and (c) 4.0 kg of mercury?

50. Initially, 100 g of water and 100 g of another substance listed in 
Table 16.1 are at 20°C. Heat is then transferred to each substance 
at the same rate for 1.0 min. At the end of that time, the water is 
at 32°C and the other substance at 76°C. (a) What’s the other sub-
stance? (b) What’s the heating rate?

51. You draw 330 mL of 10°C water from the tap and pop it into a 
900-W microwave oven to heat for tea. How long should you mi-
crowave the water so it just reaches the boiling point?

52. Two neighbors return from Florida to find their houses at a frigid 
35°F. Each house has a furnace that can supply 100,000 Btu/h. 
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FIGURE 16.14 Problem 48
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One house is made of stone and weighs 75 tons. The other is 
wood and weighs 15 tons. How long does it take each house to 
reach 65°F? Neglect heat loss, and assume the entire house mass 
reaches a uniform temperature.

53. You’re arguing with your roommate about whether it’s quicker to 
heat water on a stove burner or in a microwave. The burner sup-
plies energy at the rate of 1.0 kW, the microwave at 625 W. You 
can heat water in the microwave in a paper cup of negligible heat 
capacity, but the stove requires a pan with heat capacity 1.4 kJ/K. 
How much water do you need before it becomes quicker to heat 
on the stovetop? Neglect energy loss to the surroundings.

54. In the 2011 nuclear accident at Fukushima, Japan, an 
 earthquake-triggered tsunami wiped out emergency generators, 
leaving three reactors without a source of cooling water. Although 
safety systems shut down the reactors during the earthquake, ra-
dioactive decay continued to generate thermal energy at the rate of 
some 33 MW. In a desperate attempt to cool the reactors, operators 
used fire engines to pump seawater into the reactors. If 650 m3 of 
10°C seawater were injected into a reactor, how long would it take 
that 33 MW of thermal power to bring the water to the boiling point?

55. A 1.2-kg iron tea kettle sits on a 2.0-kW stove burner. If it takes 
5.4 min to bring the kettle and the water in it from 20°C to the 
boiling point, how much water is in the kettle?

56. The temperature of the eardrum provides a reliable measure of 
deep body temperature and is measured quickly with ear ther-
mometers that sense infrared radiation. A thermometer that 
“views” 1 mm2 of the eardrum requires 100 µJ of energy for a reli-
able reading at normal 37°C body temperature. How long does the 
measurement take?

57. A 1500-kg car moving at 40 km/h is brought to a sudden stop. If 
all the car’s energy is dissipated in heating its four 5.0-kg steel 
brake disks, by how much do the disk temperatures increase?

58. A washing machine’s “warm” setting calls for water at 34.0°C. If 
the cold-water supply is at 12.4°C and the hot-water supply is at 
51.7°C, what ratio of hot to cold water should the washing ma-
chine’s fill valves admit to the machine?

59. A piece of copper at 300°C is dropped into 1.0 kg of water at 
20°C. If the equilibrium temperature is 25°C, what’s the mass of 
the copper?

60. While camping, you boil water to make spaghetti. Your pot contains 
2.5 kg of water initially at 10°C. You stoke up the campfire, and as 
a result the water gains energy at an increasing rate: P = a + bt, 
where a = 1.1 kW, b = 2.3 W/s, and t is the time in s. To the 
nearest minute, how long will it take to bring the water to a boil?

61. A biology lab’s walk-in cooler measures 3.0 m by 2.0 m by 2.3 m 
and is insulated with 8.0-cm-thick Styrofoam. If the surrounding 
building is at 20°C, at what average rate must the cooler’s refrig-
eration unit remove heat in order to maintain 4.0°C in the cooler?

62.  One end of an iron rod 40 cm 
long and 3.0 cm in diameter is 
in ice water, the other in boil-
ing water (Fig. 16.15). The 
rod is well insulated so no heat 
is lost out the sides. Find the 
heat-flow rate along the rod.

63. You arrive for a party on a 
night when it’s 8°C outside. 
Your hosts meet you at the 
door and say the party may need to be cancelled, because the 
heating system has failed and they don’t want to discomfort their 
guests. You say, “Not so fast!” A total of 36 people are expected, 
the average power output of a human body is 100 W, and the 

house loses energy at the rate 320 W/°C. Will the house remain 
comfortable?

64. An electric stove burner has surface area 325 cm2 and emissivity 
e = 1. The burner consumes 1500 W and is at 900 K. If room 
temperature is 300 K, what fraction of the burner’s heat loss is 
from radiation?

65. In a low-temperature physics experiment, a metal block is sur-
rounded on five faces by near-perfect insulation that prevents any 
conductive heat loss, and it’s coated on those faces with a perfect 
reflector that prevents radiation. The remaining face is painted black 
so it behaves like a blackbody of emissivity 1, and it’s covered with 
a slab of material with thermal conductivity k and thickness d that’s 
transparent to radiation. The other side of the slab is in contact with 
liquid helium at nearly 0 K. (a) Find an expression for the tempera-
ture of the metal block if it loses energy equally by radiation and 
conduction. You can assume that heat flows straight through the 
slab, perpendicular to its interface with the metal block, with no heat 
loss out its sides. (b) Evaluate your expression when the slab is 2.85 
cm thick and is made of insulating foam with k = 0.0166.

66. You’re considering purchasing a new sleeping bag whose man-
ufacturer claims it will keep you warm to -10°F. The bag has 
down insulation with 4.0-cm loft (thickness). Your body produces 
heat at the rate of 100 W and has area 1.5 m2. Considering only 
conductive heat loss, will you be able to maintain normal body 
temperature in the bag at -10°F?

67. A blacksmith heats a 1.1-kg iron horseshoe to 550°C, then 
plunges it into a bucket containing 15 kg of water at 20°C. What’s 
the equilibrium temperature?

68. What’s the power output of a microwave oven that can heat 430 
g of water from 20°C to the boiling point in 2.5 min? Neglect the 
container’s heat capacity.

69. A cylindrical log 15 cm in diameter and 65 cm long is glowing 
red hot in a fireplace. The log’s emissivity is essentially 1. If it’s 
emitting radiation at the rate of 34 kW, what’s its temperature?

70. A blue giant star whose surface temperature is 23 kK radiates en-
ergy at the rate of 3 .4 * 1 0 3 0 W. Find the star’s radius, assuming 
it behaves like a blackbody.

71. Rework Example 16.4, now assuming the house has 10 
 single-glazed windows, each measuring 2.5 ft by 5.0 ft. Four of 
the windows are on the south, and each admits solar energy at 
the average rate of 30 Btu/h 

#
 ft2. All the windows lose heat; their  

R-factor is 0.90. (a) Find the total heating cost for the month. (b) 
How much is the solar gain worth?

72. In 2014 the European Space Agency’s Rosetta spacecraft was 
5000 km from the comet 67P/Churyumov-Gerasimenko. Rosetta 
turned its infrared sensors toward the comet and measured a flux of 
96.3 W per square meter of cometary surface. Assuming the dark, 
dusty comet radiated like a blackbody, what was its temperature?

73. Estimate the average temperature on Pluto, treating the dwarf 
planet as a blackbody whose great distance from the Sun means 
that it receives energy from the Sun at the rate of only 0.876 W/m2.

74. The table below shows temperature versus time for 500 g of wa-
ter heated in a microwave oven. In a microwave, essentially all 
the microwave energy goes into the water-containing food in the 
oven. Plot the data, determine a best-fit line, and use the slope 
of your line to determine the microwave power of this partic-
ular oven. Assume that water’s specific heat is independent of 
temperature (which is only approximately true; see Problem 75).

Time (s) 0 25 60 95 125 160 190

Temperature (°C) 12 20 39 53 64 83 93
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FIGURE 16.15 Problem 62

M16_WOLF8559_04_SE_C16.indd   311 11/13/18   9:05 PM
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75. Water’s specific heat in the range from 0°C to 100°C varies with tem-
perature according to the equation c1T2 = c0 + aT + bT2, where 
c0 = 4207.9 J/kg #K, a = -1.292 J/kg #K2, and b = 0.01330 J/kg #K3. 
Use this expression to find the heat required to raise the tempera-
ture of 1.000 kg of water from 0°C to 100°C. By what percentage 
does this differ from the result you would get using the value of c 
in Table 16.1 over the entire temperature range?

76. At low temperatures the specific heats of solids are approximately 
proportional to the cube of the temperature: c1T2 = a1T/T023. For 
copper, a = 31 J/g 

#
 K and T0 = 343 K. Find the heat required to 

bring 40 g of copper from 10.0 K to 25.0 K.
77. The Application on global warming (page 305) gives 960 W/m2 

as the average rate at which solar energy reaches Earth. You can 
approximate the solar energy rate reaching other planets by scal-
ing this quantity by the inverse square of the planet’s distance from 
the Sun (see Appendix E)—although what you’ll get is only an 
approximation because that 960 W/m2 includes effects of clouds 
and reflection that are unique to Earth and, more importantly, it 
neglects the greenhouse effect. Follow the procedure used in the 
Application to find approximations to the temperatures of Mars and 
Venus, and compare with their mean measured surface tempera-
tures (you’ll have to research those). Your results suggest that Mars 
has very little greenhouse effect, while Venus exhibits a “runaway” 
greenhouse effect resulting in a very high surface temperature.

78. In a cylindrical pipe where area isn’t constant, Equation 16.5 
takes the form H = -kA1dT/dr2, where r is the radial coordinate 
measured from the pipe axis. Use this equation to show that the 
heat-loss rate from a cylindrical pipe of radius R1 and length L is

H =
2pkL1T1 - T22

 ln 1R2/R12

where the pipe is surrounded by 
insulation of outer radius R2 and 
thermal conductivity k and where 
T1 and T2 are the temperatures 
at the pipe surface and the outer 
surface of the insulation, respec-
tively. (Hint: Consider the heat 
f low through a thin section of 
pipe, with thickness dr, as shown in Fig. 16.16. Then integrate.)

79. A friend who’s skeptical about climate change argues that the 
roughly 0.85°C increase in Earth’s temperature during the indus-
trial era could be caused by an increase in the Sun’s power output. 
The Sun’s average power has, in fact, increased by about 0.05% 
during this time. Could your friend be right?

80. Your family is winterizing its lakefront camp, and you want at 
least R-19 insulation in the walls. You’ve got some European-
made insulation with R-factor 3.5 m2 #  K/W. Will it do?

81. A passive solar house has south-facing windows that, in winter, 
admit solar energy at an average rate of 2.2 kW. The house is well 
insulated, losing only 55 W for every °C temperature difference 
between inside and outside. What’s the minimum outdoor tem-
perature for which the house can maintain 21°C inside?

82. A more realistic approach to the solar greenhouse of Example 16.7 
considers the time dependence of the solar input. A function that ap-
proximates the solar input is 140 Btu/h/ft22  sin21pt/242, where t is 
the time in hours, with t = 0 at midnight. Then the greenhouse is no 
longer in energy balance, but is described instead by the differential 
form of Equation 16.3 with Q the time-varying energy input. Use 
computer software or a calculator with differential-equation-solving 
capability to find the time-dependent temperature of the greenhouse, 

and determine the maximum and minimum temperatures. Assume 
the same numbers as in Example 16.7, along with a heat capacity 
C = 1500 Btu/°F for the greenhouse. You can assume any rea-
sonable value for the initial temperature, and after a few days your 
greenhouse temperature should settle into a steady oscillation inde-
pendent of the initial value.

Passage Problems
Fiberglass is a popular, economical,  
and fairly effective building insulation.  
It consists of fine glass fibers—often 
including recycled glass—formed 
loosely into rectangular slabs or rolled 
into blankets (Fig. 16.17). One side 
is often faced with heavy paper or 
aluminum foil. Fiberglass insulation 
comes in thicknesses compatible with 
common building materials—for ex-
ample, 3.5 inch and 6 inch for wood-framed walls. Standard 6-inch fi-
berglass has an R-factor of 19.

83. Fiberglass insulation owes its insulating quality primarily to
a. the low thermal conductivity of glass.
b. its ability to block cold air infiltration.
c. the low thermal conductivity of air trapped between the glass 

fibers.
84. One purpose of foil facing on fiberglass insulation is to reduce 

heat loss by
a. conduction.
b. convection.
c. radiation.

85. Fiberglass insulation for attics is available in 12-inch thickness. 
Its R-factor is
a. 38.
b. 76.
c. 29.

86. Since fiberglass insulation is readily compressible, you could 
squash two slabs initially 6 inches wide into a 6-inch wall space. 
This would
a. double the overall R-factor.
b. increase the overall R-factor but not double it.
c. decrease the overall R-factor.
d. not change the overall R-factor.

Answers to Chapter Questions

Answer to Chapter Opening Question
The photo is taken in infrared light, and the amount of infrared radi-
ation increases rapidly with increasing temperature. The car’s wheels 
are glowing with infrared, a result of frictional heating when the brakes 
were recently applied.

Answers to GOT IT? Questions
16.1 (b)
16.2  (a) The rock’s temperature changes more because its specific 

heat is lower.
16.3  ∆T2 6 ∆T3 6 ∆T1; Since H and ∆x are the same for each slab, 

the product k ∆T must be constant, so a higher conductivity 
means a lower ∆T.

16.4 (1) Radiation; (2) conduction; (3) convection
16.5  (b) Because as the temperature rises so does the heat-loss  

rate—eventually bringing the house into energy balance.

CH

CH

ENV

CH

ENV

COMP

ENV

FIGURE 16.17 End view of a 
slab of fiberglass insulation 
(Passage Problems 83–86).

Insulation

dr

T + dT
T

r

R2

R1

FIGURE 16.16 Problem 78

ENV
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Matter responds to heating in several ways. It may get hotter or may 
melt. It may change size, shape, or pressure. This chapter explores the 

thermal behavior of matter. We start with a simple gaseous state, whose 
behavior follows from Newtonian mechanics at the molecular level. We 
then move to liquids and solids, whose behavior is still grounded in the 
molecular properties of matter, but whose description is more empirical.

17.1 Gases
LO 17.1 Describe gases quantitatively using the ideal-gas law.

LO 17.2 Describe the distribution of molecular speeds and  
deviations from ideal-gas behavior.

Gases are simple because their molecules are far apart and only rarely in-
teract. That makes gas behavior and its physical explanation particularly 
straightforward. Developing that explanation will clarify the relation between 
macroscopic properties—such as temperature and pressure—and the underly-
ing microscopic properties of gas molecules.

The Ideal-Gas Law
The macroscopic state of a gas in thermodynamic equilibrium is determined 
by its temperature, pressure, and volume. Moreover, it turns out that all gases 
exhibit, to a very good approximation, the same relation among these three 
quantities.

Skills & Knowledge You’ll Need
■■ The concept of temperature 

(Section 16.1)

■■ Kinetic energy (Section 6.4)

■■ Newton’s second and third laws 
(Chapter 4)

Learning Outcomes
After finishing this chapter you should be able to:

LO 17.1 Describe gases quantitatively using the ideal-gas law.

LO 17.2 Describe the distribution of molecular speeds and deviations 
from ideal-gas behavior.

LO 17.3 Determine energies involved in phase changes.

LO 17.4 Analyze phase diagrams.

LO 17.5 Calculate thermal expansion and contraction of materials, 
including water.

The Thermal Behavior of Matter

19
The Second Law of 
Thermodynamics

18
Heat, Work, and 
the First Law of 

Thermodynamics

16
Temperature and 

Heat

15
Fluid Motion

What unusual property of water is evident in  
this photo?

17
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314 Chapter 17 The Thermal Behavior of Matter

Gas

FIGURE 17.1 A piston–cylinder system.

What volume is occupied by 1.00 mol of an ideal gas at standard tem-
perature and pressure (STP), where T = 0°C and p = 101.3 kPa?

INTERPRET We’re dealing with an ideal gas, and we’re given the 
amount of gas, the temperature, and the pressure.

DEVELOP Because we’re given the number of moles n, we’ll use the 
ideal-gas law in the form of Equation 17.2, pV = nRT, to find the 
volume.

EVALUATE Solving for V gives

 V =
nRT

p
=

11.00 mol218.314 J/K # mol21273.15 K2
1.013 * 105 Pa

 = 22.4 * 10-3 m3 = 22.4 L

where we expressed T = 0°C as 273.15 K.

ASSESS This result may be familiar from earlier chemistry or 
 physics courses: 1 mole of any ideal gas—no matter what its chemical  
composition—occupies 22.4 L at standard temperature and pressure.

EXAMPLE 17.1 The Ideal-Gas Law: STP
Worked Example with Variation Problems

A simple system for studying gas behavior consists of a gas-filled cylinder sealed by 
a movable piston (Fig. 17.1). This is not just a pedagogical abstraction: Practical devices 
including engines, pumps, and air compressors contain piston–cylinder systems, while 
lungs, balloons, gas bubbles, and many other natural systems are analogous to our piston–
cylinder system.

If we maintain the system of Fig. 17.1 at constant temperature and move the piston 
to vary the gas volume, we find that the pressure varies inversely with the volume. If 
we increase the temperature while holding the volume fixed, the pressure rises in direct 
proportion to the temperature. If we double the amount of gas while holding tempera-
ture and volume constant, the pressure doubles. Putting all these results together, we 
can write

 pV = NkT  1ideal@gas law2 (17.1)

with p, V, and T the pressure, volume, and temperature, respectively, and N the number of 
molecules in the gas. Equation 17.1 is the ideal-gas law. Most real gases obey this law to a 
very good approximation. The constant k that appears in the ideal-gas law is Boltzmann’s 
constant, named for the Austrian physicist Ludwig Boltzmann (1844–1906), who was 
instrumental in developing the microscopic description of thermal phenomena. In this 
chapter we’ll use the approximate value k = 1.38 * 10-23 J/K. The new SI, though, gives 
k an exact value, providing an explicit-constant definition of the kelvin in terms of the 
joule. That definition reflects a fundamental relationship between temperature and energy, 
which we’ll develop very soon.

Because the number of molecules N in a typical gas sample is astronomically large, we 
often express the ideal-gas law in terms of the number of moles (mol) of gas molecules. 
One mole is an SI unit equal to Avogadro’s number, NA, of atoms or molecules. NA is ap-
proximately 6.022 * 1023, but in the new SI it’s been given an exact value that provides an 
explicit-constant definition of the mole.

If we have n moles of a gas, then N = nNA is the number of molecules, so the ideal-gas 
law becomes

 pV = nNAkT = nRT  (17.2)

where R = NAk = 8.314 J/K 

#
 mol is called the universal gas constant.

The ideal-gas law 
relates the product of 
pressure p…

…and volume V…
…to the number N of 
gas molecules…

…and the gas 
temperature T.

k is Boltzmann’s constant, with the 
approximate value 1.38 * 10-23 J/K.
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17.1 Gases 315

The ideal-gas law is remarkably simple. Neither its form nor the constants k and R 
depend on the substance making up the gas or on the mass of the gas molecules. Yet 
most real gases follow the ideal-gas law very closely over a wide range of pressures. This 
nearly ideal behavior is what gives gas thermometers their high precision over a wide 
temperature range.

Kinetic Theory of the Ideal Gas
Why do gases obey such a simple relation among temperature, pressure, and volume? 
Here we answer that question with an analysis based ultimately on Newtonian mechanics.

We start with some simplifying assumptions:

1. The gas consists of many identical molecules, each with mass m but negligible size 
and no internal structure. This assumption is approximately true for real gases when 
the distance between molecules is large compared with their size. This allows us to 
neglect intermolecular collisions, an assumption that simplifies our analysis but isn’t 
crucial to the ideal-gas model.

2. The molecules don’t exert action-at-a-distance forces on each other. Thus there’s no 
intermolecular potential energy, and therefore the molecules have only kinetic energy.  
This assumption is fundamental to an ideal gas.

3. The molecules move in random directions with a distribution of speeds that’s inde-
pendent of direction.

4. Collisions with the container walls are elastic, conserving the molecules’ energy and 
momentum. Here’s where we tie our gas model to Newtonian mechanics.

Consider N molecules confined to a rectangular box with length L (Fig. 17.2). Each 
molecule that collides with a wall exerts a force. There are so many molecules that individ-
ual collisions aren’t evident; instead the wall experiences an essentially constant  average 
force. The gas pressure p is a measure of this force on a unit area. We’re going to find an 
expression for p and use it to gain deep insights into the ideal-gas law and the meaning of 
temperature.

Figure 17.3 shows one molecule colliding with the right-hand wall. Since the collision 
is elastic, the y-component of the molecule’s velocity is unchanged, while the x-component  
reverses sign. Thus the molecule undergoes a momentum change of magnitude 2mvxi, 
where i labels this particular molecule. After the molecule collides with the right-hand 
wall, nothing will change its x velocity until it hits the left-hand wall and its x velocity 
again reverses. So it will be back at the right-hand wall in the time ∆ti = 2L/vxi that it 
takes to go back and forth along the container.

Now each time our molecule collides with the right-hand wall, it delivers momentum 
2mvxi to the wall. Newton’s second law says that force is the rate of change of momentum. 
So we can calculate the average force Fi due to one molecule by dividing the momentum 
delivered, 2mvxi, by the time, 2L/vxi, between collisions:

Fi =
2mvxi

2L /vxi
=

mvxi
2

L

To get the total force on the wall, we sum over all N molecules with their different x 
 velocities. Dividing by the wall area A then gives the pressure:

p =
F
A

= a  Fi

A
= a  mvxi

2 /L

A
=

ma  vxi
2

AL

The last step follows because the box length L and molecular mass m are the same for all 
molecules, so they factor out of the sum. We can simplify by noting that the denominator 
AL is just the volume V. Let’s also multiply by 1 in the form N/N, with N the number of 
molecules. Then we have

p =
ma  vxi

2

AL
=

mN
V

 a  vxi
2

N

Surface
area A

x

L

FIGURE 17.2 Gas molecules confined to 
a rectangular box.

v
u

v
u

F
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F
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When the
molecule
collides with
the wall, it
exerts a force
on the wall c

cand the
wall exerts
a force on
the molecule.

Only the x-
component
changes.

vx

vy

vx

vy

Wall

Before

After

FIGURE 17.3 A molecule undergoes an 
 elastic collision, reversing its x- component 
and transferring momentum 2mvx to the 
wall.
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316 Chapter 17 The Thermal Behavior of Matter

In the final expression here, the term g  vxi
2   /N  is the average of the squares of all the 

x velocity components of all the molecules; we designate this quantity vx
2. So the 

pressure becomes

p =
mN
V

 vx
2

We still haven’t used assumption 3—that the molecules move in random direc-
tions with speeds independent of direction. If we grab a molecule at random, that 
means we’re just as likely to find it moving in the x-direction, the y-direction, the 
z- direction, or any direction in between—and its speed, on average, won’t depend on 
its direction of motion. So the average quantities vx

2 , vy
2, and vz

2 must be equal. Since 
the three directions x, y, and z are perpendicular, the average of the molecular speeds 
squared is v2 = vx

2 + vy
2 + vz

2. We’ve just argued that all three terms on the right 
are equal, so we can write v2 = 3vx

2, or vx
2 = 1

3 v2. Then our expression for pressure 
becomes

p =
mN
3V

  v2

Multiplying through by V and by 1 in the form 2/2, we have

pV = 2
3 N 11

2  mv22
This looks a lot like the ideal-gas law (Equation 17.1), except that instead of kT we have 
2
311

2 mv22 . Take a good look at the quantity in parentheses: You’ll see that it’s just the aver-
age kinetic energy of a gas molecule.

Think about what we’ve done here. We applied the fundamental laws of mechanics 
to an ideal gas and came up with an equation that looks like the experimentally verified 
ideal-gas law, except that it’s expressed in terms of a microscopic quantity—molecular 
kinetic energy—rather than the macroscopic quantity temperature. Since our equation de-
scribes the behavior of an ideal gas, it must be the ideal-gas law. Comparing with the ideal- 
gas law in the form 17.1, we must therefore have

 1
2 mv2 = 3

2 kT 1temperature and molecular energy2 (17.3)

Our derivation shows why, in terms of Newtonian mechanics, a gas obeying our four 
assumptions should obey the ideal-gas law. In Equation 17.3 we get an added bonus—a 
microscopic understanding of the meaning of temperature: Temperature measures 
the average kinetic energy associated with random translational motion of the 
molecules.

This fundamental connection between temperature and energy is what lies behind 
the upcoming redefinition of the kelvin in terms of Boltzmann’s constant. In Chapter 18 
you’ll see how, with more complex molecules, we need to broaden energy here to include 
other forms of molecular energy in addition to translational kinetic energy.

¯˘˙

On the left is the mean 
molecular kinetic energy.

On the right is the 
temperature T.

The equality connects a microscopic quantity—molecular 
energy—with a macroscopic quantity—temperature.
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Molecules at a higher temperature
have a broader distribution of speeds.

High-energy
“tail”

vth
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FIGURE 17.4 Maxwell–Boltzmann 
distribution of molecular speeds for 
nitrogen 1N22 at temperatures of  
80 K and 300 K.

Molecular Energy and Speed: An Air Molecule

Find the average kinetic energy of a molecule in air at room tempera-
ture (20°C or 293 K), and determine the speed of a nitrogen molecule 
1N22 with this energy.

INTERPRET This problem asks about the linkage between thermo-
dynamic quantities and molecular energy. We just found that linkage: 
The temperature of a gas is a measure of the average kinetic energy of 
its molecules.

DEVELOP Equation 17.3, 1
2  mv2 = 3

2  kT, quantifies the relation be-
tween temperature and molecular kinetic energy. Once we find the 
molecular kinetic energy, we’ll need the molecular mass to determine 
the speed. We can get that using the atomic weight of nitrogen and the 
fact that an N2 molecule contains two atoms.

EVALUATE We first evaluate the average molecular kinetic energy:

K = 1
2 mv2 = 3

2 kT = 3
211.38 * 10-23 J/K21293 K2 = 6.07 * 10-21 J

We can solve for the corresponding speed if we know the molecular 
mass m. A nitrogen molecule consists of two atoms each with mass  
14 u (see Appendix D), so its mass is

m = 2114 u211.66 * 10-27 kg/u2 = 4.65 * 10-26 kg

Since K = 1
2 mv2, the speed corresponding to this kinetic energy is

v = A2K
m

= D216.07 * 10-21 J2
4.65 * 10-26 kg

= 511 m/s

ASSESS Make sense? Not surprisingly, the answer is the same or-
der of magnitude as the speed of sound 1∼340 m/s2 in air at room 
temperature. At the microscopic level, the speed of the individual 
molecules limits the rate at which information can be transmitted by 
disturbances—sound waves—propagating through the gas.

EXAMPLE 17.2

17.1 If you double the kelvin temperature of a gas, what happens to the thermal 
speed of the gas molecules? (a) it doubles; (b) it quadruples; (c) it  increases  
by 22

G
O

T 
IT

?

The Distribution of Molecular Speeds
The thermal speed vth is a typical molecular speed, but it doesn’t tell us much about the 
distribution of speeds. Are molecular speeds limited to a narrow band about vth? Or are lots 
of molecules moving much faster or much slower?

In the 1860s, the Scottish physicist James Clerk Maxwell showed that elastic collisions 
among molecules result in a speed distribution that peaks near the thermal speed but may 
extend considerably higher. Figure 17.4 plots this Maxwell–Boltzmann distribution for 
two different temperatures. Note that increasing temperature results in a higher thermal 
speed, as expected, but that it also broadens the distribution so there are more molecules at 
lower and higher speeds. The high-speed “tail” of the distribution is especially important 
to chemists because high-energy molecules participate most readily in chemical reactions. 
The rapid extension of the high-energy tail with increasing temperature shows why reac-
tion rates are strongly temperature sensitive, and therefore explains why foods keep much 
longer with even modest refrigeration. High-energy molecules are also the first to evapo-
rate from a liquid, leaving slower, cooler molecules behind. This explains the phenomenon 
of evaporative cooling, which your own body uses as you sweat. Without evaporative cool-
ing, Earth’s atmosphere would be much drier and it would rain far less frequently. You can 
explore the Maxwell–Boltzmann distribution quantitatively in Problem 74.

Real Gases
The ideal-gas law is a good approximation to the behavior of most real gases, but it’s not 
perfect because our assumptions aren’t entirely realistic. Two factors are especially im-
portant. First, real molecules take up space. This reduces the available volume, altering the 

We call the speed calculated in Example 17.2 the thermal speed. In terms of tempera-
ture, Equation 17.3 shows

 vth = A3kT
m

 (17.4)
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318 Chapter 17 The Thermal Behavior of Matter

Table 17.1 Heats of Transformation (at Atmospheric Pressure)

Substance Melting Point (K) Lf (kJ/kg) Boiling Point (K) Lv (kJ/kg)

Alcohol, ethyl 159 109 351 879

Copper 1357 205 2840 4726

Lead 601 24.7 2013 858

Mercury 234 11.3 630 296

Oxygen 54.8 13.8 90.2 213

Sulfur 388 53.6 718 306

Water 273.15 334 373.15 2257

Uranium dioxide 3120 259 3815 1533

ideal-gas law. Second, electrical effects that we’ll explore in Chapter 20 result in a weak 
attractive force between nearby molecules. As they move apart, molecules do work against 
this van der Waals force, and their kinetic energy drops. This, too, results in a deviation 
from ideal-gas behavior. You can learn more about these effects by working Problem 75.

17.2 Phase Changes
LO 17.3 Determine energies involved in phase changes.

LO 17.4 Analyze phase diagrams.

Step out of a steamy shower, and you’ll find the mirror fogged with water condensed on 
the cool glass. Climb a mountain in winter, and you’ll be treated to the lovely spectacle of 
every branch and pine needle covered with a delicate coating of frost that’s formed right 
from the air. Burn a rewritable CD or DVD, and you’ve stored information with a laser 
that melts tiny spots on the spinning disc. These examples involve phase changes between 
gas and liquid, gas and solid, and solid and liquid.

Heat and Phase Changes
Drop ice cubes into a drink and stir. What’s the temperature of the drink? It’s 0°C, and 
it stays at 0°C as long as any ice remains. The melting of a pure solid occurs at a fixed 
temperature. During the process, energy goes into breaking the molecular bonds that hold 
the material in its solid form. This increases the molecules’ potential energy but not their 
kinetic energy. Since temperature is a measure of molecular kinetic energy, that means the 
temperature doesn’t change either.

The energy per unit mass required to change phase is called a heat of transformation 
and is given the symbol L; for the solid–liquid change it’s the heat of fusion Lf, and for 
liquid–gas it’s the heat of vaporization Lv. Less familiar is the heat of sublimation for 
the transition from solid directly to gas. These quantities have units of J/kg, so the energy 
required to change the phase of a mass m is

 Q = Lm 1heat of transformation2 (17.5)

To reverse the change requires removing the same energy. Table 17.1 lists heats of trans-
formation for some common materials. These quantities are typically quite large; water’s 
heat of fusion, for example, is 334 kJ/kg or 80 cal/g—meaning it takes as much energy to 
melt 1 gram of ice as to heat the resulting water to 80°C.

Q is the energy  involved in  
changing the phase of a substance. m is the mass of the substance…

…and L is the substance’s heat of transformation—the 
 energy per unit mass associated with a phase change.
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CONCEPTUAL EXAMPLE 17.1 Water Phases

You put a block of ice initially at -20°C in a pan on a hot stove with a 
constant power output, and heat it until it has melted, boiled, and evap-
orated. Make a sketch of temperature versus time for this experiment.

EVALUATE As the ice starts heating, its temperature goes up, so our 
graph (Fig. 17.5) begins with an upward slope. At 0°C the ice starts 

melting, and while that’s happening its temperature doesn’t change, so 
the graph stays horizontal for a while. When the ice is all melted, the 
water starts to warm. Table 16.1 shows that liquid water’s specific heat 
is about twice that of ice; given the same power input, that means the 
water heats more slowly than the ice. So our graph has a lower slope 
as the water goes from 0°C to the boiling point at 100°C. Then the wa-
ter starts turning to vapor, and stays at 100°C until it’s all evaporated. 
 Table 17.1 shows that water’s heat of vaporization is much greater than 
its heat of fusion, so it takes much more time to boil the water away 
than it did to melt the ice. Our graph reflects that time difference.

ASSESS Makes sense: It takes a lot longer to boil a pan dry than to 
bring it to a boil.

MAKING THE CONNECTION If you start with 0.95 kg of ice at 
-20°C and supply heat at the rate of 1.6 kW, how much time will it 
take until you’re left with only water vapor?

EVALUATE Use Equation 16.3 for heating, with specific heats 
from Table 16.1. Use Equation 17.4 for phase changes, with heats 
of transformation from Table 17.1. The result is 2.9 MJ of heat  
required for the whole process; at 1.6 kW or 1.6 kJ/s, that takes  
1.8 ks, or half an hour.

During phase 
changes the
temperature is
constant.

Gap suggests a
long boiling time.

FIGURE 17.5 Temperature versus time for what’s initially a block of 
ice at -20°C, supplied with energy at a constant rate. The process 
takes place at atmospheric pressure.

17.2 You bring a pot of water to boil and then forget about it. Ten minutes later you 
come back to the kitchen to find the water still boiling. Is its temperature (a) less 
than, (b) greater than, or (c) equal to 100°C?

G
O

T 
IT

?

The Heat of Fusion: Meltdown!

A nuclear power plant’s reactor vessel cracks, and all the cooling 
 water drains out. Although nuclear fission stops, radioactive decay 
continues to heat the reactor’s 2.5 * 105 kg of uranium-dioxide fuel 
at the rate of 120 MW. Once the melting point is reached, how much 
energy will it take to melt the fuel? How long will this take?

INTERPRET Since this problem is about melting, it must involve the 
heat of fusion. We identify the material as uranium dioxide 1UO22.

DEVELOP Our plan is to find UO2>s heat of fusion in Table 17.1 and 
then use Equation 17.5, Q = Lm, to calculate the energy required for 
melting. We’re given the rate of energy generation by radioactive de-
cay, and from that we’ll be able to get the time.

EVALUATE Using UO2>s Lf value from Table 17.1 in Equation 17.5, 
we have

Q = Lf 

m = 1259 kJ/kg212.5 * 105 kg2 = 65 GJ

With a heating rate of 120 MW or 0.12 GJ/s, the time to melt the fuel 
is 165 GJ2/10.12 GJ/s2 = 540 s.

ASSESS The time to meltdown is just under 10 minutes! Failsafe 
emergency cooling systems are essential to prevent nuclear 
meltdowns.

EXAMPLE 17.3

When 200 g of ice at -10°C are added to 1.0 kg of water at 15°C, is 
there enough ice to cool the water to 0°C? If so, how much ice is left 
in the mixture?

INTERPRET This problem involves both a temperature rise and a 
phase change. We identify water as the substance involved.

EXAMPLE 17.4 Heating and Phase Change: Enough Ice?
Worked Example with Variation Problems

Often we’re interested in the total energy needed to bring a material to its transition 
point and then to make the phase transition. Then we need to combine specific-heat con-
siderations of Chapter 16 with the heats of transformation introduced here.

(continued)
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320 Chapter 17 The Thermal Behavior of Matter

Phase Diagrams
Why can’t mountaineers enjoy piping hot coffee? Because water’s boiling point drops with 
the decreasing pressure at high altitudes. In general, the temperatures at which phase changes 
 occur depend on pressure. A phase diagram shows the different phases on a plot of pressure 
versus temperature. Figure 17.6 is a phase diagram for a typical substance. Most phase diagrams 
are similar, although water’s is slightly unusual for reasons we’ll discuss in the next section.

The phase diagram divides pressure–temperature space into regions corresponding to 
solid, liquid, and gas phases. Curves separating these regions mark the phase transitions. 
Everyday experience suggests that heating takes a substance from solid, to liquid, to gas—
as with water in Fig. 17.5. But Fig. 17.6 shows that this sequence doesn’t always occur. 
At low pressure (line AB in Fig. 17.6) the substance goes directly from solid to gas. This 
is sublimation. We don’t see this with water because normal atmospheric pressure is too 
high. For carbon dioxide, though, atmospheric pressure is low in the phase diagram, which 
is why “dry ice” turns directly into gaseous CO2 without becoming liquid. At higher pres-
sures (line CD) we get the familiar solid–liquid–gas sequence. Higher still (line EF), we’re 
above the critical point, where the abrupt distinction between liquid and gas disappears. 
Instead, the substance starts out as a thick fluid whose properties change gradually from 
liquidlike to gaslike as it’s heated.

We think of changing phase by applying heat, but Fig. 17.6 shows we can also change 
phase by changing pressure. Lowering pressure along line GH, for example, takes the sub-
stance from liquid to gas while the temperature remains constant. Since heat requires a 
temperature difference, there’s no heat involved in this constant-temperature phase transi-
tion. You may have seen a demonstration of water boiling vigorously at room temperature 
in a closed container pumped down to low pressure.

Don’t let Fig. 17.6 fool you into thinking that phase transitions occur instantaneously. 
Those heats of transformation are large, and a substance moving, say, along line CD in 
response to heating will linger at each phase transition until all of it has changed phase; 
that’s what the level portions of Fig. 17.5 showed.

The dividing curves in Fig. 17.6 show where two phases can coexist simultaneously, 
like ice floating in water at 0°C and atmospheric pressure. It’s because phase changes occur 
along curves that terms like “melting point” and “boiling point” are meaningless unless pres-
sure is specified. But there’s one unique triple point where solid, liquid, and gas all coexist 
in equilibrium. Here temperature and pressure have unique, unambiguous values—which is 
why the 273.16-K triple point of water used to be the basis for the definition of the kelvin.
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Sublimation Boiling

Critical point

FIGURE 17.6 A phase diagram showing 
solid, liquid, and gas phases on a plot of 
pressure versus temperature.

DEVELOP Equation 16.3, Q = mc ∆T, determines the energy for the 
temperature rise, and Equation 17.5, Q = Lm, determines the phase-
change energy. But we don’t know whether all the ice melts. So our 
plan is to find the energy that it would take to heat the ice to 0°C and 
then melt all of it; if more than that much is available in cooling the 
water to 0°C, we’ll know that we end up with all water at T 7 0°C. 
But if there isn’t sufficient energy, then we’ll have a mixture with both 
ice and water at 0°C, and we can use the energy extracted in cooling 
the water to find out how much ice melts.

EVALUATE We begin by evaluating the energy Q1 to heat the ice and 
then melt it all, adding the energies from Equations 16.3 and 17.5 
and then getting the specific heat and heat of fusion from Tables 16.1 
and 17.1, respectively:

 Q1 = micecice ∆Tice + miceLf

 = 10.20 kg212.05 kJ/kg # K2110 K2 + 10.20 kg21334 kJ/kg2
 = 4.1 kJ + 66.8 kJ = 70.9 kJ

Cooling the water to 0°C would extract energy Q2 given by 
Equation 16.3:

Q2 = mwater 

cwater 

∆Twater = 11.0 kg214.184 kJ/kg # K2115 K2 = 62.8 kJ

This is far more than the 4.1 kJ needed to bring the ice to 0°C, but not 
quite the 70.9 kJ needed to leave it all melted. So there’s enough ice 
to cool the water to 0°C, with some left over. How much? Our cal-
culation of Q1 shows that 4.1 kJ go into raising the ice temperature. 
Of the 62.8 kJ extracted from the water, the remaining 58.7 kJ go to 
melting ice. From Equation 17.5, the amount of ice melted is then

mmelted =
Q

Lf
=

58.7 kJ
334 kJ/kg

= 0.176 kg = 176 g

So we’re left with 24 g of ice in 1176 g of water, all at 0°C.

ASSESS Make sense? Our 62.8 kJ was nearly enough to bring all the 
ice to the liquid phase, so it makes sense that only a small fraction of 
the ice remains.
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17.3 Thermal Expansion 321

A steel gas can holds 20 L at 10°C. It’s filled to the brim with gas at 
10°C. If the temperature now increases to 25°C, by how much does the 
can’s volume increase? How much gas spills out?

INTERPRET This is a problem about thermal expansion. Since it in-
volves volume, we identify the relevant quantity as the coefficient of 
volume expansion b.

Thermal Expansion: Spilled GasolineEXAMPLE 17.5

FIGURE 17.7 Thermal expansion dis-
torted these tracks, causing a derail-
ment. Expansion of long structures 
like this is best described using the 
coefficient of linear expansion.

17.3 Thermal Expansion
LO 17.5 Calculate thermal expansion and contraction of materials, including 

water.

We’ve seen how heating causes changes in temperature and phase. But heating also results 
in pressure or volume changes. For a gas at constant pressure, for example, the ideal-gas law 
shows that volume increases in direct proportion to temperature. The volume and pressure 
relations for liquids and solids aren’t so simple. Because their molecules are closely spaced, 
liquids and solids aren’t very compressible, so thermal expansion is less pronounced.

We characterize the change in the volume with temperature using the coefficient of 
volume expansion b, defined as the fractional change in volume when a substance under-
goes a small temperature change ∆T:

 b =
∆V/V
∆T

 (17.6)

This equation assumes that b is independent of temperature; if it varies significantly, then 
we would need to define b in terms of the derivative dV/dT  (Problem 66). Our definition 
of b also assumes constant pressure; we could entirely inhibit thermal expansion with ap-
propriate pressure increases.

Often we want to know how one linear dimension of a solid changes with temperature. This 
is especially true with long structures, where the absolute change is greatest along the long di-
mension (Fig. 17.7). We then speak of the coefficient of linear expansion a, defined by

 a =
∆L/L
∆T

 (17.7)

The volume- and linear-expansion coefficients are related in a simple way: b = 3a, as you 
can show in Problem 69. However, the linear-expansion coefficient a is really meaningful 
only with solids, because liquids and gases deform and don’t expand proportionately in all 
directions. Table 17.2 lists the expansion coefficients for some common substances.

17.3 The figure shows a donut-shaped object. If it’s heated, 
will the hole get (a) larger or (b) smaller?

G
O

T 
IT

?

Table 17.2 Expansion Coefficients*

Solids A (K−1) Liquids and Gases B (K−1)

Aluminum 24 * 10-6 Air 3.7 * 10-3

Brass 19 * 10-6 Alcohol, ethyl 75 * 10-5

Copper 17 * 10-6 Gasoline 95 * 10-5

Glass (Pyrex) 3.2 * 10-6 Mercury 18 * 10-5

Ice 51 * 10-6 Water, 1°C -4.8 * 10-5

Invar† 0.9 * 10-6 Water, 20°C 20 * 10-5

Steel 12 * 10-6 Water, 50°C 50 * 10-5

*At approximately room temperature unless noted.
†Invar, consisting of 64% iron and 36% nickel, is an alloy designed to minimize thermal expansion.

(continued)
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322 Chapter 17 The Thermal Behavior of Matter

Thermal Expansion of Water
The entry for water at 1°C in Table 17.2 is remarkable, the negative expansion coefficient 
showing that water at this temperature actually contracts on heating. This unusual behav-
ior occurs because ice has a relatively open crystal structure (Fig. 17.8) and therefore is 
less dense than liquid water. That’s why ice floats. Immediately above the melting point, 
the intermolecular forces that bond H2O molecules in ice still exert an influence, giv-
ing cold liquid water a lower density than at slightly higher temperatures. At 4°C water 
reaches its maximum density, and above this temperature the effect of molecular kinetic 
energy in keeping molecules apart wins out over intermolecular forces. From there on,  
water exhibits the more normal behavior of expansion with increasing temperature.

This unusual property of water near its melting point is reflected in its phase diagram, 
shown in Fig. 17.9. Note that the solid–liquid boundary extends leftward from the triple point, 
in contrast to the more typical behavior in Fig. 17.6. That means that ice at a fixed temperature 
will melt if the pressure is increased—an unusual property known as pressure melting.

FIGURE 17.8 Water molecules in an ice 
crystal form an open structure, giving 
solid water a lower density than the 
liquid.

Solid

Liquid

Gas

Triple point

Temperature

Critical point
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FIGURE 17.9 Phase diagram for water. 
Compare the solid–liquid boundary 
with that of Fig. 17.6.

APPLICATION Aquatic Life and Lake Turnover

The anomalous behavior of water has important consequences for life. If ice 
didn’t float, then ponds, lakes, and even oceans would freeze from the bottom up,  

making aquatic life impossible. What actually happens, instead, is that a thin 
layer of ice forms on the surface, insulating the water below and keeping it 
liquid; as a result, ice cover in temperate climates rarely exceeds a meter or so. 
Because water’s density is greatest at 4°C, water at this temperature sinks to the 
bottom. At lake depths greater than a few meters, sunlight is inadequate to raise 
the temperature, which therefore remains year-round at 4°C.

Water’s unusual density behavior also causes the twice-yearly turnover of 
lakes in temperate climates. In the summer, a lake’s surface water is warm, but 
deep water remains at 4°C. In the winter, water just beneath the ice is at 0°C, 
while the bottom water is still at 4°C. Both situations are stable, with less dense 
and therefore more buoyant water at the surface. But in the spring, ice melts 
and the surface water warms. When that water reaches 4°C, there’s no den-
sity variation and the lake water mixes freely. This is the spring overturning. A 
similar overturning occurs in the fall, as the surface water cools through 4°C. 
Turnover is important to aquatic life because it brings up nutrients that would 
otherwise be trapped in the deep water.

DEVELOP Equation 17.6, b = 1∆V/V2/∆T, determines the volume 
change. Our plan is to calculate the expanded volume of the tank and 
then of the gasoline. The difference will be the amount that spills out. 
Table 17.2 lists b for gasoline but a for steel; therefore, we’ll use the 
equation b = 3a for the steel.

EVALUATE First we use Equation 17.6 to evaluate the volume change 
∆V of the steel can. Using b = 3a, we have

∆Vcan = bV ∆T = 132112 * 10-6 K-12120 L2115 K2 = 0.0108 L

Similarly, for the gasoline,

∆Vgas = bV ∆T = 195 * 10-5 K-12120 L2115 K2 = 0.285 L

We therefore lose 0.275 L.

ASSESS Make sense? The thermal-expansion coefficient for gasoline is so 
much greater than for steel that the can’s expansion is negligible and the gas 
has nowhere to go. By the way, that spill wastes nearly 10 MJ of energy!

Here we calculated the expansion of the tank’s volume, which is 
mostly empty space, using the expansion coefficient for steel. Why 
was that right? Think about GOT IT? 17.3, and you'll understand why.
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Chapter 17 Summary

Big Idea

The big idea here is that matter responds to heating in a variety of ways in 
addition to changing temperature. Other responses include changes of phase 
and of volume and/or pressure. The ideal gas provides a particularly simple 
system for understanding volume and pressure changes. Analyzing ideal-gas 
behavior provides a link between the Newtonian mechanics of molecules and 
macroscopic thermodynamics, showing that temperature is a measure of the 
average molecular kinetic energy.

Cool gas Hot gas

Molecules in the
hotter gas have
higher kinetic
energy and hence
speed.

Key Concepts and Equations
The ideal-gas law relates pressure, volume, temperature, and the 
number of molecules in a gas:

pV = NkT  1ideal@gas law2
where Boltzmann’s constant k is approximately 1.381 * 10-23 J/K.

Pressure p

Temperature T
(molecular
kinetic energy)

Number of molecules N

Volume V

In terms of the number of moles n, the ideal-gas law is

pV = nNAkT = nRT

where the universal gas constant R = NAk = 8.314 J/K 

#
 mol.

Heats of transformation L describe the energy per unit mass needed to effect 
phase changes. The total energy required to change the phase of a mass m is 
given by

Q = Lm  1heat of transformation2

Phase diagrams plot solid, liquid, and gas phases against temperature and 
pressure and reveal the triple point, where all three phases can coexist, and 
the critical point, where the liquid–gas distinction disappears.

Triple point

Gas

Liquid
Solid

Temperature

Pr
es

su
re

Critical point

The temperature of an ideal gas is a measure of the gas molecules’ 
average kinetic energy:

1
2  mv2 = 3

2 kT  1temperature and molecular energy2

Applications

Thermal expansion is characterized by the coefficient of volume 
expansion and its linear counterpart. The volume-expansion coeffi-
cient relates the fractional volume change ∆V/V to the temperature 
change ∆T:

b =
∆V/V
∆T
 1volume@expansion coefficient2

while the coefficient of linear expansion relates the fractional 
length ∆L/L change to ∆T:

a =
∆L/L
∆T
 1linear@expansion coefficient2

Volume V + ∆VVolume V

T, V T + ∆T

∆V

323
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Mastering Physics Go to www.masteringphysics.com to access assigned homework and self-study tools such as 
Dynamic Study Modules, practice quizzes, video solutions to problems, and a whole lot more!

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems COMP Computer problems

Learning Outcomes After finishing this chapter you should be able to:

LO 17.1 Describe gases quantitatively using the ideal-gas law.
For Thought and Discussion Questions 17.1, 17.2; Exercises 
17.11, 17.12, 17.13, 17.14, 17.15, 17.16; Problems 17.35, 
17.26, 17.37, 17.38, 17.39, 17.70, 17.73

LO 17.2 Describe the distribution of molecular speeds and deviations 
from ideal-gas behavior.
For Thought and Discussion Questions 17.3, 17.4, 17.5; 
Exercise 17.17; Problems 17.74, 17.75

LO 17.3 Determine energies involved in phase changes.
For Thought and Discussion Questions 17.7, 17.8; 
Exercises 17.18, 17.19, 17.20, 17.21; Problems 17.40, 

17.41, 17.42, 17.43, 17.44, 17.45, 17.46, 17.47, 17.48, 
17.49, 17.50, 17.51, 17.52, 17.53, 17.54, 17.55, 17.56, 
17.62, 17.63, 17.72

LO 17.4 Analyze phase diagrams.
For Thought and Discussion Question 17.9

LO 17.5 Calculate thermal expansion and contraction of materials, 
including water.
For Thought and Discussion Questions 17.6, 17.10; 
Exercises 17.22, 17.23, 17.24, 17.25, 17.26; Problems 
17.57, 17.58, 17.59, 17.60, 17.61, 17.64, 17.65, 17.66,  
17.67, 17.68, 17.69, 17.71

For Thought and Discussion

1. If the volume of an ideal gas is increased, must the pressure drop 
proportionately? Explain.

2. Why are you supposed to check tire pressure when your tires are 
cold?

3. The average speed of the molecules in a gas increases with in-
creasing temperature. What about the average velocity?

4. Suppose you start running while holding a closed jar of air. Do 
you change the average speed of the air molecules? The average 
velocity? The temperature?

5. Two different gases are at the same temperature, and both have 
low enough densities that they behave like ideal gases. Do their 
molecules have the same thermal speeds? Explain.

6. What’s the temperature of water just under the ice layer of a fro-
zen lake? At the bottom of a deep lake?

7. Ice and water have been together in a glass for a long time. Is the 
water hotter than the ice?

8. Which takes more heat: melting a gram of ice already at 0°C, or 
bringing the melted water to the boiling point?

9. The triple point of water occurs at a precise temperature, but the 
freezing point doesn’t. Why the difference?

10. A bimetallic strip consists of 
thin pieces of brass and steel 
bonded together (Fig. 17.10). 
What happens when the strip 
is heated? (Hint: Consult 
Table 17.2.)

Exercises and Problems

Exercises
Section 17.1 Gases
11. Mars’s atmospheric pressure is about 1% that of Earth, and its av-

erage temperature is around 215 K. Find the volume of 1 mol of 
the Martian atmosphere.

12. How many molecules are in an ideal-gas sample at 350 K that 
occupies 8.5 L when the pressure is 180 kPa?

13. What’s the pressure of an ideal gas if 3.5 mol occupy 2.0 L at 
-150°C?

14. Your professor asks you to order a tank of argon gas for a lab ex-
periment. You obtain a “type C” gas cylinder with interior volume 
6.88 L. The supplier claims it contains 45 mol of argon. You mea-
sure its pressure to be 14 MPa at room temperature 120°C2. Did 
you get what you paid for?

15. (a) If 2.0 mol of an ideal gas are initially at temperature 250 K and 
pressure 1.5 atm, what’s the gas volume? (b) The pressure is now 
increased to 4.0 atm, and the gas volume drops to half its initial 
value. What’s the new temperature?

16. A pressure of 10-10 Pa is readily achievable with laboratory vac-
uum apparatus. If the residual air in this “vacuum” is at 0°C, how 
many air molecules are in 1 L?

17. In which gas are the molecules moving faster: hydrogen at 75 K 
or sulfur dioxide at 350 K?

Section 17.2 Phase Changes
18. How much energy does it take to melt a 65-g ice cube?
19. It takes 200 J to melt an 8.0-g sample of one of the substances in 

Table 17.1. What’s the substance?
20. If it takes 840 kJ to vaporize a sample of liquid oxygen, how large 

is the sample?
21. Carbon dioxide sublimes (changes from solid to gas) at 195 K. 

The heat of sublimation is 573 kJ/kg. How much heat must be 
extracted from 255 g of CO2 gas at 195 K in order to solidify it?

Section 17.3 Thermal Expansion
22. A power line wire spans 250 m between two support towers. 

The wire is made of aluminum, and on a winter day when the 
temperature is -12°C the wire’s actual length is 250.42 m. By 
how much does its length increase on a summer day when it’s 
29.5°C?

23. You have exactly 1 L of ethyl alcohol at room temperature 120°C2. 
You put it in a refrigerator at 2°C. What’s its new volume?

24. A Pyrex glass marble is 1.00000 cm in diameter at 20°C. What 
will be its diameter at 85°C?

25. At 0°C, the hole in a steel washer is 9.52 mm in diameter. To what 
temperature must it be heated in order to fit over a 9.55-mm- 
diameter bolt?

Brass
Steel

FIGURE 17.10 For Thought and 
Discussion 10
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Exercises and Problems 325

(a) How many moles of air are in the cylinder? (b) What volume 
would this air occupy at 1.0 atm and room temperature?

38. You’re a lawyer with an unusual case. A whipped-cream can 
burst at a wedding, damaging the groom’s expensive tuxedo. The 
can warned against temperatures in excess of 50°C, and the man-
ufacturer has evidence that it reached 60°C. You don’t contest 
this, but you point out that the can was only half full of cream 
when it burst, meaning that the gas propellant had available more 
than twice the volume it would in a full can, and that some of the 
propellant had already been used. You argue that the real safety 
criterion is pressure, and that the can’s maximum pressure wasn’t 
exceeded. Who’s right?

39. A 3000-mL flask is initially open in a room containing air at 1.00 atm  
and 20°C. The flask is then closed and immersed in boiling wa-
ter. When the air in the flask has reached thermodynamic equilib-
rium, the flask is opened and air is allowed to escape. The flask 
is then closed and cooled back to 20°C. Find (a) the maximum 
pressure reached in the flask, (b) the number of moles that es-
cape when air is released, and (c) the final pressure in the flask.

40. The recommended treatment for frostbite is rapid heating in a 
water bath. Suppose a frostbitten hand with mass 120 g is im-
mersed in water that conducts energy into the hand at the rate 
of 800 W. Treating the hand as essentially water, initially frozen 
solid, how long will it take for it to thaw and return to body tem-
perature 137°C2?

41. A stove burner supplies heat to a pan at the rate of 1500 W. How 
long will it take to boil away 1.1 kg of water, once the water 
reaches its boiling point?

42. If a 1-megaton nuclear bomb were exploded deep in the 
Greenland ice cap, how much ice would it melt? Assume the ice 
is initially at about its freezing point, and consult Appendix C for 
the appropriate energy conversion.

43. A metal-cutting torch produces 2.35 kW of thermal power. 
Assuming that 45.0% of the torch’s power goes into melting 
metal, how long would it take the torch to melt a 2.00-cm-diameter 
hole through a 12.5-cm-thick piece of stainless steel? The steel’s 
heat of fusion is 268 kJ/kg, and its density is 7970 kg>m3.

44. At winter’s end, Lake Superior’s surface is frozen to a depth of 
1.3 m; the ice density is 917 kg/m3. (a) How much energy does it 
take to melt the ice? (b) If the ice disappears in 3 weeks, what’s 
the average power supplied to melt it?

45. A refrigerator extracts energy from its contents at the rate of 95 W.  
How long will it take to freeze 750 g of water already at 0°C?

46. Climatologists have recently recognized that black carbon (soot) 
from burning fossil fuels and biomass contributes significantly 
to arctic warming. You’re asked to determine whether this effect 
might cause ice to melt that would normally stay frozen year-
round. Consider an ice layer 2.5 m thick that normally reflects 
90% of the incident solar energy and absorbs the rest. Suppose 
black carbon darkens the ice so it now reflects only 50% of the 
incident solar energy. The arctic summertime solar input averages 
300 W/m2. You can assume 0°C for the initial ice temperature, 
and an ice density of 917 kg/m3. What do you conclude?

47. How much energy does it take to melt 12.5 kg of ice initially at 
-10°C?

48. Water is brought to its boiling point and then allowed to boil 
away completely. If the energy needed to raise the water to the 
boiling point is one-tenth of that needed to boil it away, what was 
the initial temperature?

49. Repeat Problem 54 of Chapter 16, but now find the time from the 
injection of the 10°C seawater until that water boils entirely away. 
Assume there’s no replenishment of the water. (Much of the fuel 

BIO

ENV

ENV

ENV

26. Suppose a single piece of welded steel railroad track stretched 
5000 km across the continental United States. If the track were 
free to expand, by how much would its length change if the en-
tire track went from a cold winter temperature of -25°C to a hot 
summer day at 40°C?

Example Variations
The following problems are based on two worked examples from the 
text. Each set of four problems is designed to help you make connec-
tions that enhance your understanding of physics and to build your 
confidence in solving problems that differ from ones you’ve seen be-
fore. The first problem in each set is essentially the example problem 
but with different numbers. The second problem presents the same sce-
nario as the example but asks a different question. The third and fourth 
problems repeat this pattern but with entirely different scenarios.

27. Example 17.1: Typical atmospheric pressure at the summit  
of Earth’s highest mountain (Chomolungma, or Everest) is  
33.7 kPa, and even the warmest month (July) has an average tem-
perature of -19°C. Find the volume occupied by 1.00 mol of air 
under these conditions.

28. Example 17.1: Mountaineers take a 10.0-mL sample of air on 
a mountaintop and measure its temperature and pressure to be 
-5.50°C and 76.4 kPa, respectively. (a) What’s the density of the 
air in moles per liter, and (b) how does that compare with the 
density at STP as determined in Example 17.1?

29. Example 17.1: In 2005 the Cassini spacecraft’s Huygens probe 
became the first human artifact to land on a body in the outer solar 
system. Huygens touched down on Saturn’s moon Titan, where it 
recorded a surface temperature of -180°C and a surface pressure 
1.47 times that of standard atmospheric pressure on Earth. Find 
the volume occupied by 1.00 mol of Titan’s atmosphere.

30. Example 17.1: The solar corona is the Sun’s hot, diffuse outer 
atmosphere. Typical coronal conditions include a tempera-
ture of 1 MK and a density of 108 particles per cm3. Make an 
 order-of-magnitude estimate of the ratio of the pressure in the 
corona to atmospheric pressure at Earth’s surface.

31. Example 17.4: Repeat the calculation of Example 17.4 with an initial 
ice mass of 66 g.

32. Example 17.4: Find the minimum mass of ice that could be 
added to the water in Example 17.4 in order to end up with a final 
temperature of 0°C.

33. Example 17.4: A mountain glacier ends in a small lake that 
holds 185,000 m3 of water, initially at 6.40°C. An iceberg with 
mass 17.3 * 106 kg, initially at -10.0°C, calves off the glacier 
and floats in the lake. Assuming no energy exchanges except 
those between the lake water and the iceberg, determine the final 
temperature and how much, if any, ice remains.

34. Example 17.4: Find the minimum mass for the iceberg in the pre-
ceding problem that will ensure an equilibrium temperature of 0°C.

Problems
35. The solar corona is a hot (2 MK) extended atmosphere surround-

ing the Sun’s cooler visible surface. The coronal gas pressure is 
about 0.03 Pa. What’s the coronal density in particles per cubic 
meter? Compare with Earth’s atmosphere.

36. A helium balloon occupies 8.0 L at 20°C and 1.0-atm pressure. 
The balloon rises to an altitude where the air pressure is 0.65 atm 
and the temperature is -10°C. What’s its volume when it reaches 
equilibrium at the new altitude?

37. A compressed air cylinder stands 100 cm tall and has internal 
diameter 20.0 cm. At room temperature, the pressure is 180 atm. 
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326 Chapter 17 The Thermal Behavior of Matter

62. You’re home from college on vacation, and there’s a power fail-
ure. The power company says it will be 15 hours before it’s re-
paired. Your parents send you out to buy ice to keep the ‘fridge 
cold. You look up the thermal resistance of the refrigerator’s 
walls; it’s 0.12 K/W. If room temperature is 20°C, how much ice 
should you buy?

63. A solar-heated house stores energy in 5.0 tons of Glauber salt 
1Na2SO4 

#
 

10H2O2, which melts at 90°F. The heat of fusion of 
Glauber salt is 104 Btu/lb, and the specific heats of the solid and 
liquid are, respectively, 0.46 Btu/lb#°F and 0.68 Btu/lb#°F. After 
a week of sunny weather, the storage medium is all liquid at 
95°F. Then comes a cloudy period during which the house loses 
heat at an average of 20,000 Btu/h. (a) How long is it before the 
temperature of the storage medium drops below 60°F? (b) How 
much of this time is spent at 90°F?

64. Show that the coefficient of volume expansion of an ideal gas at 
constant pressure is the reciprocal of its kelvin temperature.

65. Water’s coefficient of volume expansion in the tem-
perature range from 0°C to about 20°C is given approx-
imately by b = a + bT + cT2,  where  T  i s  in  Cels ius  
a n d  a = -6.43 * 10-5 °C-1, b = 1.70 * 10-5 °C-2,  a n d  c =
-2.02 * 10-7 °C-3. Show that water has its greatest density at ap-
proximately 4.0°C.

66. When the expansion coefficient varies with temperature, 
Equation 17.6 is written b = 11/V21dV/dT2. If a sample of wa-
ter occupies 1.00000 L at 0°C, find its volume at 12°C. (Hint: 
Use the information from Problem 65, and integrate the equation 
above.)

67. A 50-mL graduated cylinder is made from Pyrex glass and con-
tains 25.0000 mL of water at 20°C. If the temperature of the 
water and the cylinder is raised by exactly 5°C, what will the 
cylinder measure for the new volume of water? Do not neglect 
thermal expansion of the cylinder itself, but do neglect variations 
in the expansion coefficients with temperature.

68. The timekeeping of a grandfather clock is regulated by a brass 
pendulum 1.35 m long. If the clock is accurate at 20°C but is in a 
room at 17°C, how soon will the clock be off by 1 minute? Will 
it be fast or slow?

69. Prove the equation b = 3a (Section 17.3) by considering a cube 
of side s and therefore volume V = s3 that undergoes a small 
temperature change dT and corresponding length and volume 
changes ds and dV.

70. You’re on a team planning a mission to Venus to collect atmo-
spheric samples for analysis. The design specs call for a 1-L 
sample container, while the scientists want at least 1 mol of gas. 
Venus’s atmospheric pressure is 90 times that of Earth’s, and its 
average temperature is 730 K. Will the design work?

71. Figure 17.12 shows an apparatus used to determine the linear 
expansion coefficient of a metal wire. The wire is attached to 
two points a distance d apart (you don’t know d). A mass hangs 
from the middle of the wire. The wire’s total length is 100.00 cm  
at 0°C. The distance y from the suspension points to the top of 
the mass is measured, and the results are given in the table be-
low. (a) Find an expression for y as a function of temperature, 
and manipulate your expression to get a linear relation between 
some function of y and some function of temperature T. You’ll 
encounter the expression L2, where L is the length of the wire, 
and, because the change in length is small, you can drop terms 
involving a2 when you expand L2. (b) Calculate the quantities in 
your relation from the given data, and plot. Determine a best-fit 
line and use it to determine the coefficient of linear expansion a 
and the separation d. (c) Consult Table 17.2 to identify the metal 
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in reactor units 1, 2, and 3 at Fukushima melted, although water 
loss by leakage also contributed to the meltdowns.)

50. A bowl contains 16 kg of punch (essentially water) at a warm 
25°C. What’s the minimum amount of ice at 0°C needed to cool 
the punch to 0°C?

51. A 50-g ice cube at -10°C is placed in an equal mass of water. 
What must the initial water temperature be if the final mixture 
still contains equal amounts of ice and water?

52. Evaporation of sweat is the human body’s cooling mechanism.  
At body temperature, it takes 2.4 MJ/kg to evaporate water.  
Marathon runners typically lose about 3 L of sweat each 
hour. How much energy gets lost to sweating during a 3-hour 
marathon?

53. What power is needed to melt 20 kg of ice in 6.0 min?
54. You put 300 g of water at 20°C into a 500-W microwave oven 

and accidentally set the time for 20 min instead of 2.0 min. How 
much water is left at the end of 20 min?

55. A lava bomb is a blob of molten lava ejected during a volcanic 
eruption. Suppose a 15.4-Mg lava bomb at its 984°C melting 
point lands in a residential swimming pool holding 20.4 Mg of 
water at 24.0°C. The lava’s heat of fusion is 419 kJ/kg, and the 
specific heat of solid lava is 1.04 kJ/kg·K. (a) Will the pool water 
reach the boiling point? (b) If so, will it boil completely away? 
Neglect energy interchanges except those between the water and 
the lava.

56. Describe the composition and temperature of the equilibrium 
mixture after 1.0 kg of ice at -40°C is added to 1.0 kg of water 
at 5.0°C.

57. A glass marble 1.000 cm in diameter is to be dropped through 
a hole in a steel plate. At room temperature the hole diameter is 
0.997 cm. By how much must the plate’s temperature be raised 
so the marble will fit through the hole?

58. A thermometer uses ethyl alcohol, dyed red for visibility. The 
thermometer tube itself has an inside diameter of 0.167 mm, and 
at the bottom is a bulb of much greater diameter that contains 
most of the alcohol. What should be the volume of alcohol in the 
bulb in order that a temperature increase of exactly 1°C moves 
the alcohol level up exactly 1 mm in the tube? Neglect expansion 
of the glass itself.

59. A steel ball bearing is encased in a Pyrex glass cube 1.0 cm on 
a side. At 330 K, the ball bearing fits tightly inside the cube. At 
what temperature will it have a clearance of 1.0 µm all around?

60. Fuel systems of modern cars are designed so thermal expansion 
of gasoline doesn’t result in wasteful and polluting fuel spills. As 
an engineer, you’re asked to specify the size of an expansion tank 
that will handle this overflow. You know that gasoline comes 
from its underground storage at 10°C, and your expansion tank 
must handle the expansion of a full 75-L gas tank when the gas 
reaches a hot summer day’s temperature of 35°C. How large an 
expansion tank do you specify?

61. A rod of length L0 is clamped rigidly at both ends. Its tempera-
ture increases by ∆T , and in the ensuing expansion, it cracks to 
form two straight pieces, as shown in Fig. 17.11. Find an expres-
sion for the distance d shown in the figure, in terms of L0, ∆T, 
and the linear expansion coefficient a.
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d

FIGURE 17.11 Problem 61
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Passage Problems
A pressure cooker is a sealed pot 
that cooks food much faster than 
most other methods because in-
creased pressure allows water to 
reach higher temperatures than the 
normal boiling point (Fig. 17.13). 
Pressure cookers afford many ad-
vantages: faster cooking, lower en-
ergy consumption, and less vitamin 
loss. The pressure-cooker principle 
is also used in autoclaves for steril-
izing surgical instruments in hospi-
tals and equipment in biology labs.

76. In water’s phase diagram (Fig. 17.9), normal boiling occurs at a 
point on the line between the triple point and the critical point. In 
a pressure cooker, boiling occurs
a. at a point in the diagram directly above where it normally occurs.
b. higher up on the line between the triple and critical points.
c. at a point directly to the right of where it normally occurs.
d. beyond the critical point.

77. A typical pressure cooker operates at twice normal atmospheric 
pressure, raising water’s boiling point to about 120°C. Compared 
with steam at 1 atm and the normal 100°C boiling point, the den-
sity of steam in a pressure cooker is
a. double.
b. somewhat more than double.
c. somewhat less than double.
d. quadruple.

78. Because some pathogens can survive 120°C temperatures, med-
ical autoclaves typically operate at 3 atm pressure, where water 
boils at 134°C. Based on this information and that given in the 
preceding problem, you can conclude that
a. Fig. 17.9’s depiction of the liquid–gas interface for water is 

correct in being concave upward.
b. Fig. 17.9’s liquid–gas interface should actually be concave 

downward.
c. autoclaves operate above the critical point.
d. at its operating temperature, there can’t be any liquid water in 

the autoclave.
79. A pressure cooker has a regulating mechanism that releases 

steam so as to maintain constant pressure. If that mechanism be-
came clogged,
a. the pressure would nevertheless level off once water in the 

cooker began to boil.
b. the pressure would continue to rise although the temperature 

would remain constant.
c. both temperature and pressure would continue to rise.
d. the density of the steam would decrease.

Answers to Chapter Questions

Answer to Chapter Opening Question
Water’s solid phase is less dense than the liquid, which causes ice to float. 
Our world would be a very different place if ice were denser than water.

Answers to GOT IT? Questions
17.1 (a)
17.2 (c)
17.3  (a) The hole gets larger because all of the object’s linear dimen-

sions expand equally.

BIO

the wire is made of. Ignore any stretching of the wire due to its 
“springiness”; that is, consider only thermal expansion.

Temperature,  
T (°C)

0 20 40 60 80 100 120

y (cm) 30.00 30.05 30.07 30.11 30.16 30.19 30.24

72. The Intergovernmental Panel on Climate Change estimates 
that Greenland is losing ice, as a result of global warming, at 
 approximately 250 Pg/year. (a) Find the energy needed to melt 
250 Pg of ice. (b) Greenland’s ice melt results most immediately 
from an imbalance between incoming and outgoing energy—an 
 imbalance created largely by the absorption of infrared radiation 
by human-produced greenhouse gases. Use your answer to part 
(a) to express Greenland’s energy imbalance in watts per square 
meter of the Greenland ice sheet’s surface area. That your result 
is larger than the global imbalance of somewhat less than 1 W/m2 
shows that the impact of global warming is greater in the Arctic.

73. (a) Show that, for an ideal gas, the speed of sound given by 
Equation 14.9 can be written vsound = 2gkT/m. (b) For di-
atomic gases like N2 and O2 that are the dominant constituents 
of air, g = 7/5. Use your result to show that, for diatomic gases, 
the speed of sound is about 68% of the thermal speed given by 
Equation 17.4.

74. The Maxwell–Boltzmann distribution, plotted in Fig. 17.4, is 
given by

N1v2 ∆v = 4pN    a m
2pkT

b
3/2

v2e- mv2/2kT∆v

where N(v)∆v is the number of molecules in a small speed range 
∆v around speed v, N is the total number of molecules in the gas, 
m is the molecular mass, k is Boltzmann’s constant, and T is the 
 temperature. Use this equation to show that the most probable speed 
for a gas molecule—the speed at the peak of the curves in Fig. 17.4— 
is 22kT/m. Note that the thermal speed (Equation 17.4), which 
is the average molecular speed, is a factor of 23/2 or about 20% 
greater than the most probable speed—a fact that reflects the long, 
high-energy “tail” of the Maxwell–Boltzmann distribution.

75. At high gas densities, the van der Waals equation modifies the 
ideal-gas law to account for nonzero molecular volume and for 
the van der Waals force that we discussed in Section 17.1. The 
van der Waals equation is

ap +
n2a

V2 b1V - nb2 = nRT

where a and b are constants that depend on the particular gas. For ni-
trogen (N2), a = 0.14 Pa # m6/mol2 and b = 3.91 * 10- 5 m3/mol. 
For 1.000 mol of N2 at 10.00 atm pressure, confined to a volume 
of 2.000 L, find the temperatures predicted (a) by the ideal-gas 
law and (b) by the van der Waals equation.
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Pressure regulator

Safety valve

Lid

Pressure vessel

FIGURE 17.13 A pressure 
cooker (Passage Problems 
76–79)

y = 0

y

d

m

FIGURE 17.12 Problem 71
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In Chapter 7, we introduced the powerful idea that energy is conserved, 
and we developed the principle of energy conservation as a quantitative 

statement for mechanical energy in the presence of conservative forces. 
We also introduced nonconservative forces and briefly described their role 
in converting mechanical energy into the random molecular energy that 
we call internal energy. In Chapters 16 and 17 you’ve learned that ther-
mal processes involve energy—a realization that sets the stage for us to 
extend the conservation-of-energy principle to encompass thermodynamic 
systems. In this chapter, we’ll explore this broader principle of energy con-
servation and see how it describes energy interchanges in systems ranging 
from engines to atmospheres.

18.1 The First Law of Thermodynamics
LO 18.1 Describe the first law of thermodynamics as a statement  

of energy conservation.

Figure 18.1 shows two ways to raise the temperature in a beaker of water: by 
heating with a flame and by stirring vigorously with a spoon. Using the flame 
involves heat—energy in transit because of the temperature difference be-
tween flame and water. But there’s no temperature difference between spoon 
and water; here the energy transfer occurs because the spoon does mechan-
ical work on the water. We already know that doing work can increase the 
kinetic or potential energy of a macroscopic object; here we see it, instead, 

Skills & Knowledge You’ll Need
■■ The concept of work (Sections 6.2 and 

6.3)

■■ The concept of pressure (Section 15.1)

■■ The ideal-gas law (Section 17.1)

Learning Outcomes
After finishing this chapter you should be able to:

LO 18.1 Describe the first law of thermodynamics as a statement of 
energy conservation.

LO 18.2 Calculate the work done by or on an ideal gas for different 
thermodynamic processes.

LO 18.3 Determine values of pressure and temperature during differ-
ent thermodynamic processes.

LO 18.4 Explain the specific heats of ideal gases based on their 
 molecular structure.

Heat, Work, and the First Law  
of Thermodynamics

20
Electric Charge, 
Force, and Field

19
The Second Law of 
Thermodynamics

17
The Thermal 

Behavior of Matter

16
Temperature and 

Heat 18

A jet engine converts the energy of burning fuel 
into  mechanical energy. How does energy conser-
vation apply in this process?
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18.1 The First Law of Thermodynamics 329

changing the internal energy associated with the 
motions of individual molecules. The point is that 
both processes—heating and mechanical work— 
result in exactly the same final state—namely, 
 water with a higher temperature and therefore 
greater internal energy. It’s this common result that 
made possible Joule’s quantitative identification of 
heat as a form of energy (Fig. 18.2).

Keep track of all the energy entering and leaving 
a system—both heat and work—and you’ll find that 
the change in the system’s internal energy depends 
only on the net energy transferred. In one sense this 
is hardly surprising; it just extends the idea of energy 
conservation to include heat. But in another way it’s 
remarkable; it doesn’t matter at all how the energy 
gets into the system—heat, work, or some combina-
tion of the two. This statement constitutes the first 
law of thermodynamics:

First law of thermodynamics The change in 
the internal energy of a system depends only on the 
net heat transferred to the system and the net work 
done on the system, independent of the particular 
processes involved.

Mathematically, the first law is

 ∆Eint = Q + W  1first law of thermodynamics2 (18.1)

where ∆Eint is the change in a system’s internal energy, Q the heat transferred to the system,  
and W the work done on the system.* The first law says that the change in a system’s inter-
nal energy doesn’t depend on how the energy gets transferred, but only on the net energy. 
Internal energy is therefore a thermodynamic state variable, meaning a quantity that 
helps characterize the state of a thermodynamic system. Thermodynamic state variables 
are important because their values don’t depend on how a system got into its particular 
state. The first law shows that this is the case for internal energy, which is why Eint is a 
state variable. Other state variables include temperature and pressure. Heat and work, in 
contrast, aren’t state variables because they describe processes—flows of energy—and not 
the state of a system.

We’re frequently concerned with rates of energy flow. Differentiating the first law with 
respect to time gives a statement about rates:

 
dEint

dt
=

dQ

dt
+

dW
dt

 (18.2)

where dEint/dt is the rate of change of a system’s internal energy, dQ/dt the rate of heat 
transfer to the system, and dW/dt the rate at which work is done on the system.

Heat from the
flame raises
water’s internal
energy and 
therefore its
temperature.

The spoon’s mechanical
work similarly raises
internal energy and
hence temperature.

(a)

(b)

FIGURE 18.1 Two ways to raise tem-
perature: (a) by heat transfer and  
(b) by mechanical work.

*Some older books define W as the work done by the system, in which case there’s a minus sign in 
the first law. This is because the law was first introduced in connection with engines, which take in 
heat and put out mechanical work.

Potential energy of
falling weights
becomes kinetic
energy of the paddle.

The paddle’s kinetic energy in turn
becomes internal energy of the water,
indicated by rising temperature.

FIGURE 18.2 Joule’s apparatus for 
determining what he called “the 
mechanical equivalent of heat.”

∆E
int

 is the change in a  
system’s internal energy.

Q is heat that flows 
into the system…

…and W is work done 
on the system.

The equality shows that energy is conserved.
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These temperatures stay the same
as the water temperature increases slowly.

T T

Temperature
control

GasWater

FIGURE 18.3 A quasi-static, or reversible, 
process keeps water and gas always in 
equilibrium.

The system is always in
thermodynamic equilibrium,
so a continuous path describes
the change.

p

V

p2, V2, T2

p1, V1, T1

FIGURE 18.4 The pV diagram of a system 
undergoing quasi-static change.

EXAMPLE 18.1 The First Law of Thermodynamics: Thermal Pollution

The reactor in a nuclear power plant supplies energy at the rate 
of 3.0 GW, boiling water to produce steam that turns a turbine- 
generator. The spent steam is then condensed through thermal 
contact with water taken from a river. If the power plant produces 
electrical energy at the rate of 1.0 GW, at what rate is heat trans-
ferred to the river?

INTERPRET This problem is about heat and mechanical energy, which 
are related by the first law of thermodynamics. We identify the system 
as the entire power plant, comprising the nuclear reactor, including its 
fuel, and the turbine-generator. We identify Eint as the energy in the 
fuel, W as the mechanical work that ends up as electrical energy, and 
Q as the heat transferred to the river.

DEVELOP Since we’re dealing here with rates, Equation 18.2, 
dEint/dt = dQ/dt + dW/dt, applies. The reactor extracts energy from 
its fuel, so the rate dEint/dt is negative. The power plant delivers elec-
trical energy to the outside world, so it’s doing work; since W in the 
first law is the work done on the system, dW/dt is therefore negative. 
Our plan is then to solve for dQ/dt, the rate of energy transfer to the 
river.

EVALUATE Solving, we have

dQ

dt
=

dEint

dt
-

dW
dt

= -3.0 GW - 1-1.0 GW2 = -2.0 GW

ASSESS Make sense? Since positive Q represents heat transferred to 
the system, the minus sign shows that heat is transferred from the power 
plant to the river at the rate of 2 GW. The numbers here are typical for 
large nuclear and coal-burning power plants, and show that about two-
thirds of the energy extracted from the fuel is wasted in heating the envi-
ronment. We’ll see in the next chapter just why this waste occurs.

  IDENTIFY THE SYSTEM The first law of thermodynamics deals 
with energy flows into and out of a system. We first introduced 
the system concept in the context of energy in our discussion 
surrounding Fig. 6.1. Here, as there, it’s up to you to define the 
system. How you do so affects the meanings of the terms in the 
first law. In this example we included the nuclear reactor, with 
the internal energy of its fuel, as part of the system. If we had 
considered only the turbine-generator, then we would have 
had 3 GW of heat coming in from the reactor and no change in 
internal energy. But the result would be the same: 1 GW going 
out as electricity and 2 GW of heat dumped into the river.

18.2 Thermodynamic Processes
LO 18.2 Calculate the work done by or on an ideal gas for different 

 thermodynamic processes.

LO 18.3 Determine values of pressure and temperature during different  
thermodynamic processes.

Although the first law applies to any system, it’s easiest to understand when applied to an ideal 
gas. The ideal-gas law relates the temperature, pressure, and volume of a given gas sample: 
pV = nRT. The thermodynamic state is completely determined by any two of the quantities 
p, V, or T. We’ll find it convenient to represent different states as points on a pV diagram—a 
graph whose vertical and horizontal axes represent pressure and volume, respectively.

Reversible and Irreversible Processes
Imagine a gas sample immersed in a large reservoir of water and allowed to come to equi-
librium (Fig. 18.3). If we then raise the reservoir temperature very slowly, both water and 
gas temperatures will rise essentially in unison, and the gas will remain in equilibrium. Such 
a slow change is called a quasi-static process. Because a system undergoing a quasi-static 
process is always in thermodynamic equilibrium, its evolution from one state to another is 
described by a continuous sequence of points—a curve—in its pV diagram (Fig. 18.4).

We could reverse this heating process by slowly lowering the reservoir temperature; the 
gas would cool, reversing its path in the pV diagram. For that reason, a quasi-static pro-
cess is also a reversible process. A process like suddenly plunging a cool gas sample into 
hot water is, in contrast, irreversible. During an irreversible process the system isn’t in 
equilibrium, and thermodynamic variables like temperature and pressure don’t have well- 
defined values. It therefore makes no sense to think of a path in the pV diagram. A process 
may be irreversible even though it returns a system to its original state. The distinction lies 
not in the end states but in the process that takes the system between states.

There are many ways to change a system’s thermodynamic state. Here we consider im-
portant special cases involving an ideal gas. These illustrate the physical principles behind 
a myriad of technological devices and natural phenomena, from the operation of a gasoline 
engine to the propagation of a sound wave to the oscillations of a star.
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Thermal
insulator

Movable
piston

Thermal
conductor

FIGURE 18.5 A gas–cylinder system 
with insulating walls and a conducting 
bottom.

18.1 Two identical gas–cylinder systems are taken from the same initial state to 
the same final state, but by different processes. Which of the following is or are the 
same in both cases? (a) the work done on or by the gas; (b) the heat added or re-
moved; or (c) the change in internal energy

G
O

T 
IT

?

Isothermal Processes
An isothermal process occurs at constant temperature. Figure 18.7 shows one way to 
effect an isothermal process: Place a gas cylinder in thermal contact with a heat reservoir 
whose temperature is constant. Then move the piston to change the gas volume, slowly 

The piston moves slowly while the 
system is in thermal contact with a
heat reservoir at fixed temperature T.

T

T

Heat
reservoir

FIGURE 18.7 An isothermal process.

The piston
rises a small
distance ∆x.

The gas does work
as the volume
increases by ∆V c cand the work done on the

gas is the opposite, making
the work done on the gas as
its volume increases from V1
         to V2 the negative of the
                      area under the
                      entire curve.

(a)

∆V = A∆x

Area A

∆x

x

p

V1 V2∆V

V

(b)

FIGURE 18.6 Work done on the gas as the piston rises (a) is the negative of the area under the 
pV curve (b).

Our system consists of an ideal gas confined to a cylinder sealed with a movable piston 
(Fig. 18.5). The piston and the cylinder walls are perfectly insulating—they block all heat 
transfer—and the bottom is a perfect conductor of heat. We can change the thermody-
namic state of the gas mechanically by moving the piston, or thermally by transferring 
heat through the bottom. We’ll consider only reversible processes, which we can describe 
by paths in the pV diagram for the gas.

Work and Volume Changes
We begin by developing an expression for the work done on a gas that holds for all pro-
cesses. If our piston–cylinder system has cross-sectional area A and gas pressure p, then 
Fgas = pA is the force the gas exerts on the piston. If the piston moves a small distance ∆ x, 
the gas does work ∆ Wgas = Fgas ∆ x = pA ∆ x = p ∆V, where ∆V = A ∆ x is the change 
in gas volume (Fig. 18.6a). Our expression for the first law of thermodynamics involves 
the work done on the gas; by Newton’s third law, the piston exerts a force on the gas that’s 
equal but opposite to Fgas, so the work done on the gas is ∆W = -Fgas ∆ x = -p ∆V. 
Pressure may vary with volume, so we find the total work done as the gas goes from vol-
ume V1 to volume V2 by replacing ∆V with the infinitesimal quantity dV and integrating:

 W = LdW = - L
V2

V1

p dV  1work done on gas during volume change2 (18.3)

Figure 18.6b shows that the work done on the gas is the negative of the area under the pV curve. 
That work is positive if the gas is compressed 1V2 6 V12 and negative if it expands 1V2 7 V12.

We’ll now explore several basic thermodynamic processes, in each case holding one 
thermodynamic variable constant.

W is the work done on a 
gas as its volume changes.

V1 and V2 are the initial and 
final volumes. dV is an infinitesimal 

change in volume.

We need to integrate whenever p 
varies as the volume changes.

p is the gas 
pressure.

The product p dV is the 
infinitesimal work dW.
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a1

V
b

L
V2

V1

An isotherm is a hyperbola because 
pressure and volume are inversely 
related for an ideal gas at constant T:

p = nRT

p

V1 V2

V

Work done on the gas is the negative
of the area under the pV curve:

W = -      pdV

FIGURE 18.8 A pV diagram for an  
isothermal process.

A scuba diver is 25 m down, where the pressure is 3.5 atm. The air she 
exhales forms bubbles 8.0 mm in radius. How much work does each 
bubble do as it rises to the surface, assuming the bubbles remain at the 
uniform 300 K temperature of the water?

INTERPRET The constant 300 K temperature tells us we’re dealing 
with an isothermal process.

DEVELOP Equation 18.4 determines the work: -W = nRT ln1V2/V12. 
Here -W is just what we’re after: the work done by the gas in the bub-
ble. To use this equation, we need the quantity nRT and the volume 
ratio V2/V1. We know p and V (actually the radius, from which we can 
get V) at the 25-m depth, so we can use the ideal-gas law pV = nRT 
to get nRT and also the bubble volume just before it reaches the sur-
face. Then we’ll have everything we need to apply Equation 18.4.

EVALUATE The ideal-gas law gives nRT = pV = 4
3 pr3p. The num-

ber of moles n doesn’t change and R is a constant, so pV is itself con-
stant in the isothermal process. That means p1V1 = p2V2, showing 

that the volume expands by a factor of 3.5 as the pressure drops from  
3.5 atm to 1 atm at the surface—so V2/V1 = 3.5. Then Equation 18.4 gives

-W = nRT ln aV2

V1
b = 4

3 pr3p ln3.5

Using the 8-mm bubble radius and the 3.5-atm pressure gives 0.95 J 
for the work. In this calculation we needed the pressure in SI units, 
which we got using the conversion 1 atm = 101.3 kPa. When we found 
the volume ratio, any units would do because V2/V1 followed from the 
pressure ratio p1/p2.

ASSESS Make sense? The work -W done by the gas is positive be-
cause an expanding bubble pushes water outward and ultimately up-
ward. It therefore raises the ocean’s gravitational potential energy. 
When the bubble breaks, this excess potential energy becomes kinetic 
energy, appearing as small waves on the water surface. The bubble, 
in turn, gets its energy from heat that flows in to keep it at constant 
temperature. Energy is conserved!

EXAMPLE 18.2 An Isothermal Process: Bubbles!
Worked Example with Variation Problems

enough that the gas remains in equilibrium with the heat reservoir. The system moves from 
its initial state to its final state along a curve of constant temperature—an isotherm—in 
the pV diagram (Fig. 18.8). The work done on the gas is given by Equation 18.3 and is the 
negative of the area under the isotherm.

To find that work, we relate pressure and volume through the ideal-gas law: 
p = 1nRT2/V. Then Equation 18.3 becomes

W = - L
V2

V1

nRT
V

 dV

For an isothermal process, the temperature T is constant, giving

W = -nRTL
V2

V1

dV
V

= -nRT lnV `
V2

V1

= -nRT ln aV2

V1
b

The internal energy of an ideal gas consists only of the kinetic energy of its molecules, 
which, in turn, depends only on temperature. That dependence of internal energy on tem-
perature alone is a defining feature of the ideal gas. Thus, there’s no change in the internal 
energy of an ideal gas during an isothermal process. The first law of thermodynamics then 
gives ∆ Eint = 0 = Q + W, so

 Q = -W = nRT ln aV2

V1
b 1isothermal process2 (18.4)

Does this result Q = -W make sense? Recall that Q is the heat transferred to the gas 
and W is the work done on it. So -W  is the work done by the gas, and our result shows 
that for a gas to do work without its temperature changing, it must absorb an equal amount 
of heat. Similarly, if work is done on the gas, it must transfer an equal amount of heat to its 
surroundings if it’s to maintain a constant temperature.

¯˘˙

¯˘˙

Q is the heat supplied to a  
system during an isothermal  
process.

W is the work done on the 
system.

This term is the natural logarithm of 
the ratio of final to initial volume.

Q = -W  because there’s no 
change in temperature or  
internal energy.

n is the number of moles and T is the 
temperature. R is the gas constant.
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Work done
on the gas
is the negative
of the area under
the pV curve.

p
1 2

T1 T2

V1 V2

V

W = -p∆V

Isotherms

Isobar

FIGURE 18.9 A pV diagram for an 
isobaric process; also shown are 
isotherms for the initial and final 
temperatures.

Constant-Volume Processes and Specific Heat
A constant-volume process (also called isometric, isochoric, or isovolumic) occurs in a rigid 
closed container whose volume can’t change. We could tightly clamp the piston in Fig. 18.5 
for a constant-volume process. Because the piston doesn’t move, the gas does no work, and 
the first law becomes simply ∆Eint = Q. To express this result in terms of a temperature 
change ∆T, we introduce the molar specific heat at constant volume CV, defined by

 Q = nCV ∆T 1constant@volume process2 (18.5)

where n is the number of moles. This molar specific heat is like the specific heat defined 
in Chapter 16, except it’s per mole rather than per unit mass. Using Equation 18.5 for Q in 
our first-law statement ∆Eint = Q gives

 ∆Eint = nCV ∆T  1any process2 (18.6)

For an ideal gas, the internal energy is a function of temperature alone, so ∆Eint/∆T  has 
the same value no matter what process the gas undergoes. Therefore, Equation 18.6, relating 
the temperature change ∆T  and internal-energy change ∆Eint, applies not only to a con-
stant-volume process but to any ideal-gas process. Why, then, have we been so careful to label 
CV the specific heat at constant volume? Although Equation 18.6, ∆Eint = nCV ∆T, holds 
for any process, it’s only when there’s no work that the first law lets us write Q = ∆Eint, and 
therefore only for a constant-volume process that Equation 18.5 holds.

Isobaric Processes and Specific Heat
Isobaric means constant pressure. Processes occurring in systems exposed to the atmosphere 
are essentially isobaric. In a reversible isobaric process, a system moves along an isobar, or 
curve of constant pressure, in its pV diagram (Fig. 18.9). The work done on the gas as the 
 volume changes from V1 to V2 is the negative of the rectangular area under the isobar, or

 W = -p1V2 - V12 = -p ∆V  (18.7)

a result we could obtain formally by integrating Equation 18.3.
Solving the first law (Equation 18.1) for Q and using our expression for work gives 

Q = ∆Eint - W = ∆Eint + p ∆V. For an ideal gas, we’ve just found that the change 
in internal energy is ∆Eint = nCV ∆T  for any process. Therefore, Q = nCV ∆T + p ∆V  
for an ideal gas undergoing an isobaric process. We define the molar specific heat at  
constant pressure Cp as the heat required to raise 1 mol of gas by 1 K at constant pres-
sure, or Q = nCp ∆T. Equating our two expressions for Q gives

 nCp ∆T = nCV ∆T + p ∆V  1isobaric process2 (18.8)

This is a useful form for calculating temperature changes in an isobaric process if we 
know both specific heats Cp and CV. However, we really need only one of these specific 
heats because a simple relation holds between the two. The ideal-gas law, pV = nRT, al-
lows us to write p ∆V = nR ∆T  for an isobaric process. Using this expression in Equation 
18.8 gives nCp ∆T = nCV ∆T + nR ∆T, so

 Cp = CV + R   1molar specific heats2 (18.9)

Does this make sense? Specific heat measures the heat needed to cause a given tempera-
ture change. In a constant-volume process, no work is done and all the heat goes into 
raising the internal energy and thus the temperature of an ideal gas. In a constant-pressure 
process, work is done and some of the added heat ends up as mechanical energy, leaving 
less available for raising the temperature. Therefore, a constant-pressure process requires 
more heat for a given temperature change. Thus the specific heat at constant pressure is 
greater than at constant volume, as reflected in Equation 18.9.

Why didn’t we distinguish specific heats at constant volume and constant pressure ear-
lier? Because we were concerned mostly with solids and liquids, whose coefficients of ex-
pansion are far lower than those of gases. As a result, much less work is done by a solid or 
liquid than by a gas. Since work is what gives rise to the difference between CV and Cp, the 

You slip a mug of water into the microwave to 
boil for tea, or you put a pot of water on the stove 
to cook pasta. Boiling water is an example of an 
isobaric process, because the water is exposed 
to atmospheric pressure as it boils. At its normal 
100°C boiling point, water’s volume increases 
some 2000-fold as it goes from liquid to vapor. 
According to Equation 18.7, the work done by the 
gas as it expands is p ∆V . That 2000-fold expan-
sion means that ∆V  is very nearly the same as the 
final volume V, so the work done by the gas is es-
sentially pV. Then the ideal-gas law in the form of 
Equation 17.2, pV = nRT, implies that the work 
done per mole of gas is RT. With T = 100°C 
or 373 K, that amounts to some 3.1 kJ/mol. 
Converting moles to kg of H2O gives an equiva-
lent of 170 kJ/kg. The energy needed to do that 
work must be included in the heat of vaporization, 
which we introduced in Chapter 17. There, Table 
17.1 gave 2257 kJ/kg as water’s heat of vaporiza-
tion at its boiling point. Our 170 kJ/kg shows that 
only about 8% of the energy supplied to boil water 
goes into expanding the vaporized water against 
atmospheric pressure. The rest is due largely to 
the breaking of the hydrogen bonds that keep H2O 
molecules close together in the liquid state.

Application BOILING 
WATER
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334 Chapter 18 Heat, Work, and the First Law of Thermodynamics

distinction is less significant for solids and liquids. As a practical matter, measured specific 
heats are usually at constant pressure.

Adiabatic Processes
In an adiabatic process, no heat flows between a system and its environment. The way to 
achieve this is to surround the system with perfect thermal insulation. Even without insu-
lation, processes that occur quickly are often approximately adiabatic because they’re over 
before significant heat transfer has had time to occur. In a gasoline engine, for example, com-
pression of the gasoline–air mixture and expansion of the combustion products are nearly 
adiabatic because they occur so rapidly that little heat flows through the cylinder walls.

Since the heat Q is zero in an adiabatic process, the first law becomes simply

 ∆Eint = W 1adiabatic process2 (18.10)

This says that if we do work on a system and there’s no heat transfer, then the system must 
gain an equal amount of internal energy. Conversely, if the system does work on its envi-
ronment, then it loses internal energy (Fig. 18.10).

As a gas expands adiabatically, its volume increases while its internal energy and tem-
perature decrease. The ideal-gas law, pV = nRT, then requires that the pressure decrease 
as well—and by more than it would in an isothermal process where T remains constant. In 
a pV diagram, the path of an adiabatic process—called an adiabat—is therefore steeper 
than the isotherms (Fig. 18.11).

Tactics 18.1 details the math involved in finding the adiabatic path; the result is

 pVg = constant 1adiabatic process2 (18.11a)

where g = Cp/CV  is the ratio of the specific heats. Because Cp = CV + R, the ratio 
g = Cp/CV is always greater than 1. As expected, an adiabatic process therefore results in 
a greater pressure change than would a comparable isothermal process, as reflected in the 
steeper adiabatic path in Fig. 18.11. Physically, the adiabatic path is steeper because the 
gas loses internal energy as it does work, so its temperature drops. Problem 71 shows how 
to rewrite Equation 18.11a in terms of temperature:

 TVg- 1 = constant 1adiabatic process2 (18.11b)

It’s another exercise in calculus to integrate Equation 18.3 for the work done on the gas 
in an adiabatic process. You can do this in Problem 69; the result is

 W =
p2V2 - p1V1

g - 1
 (18.12)

∆Eint is the change in a 
system’s internal energy.

W is the work done on the system.

Because there’s no heat flow Q during an adiabatic 
process, the first law equates ∆Eint and W.

p is the gas pressure.
The exponent g is the ratio of the 
molar specific heats of the gas.

V is the gas volume.
Even though p and V change, pVg remains 
constant during an adiabatic process.

v2
u

v2
u

v1
u

v1
u

v
u

Molecules rebound with the same
speed, and the gas’s internal energy
doesn’t change.

Rebounding molecules have lower
speed as energy is transferred to
the outward-moving piston.  With
the decrease in internal energy 
comes a drop in temperature.

(a) Stationary piston

(b) Moving piston

FIGURE 18.10 In an adiabatic ex-
pansion, a gas does work on the 
piston and its internal energy 
decreases. Part (b) shows micro-
scopically how this occurs.

T1

T2

Isotherms
p

V

1

An adiabat shows that
the pressure drops more
than in an isothermal
process.

2

FIGURE 18.11 A pV curve for an adia-
batic expansion (dark curve).

Tactics 18.1 DERIVING THE ADIABATIC EQUATION

Equation 18.6 gives the infinitesimal change in internal energy for any process: dEint = nCV dT. The 
corresponding work is dW = p dV  so, with Q = 0 in an adiabatic process, the first law becomes 
nCV dT = -p dV. We can eliminate dT by differentiating the ideal-gas law, now letting both p and V change: 
nR dT = d1pV2 = p dV + V dp. Solving for dT, substituting in our first-law statement, and multiply-
ing through by R leads to CVV dp + 1CV + R2p dV = 0. But CV + R = Cp; substituting this and dividing 
through by CV pV  gives

M18_WOLF8559_04_SE_C18.indd   334 13/11/18   12:39 PM



18.2 Thermodynamic Processes 335

dp

p
+

Cp

CV
 
dV
V

= 0

Defining g K Cp/CV and integrating gives

ln p + g lnV = ln1constant2
where we’ve chosen to call the constant of integration ln(constant). Since g lnV = lnVg, it follows by  
exponentiation that

pVg = constant

EXAMPLE 18.3 An Adiabatic Process: Diesel Power

Fuel ignites in a diesel engine because of the temperature rise that 
results from compression as the piston moves toward the top of the 
cylinder; there’s no spark plug as in a gasoline engine. Compression 
is fast enough that the process is essentially adiabatic. If the ignition 
temperature is 500°C, what compression ratio Vmax/Vmin is needed 
(Fig. 18.12)? Air’s specific-heat ratio is g = 1.4, and before compres-
sion the air is at 20°C.

INTERPRET We identify the thermodynamic process here as adiabatic 
compression.

DEVELOP The problem involves temperature and volume, so 
Equation 18.11b applies, giving TminVmin

g- 1 = TmaxVmax
g- 1.

EVALUATE Solving for the compression ratio Vmax/Vmin gives

Vmax

Vmin
= aTmin

Tmax
b

1/1g- 12
= a773 K

293 K
b

1/0.4

= 11

ASSESS Practical diesel engines have higher ratios to ensure reliable 
ignition. Their high compression makes diesels heavier than their gas-
oline counterparts, but also more fuel efficient. You can explore the 
diesel engine further in Chapter 19.

Vmax

Vmin

Cylinder

Piston

Connecting rod

Crankshaft

(a) (b)

FIGURE 18.12 One cylinder of a 
diesel engine, shown with the 
piston (a) at the bottom of its 
stroke and (b) at the top. The 
compression ratio is Vmax/Vmin.

CONCEPTUAL EXAMPLE 18.1 Ideal-Gas Law versus the Adiabatic Equation

The ideal-gas law says pV = nRT, but, seemingly in contrast, 
Equation 18.11a says pVg =  constant for an ideal gas undergoing an 
adiabatic process. Which is right?

EVALUATE The ideal-gas law is fundamental, so we know it’s right. 
And we derived Equation 18.11a based on the behavior of an ideal 
gas. So both must be right. But how can that be, when one equation 
talks about pV and the other about pVg? The answer lies in the right-
hand side of the ideal-gas law: nRT. For an adiabatic process, T isn’t 
constant and therefore pV isn’t constant—but pVg is.

ASSESS Compare the adiabatic process with an isothermal process.  
In the isothermal case, T is constant and we would write pV = constant.  

Both processes obey the ideal-gas law, but the relation of p and V dif-
fers, so there’s no contradiction.

MAKING THE CONNECTION Suppose you halve the volume of an 
ideal gas with g = 1.4. What happens to the pressure if the process is 
(a) isothermal and (b) adiabatic?

EVALUATE For the isothermal process pV = constant, so halving the 
volume doubles the pressure. For the adiabatic process it’s pVg that’s 
constant. Setting p1V

g
1 = p2V

g
2  with V2 = V1/2 gives p2 = 2gp1. 

With g = 1.4, that means the pressure increases by a factor of 2.64. 
The pressure increase is greater than in the isothermal case because 
the temperature goes up.
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The smog that blankets urban areas is an unfortunate manifestation of our prolific fossil- 
fueled energy consumption. Adiabatic processes in the atmosphere determine whether or 
not smog lingers over a city. Consider a volume of air that’s heated, perhaps because it’s 
over hot pavement that absorbs solar energy. The air becomes less dense, and its buoyancy 
makes it rise. As it ascends into regions of lower pressure, it expands, doing work against the 
surrounding atmosphere. Air is a poor heat conductor, so the process is essentially adiabatic. 
Therefore, the gas cools as it does work.

Now, temperature in the atmosphere normally decreases with altitude. So here’s the cru-
cial question: Does the rising air cool faster or slower than the surrounding atmosphere? If 
it cools more slowly, then it continues to be warmer, and it continues to rise. Any pollution 
is carried high into the atmosphere where it’s dispersed. But if the decrease in air tempera-
ture with altitude isn’t so great, or in an inversion where it’s actually warmer aloft, the 
rising air will soon reach equilibrium with its surroundings and won’t rise any higher. The 
effect is to trap air and its entrained pollutants near the surface, as shown in this photo of  
Los Angeles. Smog alert!

APPLICATION Smog Alert!

18.2 Name the basic thermodynamic process involved when each of the following 
is done to a piston–cylinder system containing ideal gas, and tell also whether tem-
perature, pressure, volume, and internal energy increase or decrease: (1) The piston 
is locked in place and a flame is applied to the bottom of the cylinder; (2) the cyl-
inder is completely insulated and the piston is pushed downward; (3) the piston is 
exposed to atmospheric pressure and is free to move, while the cylinder is cooled by 
placing it on a block of ice.

G
O

T 
IT

?

Table 18.1 Ideal-Gas Processes

p2V2 - p1V1

g - 1
aV2

V1
b

pV diagram

Defining characteristic

First law

Work done on gas

Other relationships

T = constant

Q = -W Q = ∆Eint Q = ∆Eint - W ∆Eint = W

W = -nRT ln

pV = constant

ISOTHERMAL CONSTANT-VOLUME ISOBARIC ADIABATIC

V = constant

W = 0

Q = nCV∆T

p = constant

W = -p 1V2 - V12
Q = nCp∆T

Cp  = CV  + R

Q = 0

W = 

pVg = constant
TVg-1  = constant

p

W

VV1 V2

Isotherm

p

V

p

W

VV1 V2

Isobar

T2

T1 W

VV1 V2

Adiabat

T1

T2

p

Cyclic Processes
Many natural and technological systems undergo cyclic processes, in which the system 
returns periodically to the same thermodynamic state. Engineering examples include en-
gines and refrigerators whose mechanical construction ensures cyclic behavior. Many 
 natural oscillations, like those of a sound wave or a pulsating star, are essentially cyclic.

Cyclic processes often involve the four basic processes we’ve just explored, as sum-
marized in Table 18.1. We’ve seen that the work done in any reversible process is just the 
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area under the pV curve. A cyclic process returns to the same point in the pV diagram, so it 
involves both expansion and compression (Fig. 18.13). During compression, work is done 
on the gas; during expansion, the gas does work on its surroundings. The net work done on 
the gas is the difference between the two, shown in Fig. 18.13 as the area enclosed by the 
cyclic path in the pV diagram.

A

Bp

V

(a) (c)

p

V

A

B

(b)

p

V

W 6 0

Wnet
A

B

Work done on the gas as it goes from
state A to state B is the entire shaded area.

Work is done by the gas as it goes
from state B to state A.

Net work done on the gas 
during the whole cycle is
the area encircled by the
closed path.

FIGURE 18.13 (a) A pV diagram for a cyclic process. (b), (c) Work done on the gas over one cycle is the area inside the 
closed path.

An ideal gas with g = 1.4 occupies 4.0 L at 300 K and 100 kPa pressure. 
It’s compressed adiabatically to one-fourth of its original volume, then 
cooled at constant volume back to 300 K, and finally allowed to expand 
isothermally to its original volume. How much work is done on the gas?

INTERPRET This problem involves a cyclic process, and we identify 
three separate thermodynamic processes that make up the cycle: adia-
batic, constant-volume, and isothermal.

DEVELOP Here it helps to draw a pV diagram, shown in Fig. 18.14. 
Our plan is to use equations in Table 18.1 to determine the work  
for each of the basic processes and then combine them to get the  
net work. For the adiabatic process AB ,  Table 18.1 gives 
WAB = 1pBVB - pAVA2/1g - 12; for the constant-volume process BC, 
WBC = 0; and for the isothermal process CA ,  the work is 
WCA = -nRT ln1VA/VC2.

EVALUATE For the adiabatic process AB we’re given all quantities ex-
cept pB. This we get from the adiabatic equation pVg = constant, or 

pBVB
g = pAVA

g. Solving gives pB = pA1VA/VB2g = 696.4 kPa, where 
we used the given information pA = 100 kPa, g = 1.4, and a com-
pression to one-fourth the original volume 1VA/VB = 42. We now have 
enough information to find the work done over the adiabatic path:

WAB =
pBVB - pAVA

g - 1
= 741 J

where, with pressures in kPa 1=103 Pa2 and volumes in L 1=10-3 m32, 
the factors 10{3 cancel and there’s no need to convert. The work WAB 
is positive because work is done on the gas when it’s compressed.

In the expression WCA = -nRT ln1VA/VC2 for the isothermal work, 
we can evaluate the quantity nRT at any point on the isothermal curve 
because T is constant. The ideal-gas law says that nRT = pV, and we 
know both p and V at point A. So nRT = pAVA = 400 J, where again 
we could multiply pA = 100 kPa by VA = 4.0 L to get an answer in
SI units. The isothermal work is then

WCA = -nRT ln aVA

VC
b = -1400 J21ln 42 = -555 J

This is negative because the gas does work in expanding from  
C to A.

Combining our results for all three segments gives the net work:

WABCA = WAB + WBC + WCA = 741 J + 0 J - 555 J = 186 J

ASSESS Make sense? The final answer is positive because we’ve 
done net work on the gas; that’s always the case in going counter-
clockwise around a cyclic path in a pV diagram. Since the system re-
turns to its original state, its internal energy undergoes no net change. 
That means all the work that’s done on it must be transferred to its 
surroundings as heat. Since no heat flows during the adiabatic process 
AB, and since the gas absorbs heat during the isothermal expansion 
CA, the only time it transfers heat to its surroundings is during the 
constant-volume cooling process BC.

1
4We’re given VB =   VA,

and we calculated pB.

We’re given
pA and VA.

FIGURE 18.14 The cyclic process ABCA of Example 18.4 includes adi-
abatic (AB), constant-volume (BC), and isothermal (CA) sections.

EXAMPLE 18.4 A Cyclic Process: Finding the Work
Worked Example with Variation Problems
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338 Chapter 18 Heat, Work, and the First Law of Thermodynamics

18.3 Specific Heats of an Ideal Gas
LO 18.4 Explain the specific heats of ideal gases based on their 

molecular structure.

We’ve found that the thermodynamic behavior of an ideal gas depends on the specific 
heats CV and Cp. What are the values of those quantities?

Our ideal-gas model of Chapter 17 assumed the gas molecules were structureless point 
particles with only translational kinetic energy. The internal energy Eint of the gas is the 
sum of all those molecular kinetic energies. But the average kinetic energy is directly pro-
portional to the temperature: 12 mv2 = 3

2 kT. If we have n moles of gas, the internal energy 
is then Eint = nNA11

2 mv22 = 3
2 nNAkT, where NA is Avogadro’s number. But NAk = R, the 

gas constant, so Eint = 3
2 nRT. Solving Equation 18.6 for the molar specific heat then gives

 CV =
1
n

 
∆Eint

∆T
= 3

2 R (18.13)

For this gas of structureless particles, the adiabatic exponent g is therefore

g =
Cp

CV
=

CV + R

CV
=

5
2 R
3
2 R

=
5
3

= 1.67

Some gases, notably the inert gases helium (He), neon (Ne), argon (Ar), and others in 
the last column of the periodic table, have adiabatic exponents and specific heats given 
by these equations. But others do not. At room temperature, for example, hydrogen 1H22,  
oxygen 1O22, and nitrogen 1N22 obey adiabatic laws with g very nearly 7

5 1=1.42 and, 
correspondingly, specific heat CV = 5

2 R. On the other hand, sulfur dioxide 1SO22 and ni-
trogen dioxide 1NO22 have specific-heat ratios close to 1.3 and therefore CV of about 3.4R.

What’s going on here? A clue lies in the structure of individual gas molecules, reflected in 
their chemical formulas. The inert-gas molecules are monatomic, consisting of single atoms. 
To the extent that these atoms behave like structureless mass points, the only energy they can 
have is kinetic energy of translational motion. We can think of that kinetic energy as being a 
sum of three terms, each associated with motion in one of the three mutually perpendicular di-
rections. We call each separate term in the energy of a system a degree of freedom, meaning 
a way that system can take on energy. So a monatomic molecule has three degrees of freedom.

In contrast, hydrogen, oxygen, and nitrogen molecules are diatomic, as shown in  
Fig. 18.15. Although a gas of such molecules should still obey the ideal-gas law pV = nRT, 
these molecules can have rotational as well as translational kinetic energy. Then the ki-
netic energy of a diatomic molecule consists of five terms, three for the three directions of 
translational motion and two for rotational motions about the two mutually perpendicular 
axes shown in Fig. 18.15. So a diatomic molecule has five degrees of freedom. You’ll now 
see how this difference between three degrees of freedom for monatomic molecules and 
five for diatomic molecules accounts for the difference between their specific heats.

The Equipartition Theorem
We showed in Chapter 17 that the average kinetic energy associated with a gas molecule’s 
motion in one direction is 12 kT. We then argued that all three directions are equally probable, 
making the molecular kinetic energy, on average, 32 kT. The argument from one direction to 
three is based on the assumption that random collisions will share energy equally among 
the possible motions. When a molecule can rotate as well as translate, energy should be 
shared also among possible rotational motions. The 19th-century Scottish physicist James 
Clerk Maxwell first proved this fact, which is known as the equipartition theorem:

EQUIPARTITION THEOREM When a system is in thermodynamic equilibrium, the average 
 energy per molecule is 1

2 kT for each degree of freedom.

We’ve just seen that a diatomic molecule has five degrees of freedom: three transla-
tional and two rotational. The average energy of such a molecule is then 511

2 kT2 = 5
2 kT, 

z′

x′

y′

FIGURE 18.15 A diatomic 
molecule can have signif-
icant rotation about two 
perpendicular axes.
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so the total internal energy in n moles of a diatomic gas is Eint = nNA15
2 kT2 = 5

2 nRT. 
Equation 18.6 then gives the molar specific heat at constant volume:

CV =
1
n

 
∆Eint

∆T
= 5

2 R 1diatomic molecule2

Our result Cp = CV + R still holds, since it was derived from the first law of thermody-
namics without regard to molecular structure, so Cp = 7

2 R and g = Cp 

/CV = 7
5 = 1.4. 

These results describe the observed behavior of diatomic gases like hydrogen, oxygen, and 
nitrogen at room temperature.

A polyatomic molecule like NO2 can rotate about any of three perpendicular axes  
(Fig. 18.16). It then has a total of six degrees of freedom, giving Eint = 3nRT  and cor-
responding specific heats CV = 3R and Cp = CV + R = 4R. The adiabatic exponent is 
then g = 4

3 ≃1.33, reasonably close to the experimental value g = 1.29 for NO2.

z′

y′

x′

FIGURE 18.16 A triatomic molecule like 
NO2 has three rotational degrees of 
freedom.

EXAMPLE 18.5 Specific Heat: A Gas Mixture

A gas mixture consists of 2.0 mol of oxygen 1O22 and 1.0 mol of  
argon (Ar). Find the volume specific heat of the mixture.

INTERPRET This problem is about specific heat and molecular 
 structure. We identify the molecules involved as diatomic O2 and 
monatomic Ar.

DEVELOP Equation 18.6, ∆Eint = nCV ∆T, determines the volume 
specific heat, so we need to find how the internal energy Eint de-
pends on temperature. Our plan is to use the equipartition theorem 
to get the energy per molecule for each gas, then find the total en-
ergy as a function of temperature, and from that the specific heat.

EVALUATE Being diatomic, O2 has five degrees of freedom, 
so the equipartition theorem gives the average energy per mole-
cule as 5

2 kT. Then the total energy in n = 2 moles of oxygen is 
EintO2

= nNA15
2 kT2 = 5

2 nRT = 5.0RT,  where we used NAk = R. 
Monatomic Ar has three degrees of freedom, so the internal energy in 
our 1 mole of argon is, similarly, Eint Ar = 3

2 nRT = 1.5RT. The total 
internal energy is then Eint = 6.5RT, so Equation 18.6 gives

CV =
1
n

 
∆Eint

∆T
=

6.5R
3.0 mol

= 2.2R

ASSESS Make sense? Our answer lies between the values 1.5R and 
2.5R that we found for monatomic and diatomic gases, respectively. 
It’s closer to 2.5R because there’s more oxygen in the mixture.

18.3 The same amount of heat f lows into equal volumes of nitrogen (N2) and  
nitrogen dioxide (NO2), while both are held at constant pressure. Is the resulting 
temperature rise (a) greater for N2, (b) the same for both, or (c) greater for NO2?G
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FIGURE 18.17 Molar specific heat of H2 
gas at constant volume, as a function of 
 temperature. Below 20 K hydrogen is 
 liquid, and above 3200 K it dissociates 
into individual atoms.

Quantum Effects
Relating molecular structure and gas behavior is a remarkable triumph for Newtonian physics. 
But hidden in our analysis is an assumption that Newtonian physics can’t justify. Real atoms 
have size, so even monatomic molecules should rotate. Why not more degrees of freedom? 
The answer lies in quantum physics, which requires a certain minimum energy for a periodic 
motion such as rotation. At normal temperatures, the average thermal energy is too low to ex-
cite rotation of monatomic molecules, or of diatomic molecules about their long axis. So these 
molecules exhibit three and five degrees of freedom, respectively. That results in the volume 
specific heats 32 R and 52 R that we’ve seen. For diatomic molecules at higher temperatures, still 
another motion comes into play—the simple harmonic oscillation of the two atoms due to the 
springlike bond between them. That adds two more degrees of freedom, corresponding to the 
kinetic and potential energies of this oscillation, and the specific heat increases correspond-
ingly. At very low temperatures, in contrast, there isn’t enough thermal energy to excite any 
rotation in a diatomic gas, and it then exhibits the specific heat CV = 3

2 R that we normally as-
sociate with a monatomic gas. Figure 18.17 shows these effects for diatomic hydrogen 1H22.

Are you bothered by the strange restrictions quantum mechanics imposes on molecular 
rotation and vibration? You should be! Nothing in your experience suggests that a rotating 
object can’t have any amount of energy you care to give it. But quantum mechanics deals 
with a realm much smaller than that of our daily experience. The quantization of energy 
is only one of many unusual things that occur in the quantum realm. We’ll explore more 
quantum phenomena in Part 6.

M18_WOLF8559_04_SE_C18.indd   339 13/11/18   12:40 PM



340

SummaryChapter 18

Big Idea

The big idea here is conservation of energy, now expanded to include heat. The expanded statement of energy conservation is the first law of 
thermodynamics, which relates the change in a system’s internal energy to the heat flowing into the system and the work done on the system. The 
first law can be used with the ideal-gas law to give a quantitative description of basic thermodynamic processes applied to ideal gases; these are 
described graphically using pV diagrams. The equipartition theorem states that in thermodynamic equilibrium, internal energy is shared equally 
among the possible energy modes of a system.

Key Concepts and Equations

Quantitatively, the first law of thermodynamics states

∆ Eint = Q + W

Meaning of terms in the first law:
• ∆ Eint is the change in a system’s internal energy.
• Q is the heat transferred to the system.

• Positive Q means a net heat input to the system.
• Negative Q means heat leaves the system.

• W is the work done on the system.
• Positive W means work is done on the system.
• Negative W means the system does work on its surroundings.

In general, the work done by a system is related to the changes in pressure and volume:

W = - L
V2

V1

 p dV

V1, p1

V2, p2

Q is the heat
that flows in.

-W is the work
done by the gas in
moving the piston.

∆Eint is the
change in
the gas’s 
internal
energy.

Applications
Ideal-gas processes:

T = constant

Q = -W Q = ∆Eint Q = ∆Eint - W ∆Eint = W

W = -nRT ln

pV = constant

ISOTHERMAL CONSTANT-VOLUME ISOBARIC ADIABATIC

V = constant

W = 0

Q = nCV∆T

p = constant

W = -p 1V2 - V12
Q = nCp∆T

Cp  = CV  + R

Q = 0

W = 

pVg = constant
TVg-1  = constant

p

W

VV1 V2

Isotherm

p

V

p

W

VV1 V2

Isobar

T2

T1 W

VV1 V2

Adiabat

T1

T2

p

p2V2 - p1V1

g - 1
aV2

V1
b

The specific heats of an ideal gas follow from the degrees of freedom of each molecule:

3
2

5
2

Monatomic
3 degrees of freedom

CV =  R

Diatomic
5 degrees of freedom

CV =  R

Triatomic
6 degrees of freedom

CV = 3R
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Mastering Physics

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems COMP Computer problems

Go to www.masteringphysics.com to access assigned homework and self-study tools such as 
Dynamic Study Modules, practice quizzes, video solutions to problems, and a whole lot more!

Learning Outcomes After finishing this chapter you should be able to:

For Thought and Discussion

1. The temperature of the water in a jar is raised by violently shaking 
the jar. Which of the terms Q and W in the first law of thermody-
namics is involved in this case?

2. What’s the difference between heat and internal energy?
3. Why can’t an irreversible process be described by a path in a pV 

diagram?
4. Are the initial and final equilibrium states of an irreversible pro-

cess describable by points in a pV diagram? Explain.
5. A quasi-static process begins and ends at the same temperature.  

Is the process necessarily isothermal?
6. Figure 18.18 shows two processes, 

A and B, that connect the same initial 
and final states, 1 and 2. For which 
process is more heat added to the 
system?

7. When you let air out of a tire, the air 
seems cool. Why? What kind of pro-
cess is occurring?

8. Blow on the back of your hand with 
your mouth wide open. Your breath will feel hot. Now tighten 
your lips into a small opening and blow again. Now your breath 
feels cool. Why?

9. Three identical gas–cylinder systems are compressed from the 
same initial state to final states that have the same volume, one 
isothermally, one adiabatically, and one isobarically. Which sys-
tem has the most work done on it? The least?

10. Why is specific heat at constant pressure greater than at constant 
volume?

Exercises and Problems

Exercises
Section 18.1 The First Law of Thermodynamics
11. In a perfectly insulated container, 1.0 kg of water is stirred vig-

orously until its temperature rises by 7.0°C. How much work is 
done on the water?

12. In a closed but uninsulated container, 500 g of water are shaken 
violently until the temperature rises by 3.0°C. The mechanical 
work done in the process is 9.0 kJ. (a) How much heat is trans-
ferred to the surroundings during the shaking? (b) How much 

mechanical energy would have been required if the container had 
been perfectly insulated?

13. A 40-W heat source is applied to a gas sample for 25 s, during which 
time the gas expands and does 750 J of work on its surroundings.  
By how much does the internal energy of the gas change?

14. Find the rate of heat flow into a system whose internal energy is 
increasing at the rate of 45 W, given that the system is doing work 
at the rate of 165 W.

15. In a certain automobile engine, 17% of the total energy released in 
burning gasoline ends up as mechanical work. What’s the engine’s 
mechanical power output if its heat output is 68 kW?

Section 18.2 Thermodynamic Processes
16. An ideal gas expands from the 

state 1p1, V12 to the state 1p2, V22, 
where p2 = 2p1 and V2 = 2V1. 
The  expansion proceeds along the 
 diagonal path AB in Fig. 18. 19. 
Find an expression for the work 
done by the gas during this process.

17. Repeat Exercise 16 for a process that 
follows the path ACB in Fig. 18.19.

18. A balloon contains 0.30 mol of  
helium. It rises, while maintaining 
a constant 300-K temperature, to 
an altitude where its volume has expanded five times. Neglecting 
tension forces in the balloon, how much work is done by the he-
lium during this isothermal expansion?

19. The balloon of Exercise 18 starts at 100 kPa pressure and rises 
to an altitude where p = 75 kPa, maintaining a constant 300 K  
temperature. (a) By what factor does its volume increase? (b) 
How much work does the gas in the balloon do?

20. How much work does it take to compress 2.5 mol of an ideal gas 
to half its original volume while maintaining a constant 300 K 
temperature?

21. By what factor must the volume of a gas with g = 1.4 be changed 
in an adiabatic process if the kelvin temperature is to double?

22. Nitrogen gas (g = 1.4) at 18°C is compressed adiabatically until 
its volume is reduced to one-fourth of its initial value. By how 
much does its temperature increase?

23. A carbon-sequestration scheme calls for isothermally compressing 
6.8 m3 of carbon dioxide, initially at atmospheric pressure, until it 
occupies only 5.0% of its original volume. Find the work required.
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V

FIGURE 18.18 For Thought 
and Discussion 6
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FIGURE 18.19 Exercises 
16,17 and Problem 75

LO 18.1 Describe the first law of thermodynamics as a statement of 
energy conservation.
For Thought and Discussion Questions 18.1, 18.2; Exercises 
18.11, 18.12, 18.13, 18.14, 18.15

LO 18.2 Calculate the work done by or on an ideal gas for different 
thermodynamic processes.
For Thought and Discussion Questions 18.3, 18.4, 18.5, 
18.6; Exercises 18.16, 18.17, 18.18, 18.19, 18.20, 18.23; 
Problems 18.36, 18.37, 18.39, 18.40, 18.54, 18.55, 18.58, 
18.59, 18.62, 18.63, 18.66, 18.68

LO 18.3 Determine values of pressure and temperature during 
 different thermodynamic processes.

For Thought and Discussion Questions 18.7, 18.8, 
18.9; Exercise 18.22; Problems 18.38, 18.41, 18.42, 
18.43,  18.44,  18.45,  18.46,  18.47,  18.48,  18.49, 
18.50, 18.51, 18.52, 18.53, 18.54, 18.55, 18.56, 18.57, 
18.60,  18.61,  18.62,  18.63,  18.67,  18.69,  18.70, 
18.71, 18.72, 18.73, 18.74, 18.75, 18.76, 18.78, 18.79

LO 18.4 Explain the specific heats of ideal gases based on their 
 molecular structure.
For Thought and Discussion Question 18.10; Exercises 
18.21, 18.22, 18.23, 18.24, 18.25, 18.26, 18.27; Problems 
18.64, 18.65, 18.77
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342 Chapter 18 Heat, Work, and the First Law of Thermodynamics

until its volume is one-fifth of its original volume; (3) it’s cooled 
at constant pressure until it’s back to its original temperature; 
and (4) it expands isothermally until it reaches its initial state. 
(a) Find an exact expression, in terms of pA and VA, for the work 
done on the gas during this cycle. (b) Evaluate your result to give 
a numerical expression for the work, again in terms of pA and VA,  
and good to three significant figures.

35. Example 18.4: An ideal gas with g = 1.40 is initially at 273 K 
and occupies a volume of 2.00 L. The gas then undergoes a cycle 
consisting of four steps: (1) It’s heated at constant volume to 373 K;  
(2) it’s compressed adiabatically until its volume is one-eighth of 
its original volume; (3) it’s cooled at constant pressure until it’s 
back to its original temperature; and (4) it expands isothermally 
until it reaches its initial state. If the work done on the gas in one 
complete cycle is 0.910 kJ, what was the original pressure?

Problems
36. An ideal gas expands to 10 times its original volume, main-

taining a constant 440 K temperature. If the gas does 3.3 kJ of 
work on its surroundings, (a) how much heat does it absorb, and  
(b) how many moles of gas are there?

37. During vigorous bicycling, the human body typically releases 
stored energy from food at the rate of 500 W and produces about 
120 W of mechanical power. At what rate does the body produce 
heat while bicycling?

38. A 0.25-mol sample of ideal gas initially occupies 3.5 L. If it takes 
61 J of work to compress the gas isothermally to 3.0 L, what’s 
the temperature?

39. As the heart beats, blood pressure in an artery varies from a 
high of 125 mm of mercury to a low of 80 mm. These values are 
gauge pressures—that is, excesses over atmospheric pressure.  
An air bubble trapped in an artery has diameter 1.52 mm when 
blood pressure is at its minimum. (a) What will its diameter 
be at maximum pressure? (b) How much work does the blood 
(and ultimately the heart) do in compressing this bubble, as-
suming the air remains at the same 37.0°C temperature as the 
blood?

40. It takes 1.5 kJ to compress a gas isothermally to half its original 
volume. How much work would it take to compress it by a factor 
of 22 starting from its original volume?

41. A gas undergoes an adiabatic compression during which its vol-
ume drops to half its original value. If the gas pressure increases 
by a factor of 2.55, what’s its specific-heat ratio g?

42. A gas with g = 1.40 occupies 6.25 L when it’s at 98.5 kPa pres-
sure. (a) What’s the pressure after the gas is compressed adiabati-
cally to 4.18 L? (b) How much work does that compression require?

43. A gas sample undergoes the 
cyclic process ABCA shown 
in Fig. 18.20, where AB is 
an isotherm. The pressure 
at A is 60 kPa. Find (a) the 
pressure at B and (b) the net 
work done on the gas.

44. Repeat Problem 43 taking 
AB as an adiabat and using 
specific-heat ratio g = 1.4.

45. A gasoline engine has 
compression ratio 8.5 (see 
Example 18.3 for the mean-
ing of this term), and the fuel–air mixture compresses adiabat-
ically with g = 1.4. If the mixture enters the engine at 30°C, 
what will its temperature be at maximum compression?

BIO

BIO

Section 18.3 Specific Heats of an Ideal Gas
24. A gas mixture contains 2.5 mol of O2 and 3.0 mol of Ar. What are 

this mixture’s molar specific heats CV and Cp at constant volume 
and constant pressure?

25. A mixture of monatomic and diatomic gases has specific-heat 
ratio g = 1.52. What fraction of its molecules are monatomic?

26. What should be the approximate specific-heat ratio of a gas con-
sisting of 50% NO2  molecules 1g = 1.292, 30% O2 1g = 1.402, 
and 20% Ar 1g = 1.672?

27. By how much does the temperature of (a) an ideal monatomic 
gas and (b) an ideal diatomic gas (with molecular rotation but no 
vibration) change in an adiabatic process in which 2.5 kJ of work 
are done on each mole of gas?

Example Variations
The following problems are based on two worked examples from the 
text. Each set of four problems is designed to help you make connec-
tions that enhance your understanding of physics and to build your 
confidence in solving problems that differ from ones you’ve seen be-
fore. The first problem in each set is essentially the example problem 
but with different numbers. The second problem presents the same sce-
nario as the example but asks a different question. The third and fourth 
problems repeat this pattern but with entirely different scenarios.

28. Example 18.2: A diver is working at a depth where the pressure 
is 2.85 times the standard atmospheric pressure at the water’s 
surface. The air she exhales forms bubbles 17.6 mm in diameter. 
How much work does a bubble do as it rises to the surface, as-
suming it remains at a constant temperature?

29. Example 18.2: A gas bubble develops from decomposing ooze 
at the bottom of a freshwater lake, where the pressure is 417 kPa. 
Initially the bubble is 1.58 cm in diameter. The lake is at a uni-
form 3.98°C, and the bubble maintains this temperature as it rises 
to the surface, which is at normal atmospheric pressure. How 
much heat is absorbed by the bubble as it rises?

30. Example 18.2: A pearl diver fills his lungs with 5.25 L of air at 
normal atmospheric pressure and then dives to 24.6 m, where the 
pressure is 3.46 atm. If the air in his lungs stays at body tempera-
ture, how much work is done on the air as it compresses?

31. Example 18.2: A spherical balloon is placed inside a closed 
chamber connected to a vacuum pump. The chamber is initially 
at normal atmospheric pressure, but when the pump starts the 
pressure drops. The balloon then maintains a constant tempera-
ture but expands by a factor of 3.50, and in the process absorbs 
147 J of heat from its surroundings. Find (a) the final pressure in 
the chamber and (b) the balloon’s original diameter.

32. Example 18.4: An ideal gas with g = 1.40 occupies 8.26 L at 
335 K and 89.2 kPa pressure. It’s compressed adiabatically to 
one-third of its original volume, then cooled at constant volume 
back to 335 K. Finally, it’s allowed to expand isothermally to its 
original volume. How much work is done on the gas?

33. Example 18.4: An ideal gas with g = 1.40 and temperature 288 
K fills a cylinder whose volume is initially 25.0 L. The gas is 
then compressed adiabatically to half of its original volume, then 
cooled at constant volume back to 288 K. Finally, it’s allowed to 
expand isothermally to its original volume. If the work done on 
the gas during this cycle is 436 J, what was the gas pressure at the 
start of the cycle?

34. Example 18.4: An ideal gas with g = 7>5 is initially at pres-
sure pA and occupies volume VA. The gas then undergoes a cycle 
consisting of four steps: (1) It’s heated at constant volume until 
its kelvin temperature doubles; (2) it’s compressed adiabatically 
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FIGURE 18.20 Problems 43 and 44
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58. Figure 18.22 shows data 
and a fit curve from an ex-
perimental measurement of 
the pressure– volume curve 
for a human lung. Estimate 
the work involved in fully 
inflating the lung.

59. Gasoline and diesel engines 
often use turbochargers to 
compress air supplied to 
the engine, thus providing 
greater power or greater 
fuel efficiency. When a par-
ticular turbocharger compresses 1.00 mol of air, the air transfers 
158 J of heat to its surroundings. Nevertheless, the air temperature 
rises by 48.6°C. Find the work the turbocharger does on this air. 
Treat the air as an ideal diatomic gas.

60. A gas with g = 7/5 is at 273 K when it’s compressed isother-
mally to one-third of its original volume and then further com-
pressed adiabatically to one-fifth of its original volume. Find its 
final temperature.

61. An ideal gas with g = 1.3 is initially at 273 K and 100 kPa. The 
gas is compressed adiabatically to 240-kPa pressure. Find its fi-
nal temperature.

62. The curved path in Fig. 18.23 lies on the 350-K isotherm for an 
ideal gas with g = 1.4. (a) 
Calculate the net work done 
on the gas as it goes around 
the cyclic path ABCA. (b) 
How much heat flows into 
or out of the gas on the seg-
ment AB?

63. Repeat part (a) of Problem 62  
for the path ACDA in Fig. 
18.23. (b) How much heat 
flows into or out of the gas on the segment CD?

64. A gas mixture contains monatomic argon and diato mic oxygen. 
An adiabatic expansion that doubles its volume results in the 
pressure dropping to one-third of its original value. What fraction 
of the molecules are argon?

65. How much of a triatomic gas with CV = 3R would you have to 
add to 10 mol of monatomic gas to get a mixture whose thermo-
dynamic behavior was like that of a diatomic gas?

66. An 8.5-kg rock at 0°C is dropped into a well-insulated vat con-
taining a mixture of ice and water at 0°C. When equilibrium is 
reached, there are 6.3 g less ice. From what height was the rock 
dropped?

67. A piston–cylinder arrangement containing 0.30 mol of nitrogen 
at high pressure is in thermal equilibrium with an ice–water bath 
containing 200 g of ice. The pressure of the ambient air is 1.0 atm. 
The gas is allowed to expand isothermally until it’s in pressure 
balance with its surroundings. After the process is complete, the 
bath contains 210 g of ice. What was the original gas pressure?

68. Experimental studies show that the pV curve for a frog’s lung 
can be approximated by p = 10v3 - 67v2 + 220v, with v in mL 
and p in Pa. Find the work done when such a lung inflates from 
zero to 4.5 mL volume.

69. Show that the application of Equation 18.3 to an adiabatic pro-
cess results in Equation 18.12.

70. Two identical gas samples are initially at the same temperature. 
Both are compressed—one isothermally and one adiabatically—
until their volume is halved. (a) Find a symbolic expression for 

CH

CH

BIO

CH

46. By what factor must the volume of a gas with g = 1.4 be 
changed in an adiabatic process if the pressure is to double?

47. Volvo’s B4204 engine, used in the XC70 series cars, has a com-
pression ratio of 10.8, and the fuel–air mixture undergoes adi-
abatic compression with g = 1.40. The engine’s turbocharger 
supplies air at 342 K and 1.50 times normal atmospheric pres-
sure. If this air fills the engine’s cylinders at their maximum vol-
ume, what will be (a) the temperature and (b) the pressure at the 
point of maximum compression?

48. A research balloon is prepared for launch by pumping into it 
1.75 * 103 m3 of helium gas at 12°C and 1.00 atm pressure. It rises 
high into the atmosphere to where the pressure is only 0.340 atm.  
Assuming the balloon doesn’t exchange significant heat with its 
surroundings, find (a) its volume and (b) its temperature at the 
higher altitude.

49. Monatomic argon gas is initially at a chilly 28 K. By what factor 
would you have to increase its pressure, adiabatically, to bring it 
to room temperature (293 K)?

50. By what factor does the internal energy of an ideal diatomic  
gas change when it’s compressed to half its original volume  
(a) isothermally, (b) isobarically, or (c) adiabatically?

51. A 3.50-mol sample of ideal gas with molar specific heat 
CV = 5

2 R is initially at 255 K and 101 kPa pressure. Determine 
the final temperature and the work done by the gas when 1.75 kJ  
of heat are added to the gas (a) isothermally, (b) at constant vol-
ume, and (c) isobarically.

52. Prove that the slope of an adiabat at a given point in a pV diagram 
is g times the slope of the isotherm passing through the same 
point.

53. An ideal gas with g = 1.67 
starts at point A in Fig. 
18.21, where its volume and 
pressure are 1.00 m3 and 
250 kPa, respectively. It un-
dergoes an adiabatic expan-
sion that triples its volume, 
ending at B. It’s then heated 
at constant volume to C and 
compressed isothermally 
back to A. Find (a) the pres-
sure at B, (b) the pressure at C, and (c) the net work done on 
the gas.

54. The gas of Example 18.4 starts at state A in Fig. 18.14 and is 
compressed adiabatically until its volume is 2.0 L. It’s then 
cooled at constant pressure until it reaches 300 K, then allowed 
to expand isothermally back to state A. Find (a) the net work 
done on the gas and (b) the minimum volume of the gas.

55. The gas of Example 18.4 starts at state A in Fig. 18.14 and is heated at 
constant volume until its pressure has doubled. It’s then compressed 
adiabatically until its volume is one-fourth its original value, then 
cooled at constant volume to 300 K, and finally allowed to expand 
isothermally to its original state. Find the net work done on the gas.

56. Show that the relation between pressure and temperature in an 
adiabatic process is p1 -g Tg = constant.

57. You’re the product safety officer for a company that makes cy-
cling accessories. You’re given a new design for a bicycle pump 
that includes a cylinder 32 cm long when the pump handle is all 
the way out. To keep the pump from getting too hot, you specify 
that the temperature rise should not exceed 75°C when the han-
dle is pushed rapidly, with the outlet blocked, until the internal 
length of the cylinder is 16 cm. Assuming air initially at 18°C, 
does the pump meet your temperature-rise criterion?
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344 Chapter 18 Heat, Work, and the First Law of Thermodynamics

Take g = 1.3 for CO2. (Your answer is a rough estimate because 
CO2 doesn’t behave like an ideal gas at very high pressures; also, 
it doesn’t include the energy cost of separating the CO2 from other 
stack gases or of transporting it to the compression site.)

Passage Problems
Warm winds called Chinooks (a Native American term meaning 
“snow eaters”) sometimes sweep across the plains just east of the 
Rocky Mountains. These winds carry air from high in the mountains 
down to the plains rapidly enough that the air has no time to exchange 
heat with its surroundings (Fig. 18.24). On a particular Chinook day, 
temperature and pressure high in the Colorado Rockies are 60 kPa and 
260 K 1-13°C2, respectively; the plain below is at 90 kPa.

80. The process the air undergoes as it descends the mountains is
a. isothermal.
b. isovolumic.
c. isobaric.
d. adiabatic.

81. As the air descends, its internal energy
a. increases.
b. decreases.
c. is unchanged.

82. As the air descends, its volume
a. increases by 50%.
b. increases by less than 50%.
c. decreases by 50%.
d. decreases by less than 50%.
e. is unchanged.

83. When the air reaches the plain, its temperature is approximately
a. 240 K.
b. 260 K.
c. 290 K.
d. 390 K.

Answers to Chapter Questions

Answer to Chapter Opening Question
Energy is conserved, provided thermal energy is included. The engine 
produces both mechanical energy and thermal energy of its exhaust 
gases; together, they sum to the energy released in combustion.

Answers to GOT IT? Questions
18.1  (c) Only the internal energy is the same, since it’s a thermody-

namic state variable unique to a point in the pV diagram.
18.2  (1) Constant-volume, T and p increase, V doesn’t change, Eint 

increases as heat flows into the gas; (2) Adiabatic, T and p in-
crease, V decreases, Eint increases as work is done on the gas; 
(3) Isobaric, T decreases, p doesn’t change, V decreases, Eint de-
creases as heat flows out of the gas

18.3 (a) because the energy is spread over fewer degrees of freedom

ENV

Mountains Plain

FIGURE 18.24 Chinooks (Passage Problems 80–83)

the ratio of the work done during the adiabatic compression to the 
work done during the isothermal compression. (b) Evaluate your 
expression for a diatomic gas with g = 1.40.

71. Use the ideal-gas law to eliminate pressure in Equation 18.11a, 
and show that the result can be written as Equation 18.11b.

72. The table below shows measured values of pressure versus vol-
ume for an ideal gas undergoing a thermodynamic process. Make 
a log–log plot (logarithm of p versus logarithm of V) of these 
data and use it to determine (a) whether the process is isothermal 
or adiabatic and (b) the temperature if it’s isothermal or the adia-
batic exponent g if it’s adiabatic.

Volume, 
V (L)

1.1 1.27 1.34 1.56 1.82 2.14 2.37

Pressure, 
p (atm)

0.998 0.823 0.746 0.602 0.493 0.372 0.344

73. Air with initial volume V0 = 4.50 L and initial pressure p0 = 1.00 
atm is compressed reversibly in such a way that pressure and 
volume are related by the equation PV2 = P0V

2
0 throughout the 

 reversible process. Find the work that’s been done when the gas 
pressure has reached 2.00 atm.

74. A real gas is more accurately described using the van der Waals 
equation: 3p + a1n/V2241V - nb2 = nRT, where a and b are 
constants. Find an expression, corresponding to Equation 18.4, 
for the work done by a van der Waals gas undergoing an isother-
mal expansion from V1 to V2.

75. Repeat Exercise 16 for an expansion along the path 
p = p131 + 1V - V122/V 2

1 4 .
76. The adiabatic lapse rate is the rate at which air cools as it rises and 

expands adiabatically in the atmosphere (see Application: Smog 
Alert, on page 337). Express dT in terms of dp for an adiabatic pro-
cess, and use the hydrostatic equation (Equation 15.2) to express 
dp in terms of dy. Then, calculate the lapse rate dT/dy. Take air’s 
average molecular weight to be 29 u and g = 1.4, and remember 
that the altitude y is the negative of the depth h in Equation 15.2.

77. A power plant extracts thermal energy from its fuel at the rate of 
3810 MW and produces electrical energy at the rate of 1250 MW. 
There’s a proposal to use the waste heat from this plant to heat 
nearby homes. If the average home requires 43.2 GJ of energy in 
a winter month, how many homes could be served if 100% of the 
waste heat from the power plant were available for home heating?

78. Your class on alternative habitats is designing an underwater hab-
itat. A small diving bell will be lowered to the habitat. A hatch at 
the bottom of the bell is open, so water can enter to compress the 
air and thus keep the air pressure inside equal to the pressure of the 
surrounding water. The bell is lowered slowly enough that the in-
side air remains at the same temperature as the water. But the water 
temperature increases with depth in such a way that the air pres-
sure and volume are related by p = p02V0 /V, where V0 = 17 m3 
and p0 = 1.0 atm are the surface values. Suppose the diving bell’s 
air volume cannot be less than 8.7 m3 and the pressure must not 
exceed 1.5 atm when submerged. Are these criteria met?

79. One scheme for reducing greenhouse-gas emissions from coal-
fired power plants calls for capturing carbon dioxide and pumping 
it into the deep ocean, where the pressure is at least 350 atm. You’re 
called to assess the energy cost of such a scheme for a power plant 
that produces electrical energy at the rate of 1.0 GW while at the 
same time emitting CO2 at the rate of 1100 tonnes/hour. If CO2 is 
extracted from the plant’s smokestack at 320 K and 1 atm pres-
sure and then compressed adiabatically to 350 atm, what fraction 
of the plant’s power output would be needed for the compression? 
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The first law of thermodynamics relates heat and other forms of energy. 
Much of our world depends on this relationship. Cars extract energy 

from the heat of burning gasoline. Most of our electricity originates in 
heat released by burning fuels or fissioning uranium. Our own bodies run 
on energy that originates as heat flowing from the Sun’s core. But the first 
law doesn’t tell the whole story. Heat and mechanical energy aren’t the 
same, and the difference makes the conversion of heat to work a more 
subtle task than the first law would imply.

19.1 Reversibility and Irreversibility
LO 19.1 Distinguish reversible and irreversible thermodynamic 

processes.

Figure 19.1 shows a movie of a bouncing ball. Play it backward and it still 
makes sense. Figure 19.2 shows a block sliding along a table, slowing because 
of friction—and warming in the process. Play this film backward and it makes 
no sense. You’ll never see a block at rest suddenly start to move, cooling as 
it goes. Yet energy would be conserved if it did, so the first law of thermo-
dynamics would be satisfied. Beat an egg, blending yolk and white. Reverse 
the beater, and you’ll never see them separate again. Mix hot and cold water; 
the hot water cools and the cold water warms. The opposite never occurs— 
although energy would still be conserved.

Why are these events irreversible? In each case we start with matter in 
an organized state. The molecules of the sliding block share a common mo-
tion. The yolk molecules are all in one place. The hot water has more ener-
getic molecules. Of all possible states, these organized ones are rare. There are 

Skills & Knowledge You’ll Need
■■ The first law of thermodynamics 

(Section 18.1)

■■ Ideal-gas processes (Section 18.2)

Learning Outcomes
After finishing this chapter you should be able to:

LO 19.1 Distinguish reversible and irreversible thermodynamic processes.

LO 19.2 Articulate the second law of thermodynamics as it applies 
to engines and refrigerators, and calculate thermodynamic 
efficiencies.

LO 19.3 Describe practical implications of the second law, especially 
for engines, power plants, and heat pumps.

LO 19.4 Describe entropy and its relation to energy quality.

LO 19.5 Determine quantitatively the entropy changes in simple 
thermodynamic processes.

LO 19.6 Articulate the second law of thermodynamics in terms of 
entropy.

The Second Law of Thermodynamics

20
Electric Charge, 
Force, and Field

18
Heat, Work, and 
the First Law of 

Thermodynamics

17
The Thermal 

Behavior of Matter

Most of the energy extracted from fuel 
in power plants is discarded as waste 
heat. The large cooling tower shown 
here dumps this waste heat into the 
environment. Why is so much energy 
wasted?

21
Gauss’s Law19
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346 Chapter 19 The Second Law of Thermodynamics

many more disorganized states—for example, all the possible arrangements of molecules 
in a scrambled egg. As a system evolves, chances are it will end up less organized, simply 
because there are far more such states available to it. It’s very unlikely to assume sponta-
neously a more organized state.

A key word here is “spontaneous.” We could restore organization—for example, by 
putting one cup of water in the refrigerator and the other in the microwave—but that re-
quires a rather deliberate and energy-consuming process.

Irreversibility is a probabilistic notion. Events that could occur without violating the 
principles of Newtonian physics nevertheless don’t occur because they’re too improbable. 
As a practical consequence, harnessing the internal energy associated with random molec-
ular motions is difficult because those motions won’t spontaneously become organized. 
That makes much of the world’s energy unavailable for doing useful work.

(a)

(b)

Time

FIGURE 19.1 A movie of a bouncing 
ball makes sense whether it’s shown 
(a) forward or (b) backward.

(a)

(b)

Time

FIGURE 19.2 (a) A block warming 
(note thermometer) as friction dissi-
pates its kinetic energy and it slows 
to a stop. (b) The reverse sequence 
would never happen, even though it 
doesn’t violate energy conservation.

19.1 Which of these processes is irreversible? (a) stirring sugar into coffee; (b) 
building a house; (c) demolishing a house with a wrecking ball; (d) demolishing a 
house by taking it apart piece by piece; (e) harnessing the energy of falling water to 
drive machinery; (f) harnessing the energy of falling water to heat a house

G
O

T 
IT

?

19.2 The Second Law of Thermodynamics
LO 19.2 Articulate the second law of thermodynamics as it applies to engines 

and refrigerators, and calculate thermodynamic efficiencies.

Heat Engines
It’s impossible to convert all the internal energy of a system to useful work. But heat 
 engines extract some of that internal energy. Examples include gasoline and diesel en-
gines, fossil-fueled and nuclear power plants, and jet aircraft engines.

Figure 19.3a is an energy-flow diagram for a “perfect” heat engine—one that extracts 
heat from a heat reservoir and converts it all to work. Such an engine would do exactly 
what we’ve just argued against: It would convert the random energy of thermal motion 
entirely to the ordered motion associated with mechanical work. In fact a perfect heat en-
gine is impossible, for the same reason that we can’t unscramble an egg or make a block 
accelerate spontaneously using its internal energy. This fact leads to one statement of the 
second law of thermodynamics:

Second law of thermodynamics (Kelvin–Planck statement) It is impossible 
to construct a heat engine operating in a cycle that extracts heat from a reservoir and 
delivers an equal amount of work.

The phrase “in a cycle” means that a practical engine goes through a repeated sequence of 
steps, as in the back-and-forth motions of the pistons in a gasoline engine.

A simple heat engine consists of a gas–cylinder system and a hot reservoir, the latter 
kept hot, perhaps, by burning a fuel. With the gas initially at high pressure, we place the 
cylinder in contact with the heat reservoir. The gas expands and does work W on the pis-
ton. In this isothermal process, the gas extracts heat Q = W from the reservoir. Eventually 
the gas reaches pressure equilibrium and stops expanding. The piston must then be re-
turned to its original position if it’s to do more work.

If we just push the piston back, we’ll have to do as much work as we got during the 
expansion, and our engine won’t produce any net work. Instead we can cool the gas to 
reduce its volume, through contact with a cool reservoir. But then some energy leaves the 
system as heat rather than work, as shown conceptually in Fig. 19.3b. Our engine extracts 
heat from a source and delivers mechanical work, but over a full cycle the work delivered 
is less than the heat extracted. The remaining energy is rejected to the lower-temperature 
reservoir, usually the environment. That’s why much of the energy released from fuels in 
car engines and power plants ends up as waste heat.

Heat reservoir

Q

W

Th

Qh

W

Qc

Tc

All the heat Q extracted from the reservoir 
of a perfect heat engine becomes work.

Extract heat Qh from the high-temperature
reservoir of a real heat engine.

Some becomes
work c

cbut some is
rejected to the
low-temperature
reservoir.

(a)

(b)

FIGURE 19.3 (a) Energy-flow diagram 
for a perfect heat engine. (b) A real 
engine delivers as work only a  fraction 
of the energy extracted from the 
 high- temperature reservoir.
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19.2 The Second Law of Thermodynamics 347

The gas absorbs energy
from Th c

cdoes work on
piston and wheel c

cand rejects heat to Tc.

Th

Tc

FIGURE 19.4 A simple heat engine.
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FIGURE 19.5 A pV diagram for the Carnot engine.

The second law of thermodynamics says we can’t build a perfect heat engine. But how 
close can we come? We define the efficiency e of an engine as the ratio of the work W we 
get from it to what we have to supply—namely, the heat Qh: e = W/Qh. Since the process 
is cyclic, there’s no net change in internal energy over one cycle. The first law of thermody-
namics then shows that the work W done by the engine is the difference between the heat Qh 
extracted from the high-temperature reservoir and the heat Qc rejected to the cool reservoir:

 e =
W
Qh

=
Qh - Qc

Qh
= 1 -

Qc

Qh
 (19.1)

In this chapter we’ll often use W for the work done by an engine; in the first law it’s the 
work done on a system. That’s why W here is equal to the net heat Qh - Qc.

Figure 19.4 shows a heat engine whose efficiency we can calculate. The engine consists 
of a cylinder containing an ideal gas, sealed by a movable piston. The piston is connected 
to a rod that turns a wheel. The engine gets its energy from a hot reservoir at temperature 
Th, and it rejects heat to a cooler reservoir at temperature Tc. Figure 19.5 shows how the en-
gine works in a cycle of four steps, starting with the piston in its leftmost position (state A  
in Fig. 19.5), where the gas volume is a minimum:

1. Isothermal expansion: The high-temperature reservoir is placed in thermal contact 
with the cylinder. The gas absorbs heat Qh from the hot reservoir and expands isother-
mally along path AB. Since temperature remains constant, so does internal energy. 
The first law then shows that the engine does work W = Q on the piston and wheel.

2. Adiabatic expansion: At B we remove the hot reservoir, so the gas can no longer ex-
change heat. Thus the expansion becomes adiabatic and follows path BC. We design 
the engine so the gas has cooled to Tc when the piston reaches its rightmost position 
(state C), the point of maximum gas volume.

3. Isothermal compression: At C we bring the cool reservoir into thermal contact with 
the cylinder. The wheel’s inertia keeps it turning, so the piston does work on the gas, 
compressing it isothermally from state C to D. This work ends up as heat rejected to 
the cool reservoir.

4. Adiabatic compression: At D we remove the cool reservoir and the compression con-
tinues adiabatically until the gas temperature is once again at Th and the engine is 
back at state A.

This cyclic process of two isothermal and two adiabatic steps 
is the Carnot cycle and the engine is a Carnot engine, after the 
French engineer Sadi Carnot (1796–1832). The particular con-
figuration of the engine isn’t important, nor is the choice of an 
ideal gas as the engine’s working fluid. What distinguishes the 
Carnot cycle from others is the sequence of thermodynamic pro-
cesses and the fact that these processes are reversible. The Carnot 
engine is an example of a reversible engine—one in which ther-
modynamic equilibrium is maintained so that all steps could, in 
principle, be reversed.

What’s the efficiency of a Carnot engine? To find out, we need 
the heats Qh and Qc absorbed and rejected during the isothermal 
parts of the cycle shown in Fig. 19.5. Equation 18.4 gives the 
heat Qh absorbed during the isothermal expansion AB:

Qh = nRTh ln aVB

VA
b

W is the mechanical work 
done by the engine.

Qh is the heat extracted 
from the hot reservoir‚…

…whereas Qc is the heat 
 rejected to the cool reservoir.

e is the efficiency of any heat engine.
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348 Chapter 19 The Second Law of Thermodynamics

Internal combustion engines (ICEs) power most of 
the world’s cars and trucks and will continue to do 
so for some time despite inroads by electric pro-
pulsion systems. Their name refers to the fact that 
combustion in an ICE takes place within the engine 
itself, as opposed to external combustion in sys-
tems like power plants (look ahead to Fig. 19.10), 
industrial boilers, and old-fashioned steam locomo-
tives. Today’s ICEs build on more than a century of 
engineering development, and coupled with mod-
ern electronic sensors and control systems, they 
represent a pinnacle of engineering design.

ICEs include the common gasoline and die-
sel engines. Both these engines undergo cycles 
involving back-and-forth motion of pistons that’s 
converted to rotary motion that usually drives a 
vehicle’s wheels. ICEs are heat engines, but stan-
dard gasoline and diesel engines aren’t Carnot 
engines. Gasoline engines, for example, oper-
ate on a cycle that consists approximately of two 
adiabatic and two constant-volume segments. 
Because heat transfer doesn’t occur at fixed high 
and low temperatures, the efficiency is less than 
the Carnot limit of Equation 19.1. The diesel cycle, 
 consisting approximately of adiabatic, isobaric, and 
 constant-volume segments, is, for the same reason, 
also less efficient than the Carnot limit. You learned 
about the adiabatic compression phase of a diesel 
engine in Example 18.3, and you can explore en-
gines further in Problems 60–62. The image shows 
a cutaway view of a modern gasoline engine.

Intake 
valve

Spark 
plug

Connecting 
rod

Crankshaft

Exhaust 
valve

Piston

APPLICATION Internal 
Combustion 
Engines

A Carnot engine extracts 240 J from its hot reservoir during each cy-
cle and rejects 100 J to the environment at 15°C. How much work 
does the engine do in one cycle? What’s its efficiency? What’s the 
temperature of the hot reservoir?

INTERPRET This problem is about a Carnot engine, which operates 
via the Carnot cycle.

DEVELOP Equation 19.3, eCarnot = 1 - (Tc/Th), relates the two 
temperatures and the efficiency. Here Qh = 240 J, Qc = 100 J, and 
Tc = 15°C or 288 K. The first law of thermodynamics relates work 
and heat flows. So our plan is to use the first law to find the work, then 
find the efficiency, and then use Equation 19.3 to find Th.

EVALUATE Since there’s no change in internal energy over one cy-
cle, the first law requires that the work W done by the engine be equal 
to the net heat absorbed—namely, 240 J - 100 J. So W = 140 J. 
The efficiency is the ratio of work delivered to heat extracted, so 
e = W/Qh =  140 J/240 J = 58.3,. Knowing the efficiency, we 
solve Equation 19.3 for Th:

Th =
Tc

1 - e
=

288 K
1 - 0.583

= 691 K = 418°C

ASSESS Make sense? The engine rejects somewhat less than half the 
240 J as waste heat, so we should expect efficiency somewhat over 
50%. And Th must be greater than Tc, as our calculation confirms.

EXAMPLE 19.1 Calculating Efficiency: A Carnot Engine
Worked Example with Variation Problems

and the heat Qc rejected during the isothermal compression CD:

Qc = -nRTc ln aVD

VC
b = nRTc ln aVC

VD
b

We put the minus sign here because the first law takes Q to be the heat absorbed, while 
Equation 19.1 for the engine efficiency requires that Qc be the heat rejected. To calculate 
engine efficiency according to Equation 19.1, we need the ratio Qc 

/Qh:

 
Qc

Qh
=

Tc ln1VC 

/VD2
Th ln1VB 

/VA2  (19.2)

This expression can be simplified by applying Equation 18.11b to the adiabatic processes 
BC and DA in the Carnot cycle: ThVB

g- 1 = TcVC
g- 1 and ThVA

g- 1 = TcVD
g- 1. Dividing the 

first of these two equations by the second gives

aVB

VA
b
g- 1

= aVC

VD
b
g- 1

 or  
VB

VA
=

VC

VD

so Equation 19.2 becomes simply Qc 

/Qh = Tc 

/Th. Using this result in Equation 19.1 then 
gives the efficiency of the Carnot engine:

 eCarnot = 1 -
Tc

Th
  1Carnot engine efficiency2 (19.3)

where the temperatures are measured on an absolute scale (Kelvin or Rankine). Equation 19.3 
shows that the Carnot engine’s efficiency depends only on the highest and lowest tempera-
tures of its working fluid. In practice, the low temperature is usually that of the environment; 
then maximizing efficiency requires making the high temperature as high as possible. Real 
engines trade off efficiency with the ability of materials to withstand high temperature and 
pressure.

eCarnot is the efficiency of an  
engine using the Carnot cycle.

Tc is the temperature of the cool reservoir 
to which the engine rejects heat.

Th is the temperature of the hot reservoir 
from which the engine extracts heat.

The Carnot efficiency is the maximum 
possible efficiency for any heat engine.
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19.2 The Second Law of Thermodynamics 349

Engines, Refrigerators, and the Second Law
Why this emphasis on the Carnot engine? Because understanding this device will help 
answer the broader question of how much work we can hope to extract from thermal en-
ergy. That, in turn, will help you understand practical limitations on humankind’s attempts 
to harness ever more energy and will lead to a deeper understanding of the second law of 
thermodynamics.

Why is Carnot’s engine special? Couldn’t you build a better engine with greater effi-
ciency? The answer is no. The special role of the Carnot cycle is embodied in Carnot’s 
theorem:

Carnot’s theorem All Carnot engines operating between temperatures Th and Tc 
have the same efficiency, eCarnot = 1 - 1Tc /Th2, and no other engine operating between 
the same two temperatures can have a greater efficiency.

To prove Carnot’s theorem, we introduce the refrigerator. A refrigerator is the opposite 
of an engine: It extracts heat from a cool reservoir and rejects it to a hotter one, using work 
in the process (Fig. 19.6). A refrigerator forces heat to flow from cold to hot, but to do so 
it requires work. A household refrigerator cools its contents and warms the house (you can 
feel the heat coming out the back), but it uses electricity. That heat doesn’t flow sponta-
neously from cold to hot leads to another statement of the second law of thermodynamics:

Second law of thermodynamics (Clausius statement) It is impossible to con-
struct a refrigerator operating in a cycle whose sole effect is to transfer heat from a 
cooler object to a hotter one.

The Clausius statement rules out a perfect refrigerator (Fig. 19.7).
Suppose the Clausius statement were false. Then we could build the device of Fig. 19.8a,  

consisting of a reversible Carnot engine and a perfect refrigerator. In each cycle the engine 
would extract, say, 100 J from the hot reservoir, put out 60 J of useful work, and reject 
40 J to the cool reservoir. The perfect refrigerator could transfer the 40 J back to the hot 
reservoir. The net effect would be to extract 60 J from the hot reservoir and convert it en-
tirely to work (Fig. 19.8b)—and we would have a perfect heat engine, in violation of the 
Kelvin–Planck statement of the second law. A similar argument (Problem 44) shows that 
if a perfect heat engine is possible, then so is a perfect refrigerator. So the Clausius and 
Kelvin–Planck statements of the second law are equivalent, in that if one is false, then so 
is the other.

Because the Carnot engine is reversible, we could run it backward and reverse its path 
in Fig. 19.5. The engine would extract heat from the cool reservoir, take in work, and re-
ject heat to the hot reservoir. It would be a refrigerator. Although real refrigerators aren’t 
designed exactly like engines, the two are, in principle, interchangeable.

We’re now ready to prove Carnot’s assertion that Equation 19.3 gives the maximum 
engine efficiency. Consider again the Carnot engine in Fig. 19.8a. It extracts 100 J of heat 
and delivers 60 J of work, so it’s 60% efficient. Suppose 
we had another engine operating between the same two 
reservoirs, but with 70% efficiency. Since the Carnot en-
gine is reversible, we can run it as a refrigerator. If we put 
the two together, we get the device of Fig. 19.9a. Its net 
effect is to extract 10 J from the cool reservoir and deliver 
10 J of work—so it’s a perfect heat engine, in violation 
of the second law (Fig. 19.9b). It’s therefore impossible 
to make an engine that’s more efficient than a Carnot en-
gine, and thus Equation 19.3 gives the maximum possible 
efficiency for any heat engine operating between the same 
two fixed temperatures. For that reason the Carnot effi-
ciency of Equation 19.3 is also called the thermodynamic 
efficiency.

Heat flows from cold to hot c

cbut this 
requires work.

Th

Qh W

Qc

Tc

FIGURE 19.6 Energy-flow diagram for  
a real refrigerator.

Th

Qh

Qc

Tc

Heat would flow from cold to
hot with no work needed.

FIGURE 19.7 A perfect refrigerator is 
impossible.

Th

100 J

40 J

Tc

(a)

60 J

Real heat
engine

40 J

40 JPerfect
refrigerator

Perfect
heat engine

60 J

60 J

(b)

Th

Tc

FIGURE 19.8 (a) A real heat engine combined with a perfect refrigerator is 
equivalent to (b) a perfect heat engine.
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350 Chapter 19 The Second Law of Thermodynamics

Irreversible engines, because they involve processes that dissipate organized motion, 
are necessarily less efficient. So are reversible engines, if their heat exchange doesn’t take 
place solely at the highest and lowest temperatures. The ordinary gasoline engine is a case 
in point; even if it could be made perfectly reversible, its efficiency would be less than that 
of a comparable Carnot engine (see Problem 60 and the Application on page 349).

19.3 Applications of the Second Law
LO 19.3 Describe practical implications of the second law, especially for  

engines, power plants, and heat pumps.

The world abounds with thermal energy, but the second law of thermodynamics limits our 
ability to use that energy. Any device we construct that involves the interchange of heat 
and work is a heat engine or refrigerator, subject to the second law.

Limitations on Heat Engines
Most of our electricity is produced in thermal power plants, which are large heat engines 
powered by the fossil fuels coal, oil, or natural gas, or by nuclear fission. Figure 19.10 
diagrams such a power plant. The working fluid is water, heated in a boiler and converted 
to steam at high pressure. The steam expands adiabatically to spin a fanlike turbine. The 
turbine turns a generator that converts mechanical work to electrical energy.

Steam leaving the turbine is still gaseous and is hotter than the water supplied to the 
boiler. Here’s where the second law applies: Had the water returned from the turbine in 
its original state, we would have extracted as work all the energy acquired in the boiler, in 
violation of the second law. Therefore, we must run the steam through a condenser, where 
it contacts pipes carrying cool water, typically from a river, lake, or ocean. The condensed 
steam, now cool water, is fed back into the boiler to repeat the cycle.

Th

Tc

(a)

100 J

100 J

30 J

40 J
10 J

60 J70 J
70%

efficient
engine

Perfect
heat

engine

60%
efficient
engine,
reversed

(b)

Th

Tc

10 J

10 J

FIGURE 19.9 (a) A 60% efficient reversible 
engine run as a refrigerator, along with a 
hypothetical engine with 70% efficiency. 
(b) The combination is equivalent to a per-
fect heat engine.

19.2 The low temperature for a practical heat engine is generally set by the ambient 
environment, at about 300 K. With that value for Tc, what will happen to the effi-
ciency of a Carnot engine if you reengineer it so its high temperature Th doubles?  
(a) efficiency will double; (b) efficiency will quadruple; (c) efficiency will increase 
by an amount that depends on the original value of Th; (d) efficiency will decrease
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cand 
returns to
the boiler.

Here goes 
the waste
heat Qc.

Water

Steam

Heat source In Out

Cooling water

Condenser

Turbine

Boiler

Temperature T1

Temperature T2

Temperature T3

Generator

Electricity
out

FIGURE 19.10 Schematic diagram of an electric power plant.
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19.3 Applications of the Second Law 351

The maximum steam temperature in a power plant is limited by the materials used 
in its construction. For a conventional fossil-fuel plant, current technology permits high 
temperatures of around 650 K. Potential damage to nuclear fuel rods limits the tempera-
ture in a nuclear plant to around 570 K. The average temperature of the cooling water is 
about 40°C (310 K), so the maximum possible efficiencies for these power plants, given 
by Equation 19.3, are

efossil = 1 -
310 K
650 K

= 52, and enuclear = 1 -
310 K
570 K

= 46,

Temperature differences between steam and cooling water, mechanical friction, and en-
ergy needed for pumps and pollution-control devices all reduce efficiency further, to 
about 33% for both coal-fired and nuclear plants—which, together, provide over half the 
world’s electricity. So roughly two-thirds of the fuel energy we use to make electricity 
ends up as waste heat.

A typical large power plant produces 1 GW of electric power, so another 2 GW of 
waste heat goes into the cooling water. The resulting temperature rise can cause serious 
ecological problems. The huge cooling towers you see at power plants reduce such “ther-
mal pollution” by transferring much of the waste heat to the atmosphere (see this chapter’s 
opening photo). Even so, a substantial fraction of all rainwater falling on the United States 
eventually finds its way through the condensers of power plants (see Problem 37).

EXAMPLE 19.2 Improving Efficiency: A Combined-Cycle Power Plant

The gas turbine in a combined-cycle power plant (see the Application 
on the next page) operates at 1450°C. Its waste heat at 500°C is the 
input for a conventional steam cycle, with its average condenser tem-
perature at 40°C. Find the thermodynamic efficiency of the combined 
cycle, and compare with the efficiencies of the individual components 
if they were operated independently.

INTERPRET This problem is about the thermodynamic efficiency of 
a combined-cycle power plant. As described in the Application, that 
means a plant using a high-temperature gas turbine whose waste heat 
becomes the energy input to a conventional steam turbine.

DEVELOP Figure 19.11 is a conceptual diagram of the combined- 
cycle plant, based on the Application. Equation 19.3, e = 1 - (Tc/Th), 
gives the thermodynamic efficiencies of each cycle and of the com-
bination. We identify the 1450°C = 1723 K temperature as Th in 
Equation 19.3 for the gas turbine. The intermediate temperature 
500°C = 773 K serves as Tc for the gas turbine but as Th for the steam 
cycle. Finally, the 40°C or 313-K condenser temperature is Tc for the 
steam cycle.

EVALUATE To treat the entire plant as a single heat engine in 
Equation 19.3, we use the highest and lowest temperatures:

ecombined = 1 -
Tc

Th
= 1 -

313 K
1723 K

= 0.82 = 82,

Friction and other losses would reduce this figure substantially, but 
a combined-cycle plant operating at these temperatures could have a 

practical efficiency near 60%. The efficiencies of the individual com-
ponents also follow from Equation 19.3:

egas turbine = 1 -
773 K
1723 K

= 55, and esteam = 1 -
313 K
773 K

= 60,

ASSESS Make sense? Because of its extreme temperatures, the com-
bined cycle gives an efficiency that’s better than either of its parts! You 
can learn more about combined-cycle power plants in the Application 
on the next page, and by working Problem 38.

W1

W2

1723 K

773 K

Intermediate temperature

G
as

 tu
rb

in
e

St
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le

Cooling-water 
temperature

Gas-turbine combustion 
temperature

313 K

FIGURE 19.11 Conceptual diagram 
of a combined-cycle power plant.

Gasoline and diesel engines provide another pervasive example of heat engines, dis-
cussed in the Application on page 347. A typical automobile engine has a theoretical maxi-
mum efficiency of around 50%, but irreversible thermodynamic processes make the actual 
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352 Chapter 19 The Second Law of Thermodynamics

Improving power-plant efficiency helps reduce air pollution and greenhouse-gas 
emissions, not to mention the cost of electricity. Modern combined-cycle 
power plants achieve efficiencies approaching 60% by combining a conven-
tional steam system like that of Fig. 19.10 with a gas turbine similar to a jet 
aircraft engine. Gas turbines operate at high temperatures—between 1000 K 
and 2000 K—but they aren’t very efficient because their exhaust temperature 
(Tc in Equation 19.3) is also high. In a combined-cycle plant, exhaust from a 
gas turbine drives a conventional steam cycle. The overall effect is the same 
as that of a single heat engine operating between the gas turbine’s high com-
bustion temperature and the low temperature of the environment (see Problem 
38). The second law still limits the efficiency, but the high Th and low Tc make 
for greater efficiency than in a conventional plant. The photo shows a gas-fired 
combined-cycle plant.

APPLICATION Combined-Cycle Power Plants

efficiency much lower. Mechanical friction dissipates additional energy, with the end  
result that less than 20% of the fuel energy reaches the driving wheels. Problems 60 and 
61 explore the gasoline engine.

We wouldn’t be so concerned with efficiency if we didn’t have to pay for fuel or worry 
about the environment. Engines with “free” fuel include solar–thermal power plants that 
concentrate sunlight to boil a fluid that drives a turbine, and ocean thermal-energy con-
version (OTEC) schemes that extract useful work from the modest temperature difference 
between tropical surface waters and the deep ocean. Neither provides significant energy 
today, but that could change as the world moves away from fossil fuels.

Refrigerators and Heat Pumps
A refrigerator works like an engine in reverse: It takes in mechanical work and transfers 
heat from its cooler interior to its warmer surroundings. An air conditioner is a refrigerator 
whose “interior” is the building being cooled. A close cousin is the heat pump, which 
transfers heat either way, cooling a building in the summer and warming it in the winter 
(Fig. 19.12). Most contemporary heat pumps exchange energy between a building and the 
outside air. However, in very cold climates it’s more efficient (but more expensive) to use 
groundwater, typically at about 10°C year-round. Heat pumps require electricity, but they 
transfer more heat energy than they consume in electricity. That makes heat pumps poten-
tially energy-saving devices for winter heating. However, some of that gain is offset by the 
inefficiency of the power plant producing the electricity.

An efficient refrigerator (or any other device, for that matter) should maximize what we 
want from the device compared with what we have to put in. The coefficient of performance  
(COP) quantifies this ratio:

COP =
What we want
What we put in

For a refrigerator or summertime heat pump, “what we want” is cooling, so the numerator is 
Qc. For a wintertime heat pump, “what we want” is heating, so the numerator is Qh. For either, 
“what we put in” is mechanical work, W, or its equivalent in electricity. Thus we have

COPrefrigerator =
Qc

W
=

Qc

Qh - Qc
    COPheat pump =

Qh

W
=

Qh

Qh - Qc

In both cases the second equality follows from the first law of thermodynamics. In deriv-
ing the maximum efficiency of a heat engine, we found that Qc/Qh = Tc/Th. Therefore the 
maximum possible COPs are

In summer the heat pump cools the
house by extracting energy and
rejecting it to the outdoor environment.

In winter the pump extracts energy
from outside and transfers it to the
inside.

Heat
pump

Summer

Tin 6 Tout

Tin 7 Tout

QhQc

Heat
pump

Winter

Qh Qc

W

W

FIGURE 19.12 A heat pump.
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EXAMPLE 19.3 The COP: A Home Freezer

A typical home freezer operates between a low temperature of 0°F 
(-18°C or 255 K) and a high of 86°F (30°C or 303 K). What’s its 
maximum possible COP? With this COP, how much electrical energy 
would it take to freeze 500 g of water initially at 0°C?

INTERPRET This problem is about a refrigerator—in this case 
a freezer. We identify Th and Tc with the values 303 K and 255 K, 
respectively.

DEVELOP Equation 19.4a, COP = Tc/1Th - Tc2, will determine the 
COP. Then we’ll use Equation 17.5, Q = Lm, to find the heat Qc that 
the freezer must extract to freeze the water. From there we’ll be able 
to use COP = Qc/W  to find the work—equivalently, the electrical 
energy—required.

EVALUATE Equation 19.4a gives

COP =
Tc

Th - Tc
=

255 K
303 K - 255 K

= 5.31

From Equation 17.5 and Table 17.1, we find the heat that needs to be re-
moved in freezing 500 g of ice: Qc = Lm = 1334 kJ/kg210.50 kg2 =  
167 kJ. The COP is the ratio of the heat removed to the work or electrical 
energy required, so we have W = Qc/COP = 167 kJ/5.31 = 31 kJ.

ASSESS Make sense? A COP of 5.3 means that each unit of work 
transfers 5.3 units of heat from inside the freezer to its surroundings—
so the electrical-energy requirement is modest. A practical freezer 
operating between these temperatures would have a lower COP and 
require more electrical energy.

19.3 A clever engineer decides to increase the efficiency of a Carnot engine by 
cooling the low-temperature reservoir using a refrigerator with the maximum pos-
sible COP. Will the overall efficiency of this system (a) exceed, (b) be less than, or  
(c) equal that of the original engine alone?
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19.4 Entropy and Energy Quality
LO 19.4 Describe entropy and its relation to energy quality.

LO 19.5 Determine quantitatively the entropy changes in simple thermodynamic  
processes.

LO 19.6 Articulate the second law of thermodynamics in terms of entropy.

If offered a joule of energy, would you rather have it in the form of mechanical work, heat 
at 1000 K, or heat at 300 K? Your answer might depend on what you want to do. To lift 
or accelerate a mass, you’d be smart to take your energy as work. But if you want to keep 
warm, heat at 300 K would be perfectly acceptable.

But which should you choose if you want to keep all your options open, making the 
energy available for the most possible uses? The second law of thermodynamics answers 
clearly: You should take the work. Why? Because you could use it directly as mechanical 
energy, or you could, through friction or other irreversible processes, use it to raise the 
temperature of something.

If you chose 300 K heat for your joule of energy, then you could supply a full joule 
only to objects cooler than 300 K. You couldn’t do mechanical work unless you ran a 

 COPrefrigerator =
Tc

Th - Tc
  (19.4a)  COPheat pump =

Th

Th - Tc
 (19.4b)

When the temperatures Th and Tc are close, Equations 19.4 give high COPs—meaning the 
refrigerator or heat pump takes relatively little work to do its job. But as the difference 
increases, the COP drops and we have to supply more work. Incidentally, our COP expres-
sion works for engines as well, if we take “what we want” to be mechanical work W and 
“what we put in” to be the heat Qh.

What we want from a refrigerator is cooling, so its 
COP depends most strongly on the low temperature Tc.

What we want from a heat pump is heat, so its COP 
depends most strongly on the high temperature Th.

COP is the coefficient of 
performance.
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354 Chapter 19 The Second Law of Thermodynamics

heat engine. With its Th only a little above the ambient temperature, your engine would be 
inefficient, and you could extract only a small fraction of a joule of mechanical energy. 
You’d be better off with 1000-K heat since you could transfer it to anything cooler than 
1000 K, or you could run a heat engine to produce up to 0.7 joule of mechanical energy 
(because 1 -  Tc /Th = 1 -   300/1000 = 0.7).

CONCEPTUAL EXAMPLE 19.1

energy. Turning it into low-grade heat is a thermodynamic folly! A 
really smart strategy is cogeneration, in which the waste heat from 
electric power generation is used to heat buildings. In Europe, whole 
communities are heated that way, and institutions in the United States 
are increasingly turning to cogeneration to reduce energy costs and 
carbon emissions.

Energy Quality and Cogeneration

You need a new water heater, and you’re trying to decide between gas 
and electric. The gas heater is 85% efficient, meaning 85% of the fuel 
energy goes into heating water. The electric heater is essentially 100% 
efficient. Thermodynamically, which heater makes the most sense?

EVALUATE Your electricity is energy of the highest quality. It prob-
ably comes from a thermal power plant, which typically discards as 
waste heat twice as much energy as it produces in electricity. The 
electric heater may be 100% efficient in your home, but when you 
consider the big picture, only about one-third of the fuel energy con-
sumed at the power plant ends up heating your water. With 85% effi-
ciency, the gas heater is the wiser choice.

ASSESS It makes sense to match energy sources to their end uses. 
Electricity is high-quality energy, so it’s best for running motors, 
light sources, electronics, and other devices requiring high-quality 

MAKING THE CONNECTION If the electricity comes from a more 
efficient gas-fired power plant with e = 48,, compare the gas con-
sumption of your two heater choices.

EVALUATE The gas heater turns 1 unit of fuel energy into 0.85 unit 
of thermal energy in the water. The power plant turns 1 unit of fuel 
energy into 0.48 unit of electrical energy, which the electric heater 
converts to 0.48 unit of thermal energy. The electric heater is therefore 
responsible for 0.85/0.48 = 1.8 times as much gas consumption.

Taking your energy in the form of work gives you the most options. Anything you can 
do with a joule of energy, you can do with the work. Heat is less versatile, with 300 K heat 
the least useful of the three. We’re not talking here about the quantity of energy—we have 
exactly 1 joule in each case—but about energy quality (Fig. 19.13). We can readily con-
vert an entire amount of energy from higher to lower quality, but the second law precludes 
going in the opposite direction with 100% efficiency.

Entropy
Mix hot and cold water, and you get lukewarm water. There’s no energy loss, but you have 
lost something—namely, the ability to do useful work. In the initial state, you could have run 
a heat engine using the temperature difference ∆T  between the hot and cold water. In the 
final state, there’s no temperature difference, so you couldn’t run a heat engine. The quantity 
of energy hasn’t changed, but its quality has decreased. Entropy, symbol S, quantifies the 
loss of quality associated with energy transformations. In his Ninth Memoir, Clausius coined 
the term entropy for its similarity to the word energy and its Greek root “troph,” meaning 
transformation.

To motivate the definition of entropy, consider an ideal gas undergoing a Carnot cycle. 
Recall that a Carnot cycle consists of two isothermal and two adiabatic processes (Fig. 
19.5). In deriving Equation 19.3 for the Carnot efficiency, we found that Qc 

/Qh = Tc/Th, 
where Qc was the heat rejected from the system to the low-temperature reservoir at Tc, and 
Qh the heat added from the reservoir at Th.

Let’s focus on the ideal gas itself and define all heats as the heat added to the gas, so Qc 
changes sign. The relationship Qc 

/Qh = Tc 

/Th between heats and temperatures can now be 
expressed as

Qc

Tc
+

Qh

Th
= 0  (Carnot cycle)

We can generalize this result to any reversible cycle by approximating the cycle as a se-
quence of Carnot cycles, as shown in Fig. 19.14. For each segment, we have aQ/T = 0. 
As we increase the number of cycles, the volume change associated with each isothermal 
segment shrinks and the edges get less jagged. We can approximate the closed cycle ever 
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FIGURE 19.13 Energy quality 
measures the versatility of 
different energy forms.

          = 0 for the highlighted cycle or
any other cycle, so ΣQ>T must be zero
around the path.
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FIGURE 19.14 An arbitrary cycle approximated 
by isothermal (dashed curves) and adiabatic 
(solid curves) steps. Heat transfer occurs only 
during the isothermal steps.
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FIGURE 19.15 Entropy change is 
path-independent.
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water
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FIGURE 19.16 Hot and cold water are 
mixed to give lukewarm water at tem-
perature Tf. The process is irreversible, 
but a reversible process resulting in the 
same final state would be to cool the hot 
water slowly to Tf , heat the cold water 
slowly to Tf , and then mix. The entropy 
change is the same for either process.

closer by using more and more Carnot cycles. In the limit, the approximation becomes 
exact and the sum becomes an integral:

 C  
dQ

T
= 0  (any reversible cycle) (19.5)

where the circle indicates integration over a closed path.
Equation 19.5 holds for any closed path in the pV diagram—that is, for any reversible 

cycle. That means we can define the entropy change, ∆S, between an initial state 1 and a 
final state 2 as

 ∆S12 = L
2

1

dQ

T
 1entropy change2 (19.6)

Note that entropy has the units J/K, the same units as Boltzmann’s constant kB.
Take a system along a path from state 1 to state 2 in its pV diagram; Equation 19.6 gives 

the corresponding entropy change ∆S12. Go back to state 1 by any other reversible path, 
and the resulting entropy change ∆S21 must be - ∆S12 so that there’s no entropy change 
around the closed path (Fig. 19.15). Thus the entropy change of Equation 19.6 is inde-
pendent of path; it depends only on the initial and final states. The only restriction is that 
we integrate over a reversible path. Like pressure and temperature, entropy is therefore a 
thermodynamic state variable—a quantity that characterizes a given state independently 
of how the system got into that state.

We restricted ourselves to reversible paths in Equation 19.6 since irreversible processes 
take a system out of thermodynamic equilibrium and therefore aren’t described by paths 
in the pV diagram. But because entropy depends only on the initial and final states, we can 
calculate the entropy change in an irreversible process by using Equation 19.6 for a re-
versible process that goes between the same two states. Doing so for a couple of examples 
will help you understand the meaning of entropy.

Irreversible Heat Transfer
Figure 19.16 shows hot and cold water being mixed to form lukewarm water. This is an 
irreversible process, as we described in Section 19.1. We could achieve the same result re-
versibly, however, by slowly cooling or heating each water sample separately until they’re 
both at the final temperature that would result from directly mixing them. At that point the 
two could be mixed, and there would be no further temperature change.

To quantify the corresponding entropy change, consider two equal masses m of water, 
initially at temperatures Tc and Th. Since the masses are equal, the final temperature if they 
were mixed would be midway between their initial temperatures: Tf =  1Tc +  Th2 >  2. 
To find the entropy change for each water sample, we first use Equation 16.3 to write 
dQ =  mc dT , where c is the specific heat. Using this result in Equation 19.6, and assum-
ing c doesn’t change with temperature, we have

∆Sh, c = 1Tf
Th, c

mc dT
T

= mc 1Tf
Th, c

=
dT
T

where the subscripts h and c indicate separate calculations of the entropy change for 
the hot and cold water, respectively. In Problem 69 you can continue this calculation to 
show that the overall entropy change for this system—the sum ∆Sh +  ∆Sc —is given by 
∆S = mc ln31Tc + Th22>4TcTh4 . You’ll also show in Problem 69 that the argument of the 
logarithm in this expression is greater than 1, so the entropy change is positive—mean-
ing that entropy increases. Although we did this calculation for the reversible process of 

∆S12 is the change in a system’s entropy 
as it goes from state 1 to state 2.

dQ is an infinitesimal amount of heat 
flowing to or from the system.

We need the integral whenever 
the temperature is changing.

T is the temperature.
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356 Chapter 19 The Second Law of Thermodynamics

slowly heating the cold water and cooling the hot water, the result holds, as we’ve argued, 
for the irreversible process of mixing hot and cold water directly. Thus, entropy increases 
during the irreversible mixing.

Although we used equal masses of water in this example, a similar calculation would 
give the same general result—an entropy increase—when different substances with differ-
ent masses and different specific heats and initially different temperatures come to thermo-
dynamic equilibrium. Problems 54 and 57 provide some examples.

Adiabatic Free Expansion
In Fig. 19.17a, a partition confines an ideal gas to one side of a box; the other side 
is vacuum. Remove the partition, and the gas undergoes a free expansion, filling the 
box. Consider the box to be insulated, so there’s no heat f low and the expansion is 
therefore adiabatic. But this expansion is irreversible, so it’s significantly different from 
the adiabatic expansions we considered in Chapter 18. In our free expansion, the vac-
uum doesn’t exert pressure to oppose the gas, so the gas does no work and therefore 
its internal energy doesn’t change. Figure 19.17c shows how we could have used the 
expanding gas to turn a paddle wheel, extracting useful work. We can’t do that with the 
uniform-pressure gas of Fig. 19.17b, so the free expansion results in the system’s losing 
its ability to do work.

Let’s determine the entropy change for this irreversible process. We do that by finding 
a reversible process that takes the gas between the same two states. Since the gas’s internal 
 energy doesn’t change, neither does its temperature. So the corresponding reversible process is 
an  isothermal expansion, for which Equation 18.4 gives the heat added: Q = nRT ln1V2/V12. 
With the temperature constant, the entropy change of Equation 19.6 becomes

∆S = L
dQ

T
=

1
T LdQ =

Q

T
= nR ln aV2

V1
b

The final volume V2 is larger than V1, so entropy has increased. Although we computed 
this result for the reversible process, it holds for any process that takes the system between 
the same initial and final states—including our irreversible free expansion.

Entropy and the Availability of Work
Entropy increases during the two irreversible processes we just considered. Energy quality 
decreases, in that both systems lose the ability to do work. We can quantify that loss by 
considering what would happen if we had let the gas in Fig. 19.17 undergo a reversible 
isothermal expansion instead of free expansion. In that case, the gas would have done 
work equal to the heat gained:

W = Q = nRT ln aV2

V1
b

After the irreversible free expansion, the gas can no longer do this work, even though its 
energy is unchanged. Comparing W with the entropy change ∆S we calculated above, we 
see that the energy that becomes unavailable to do work is Eunavailable = T ∆S. This illus-
trates a more general relation between entropy and energy quality:

During an irreversible process where the entropy of a system increases by ∆S, energy 
E = Tmin∆S becomes unavailable to do work, where Tmin is the lowest temperature 
available to the system.

This statement shows that entropy provides our measure of energy quality. Given 
two systems with identical energy content, the one with the lower entropy contains the 
 higher-quality energy. An entropy increase corresponds to a degradation in energy quality, 
as energy becomes unavailable to do work.
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FIGURE 19.17 Two ways for a gas to expand 
into a vacuum.

M19_WOLF8559_04_SE_C19.indd   356 13/11/18   12:39 PM



19.4 Entropy and Energy Quality 357

A Statistical Interpretation of Entropy
We began this chapter arguing that systems naturally evolve from ordered to disordered 
states. Entropy increase measures that loss of order, which is what makes energy unavail-
able to do work. Here we’ll explore the meaning of entropy further, based on the parti-
tioned box we used for adiabatic free expansion.

Suppose we have a gas with just two identical molecules. The left side of Fig. 19.19 
shows that, with the partition removed, there are four possible microstates—specific ar-
rangements of the individual molecules in the box. But say we only care about the number 
of molecules in each side of the box. Then two of these arrangements are indistinguish-
able, because they both have one molecule in each half of the box. Those two correspond 
to a single macrostate, specified by giving the number of molecules in each half of the 
box, without regard to which molecules they are. This is shown on the right in Fig. 19.19.

With four available microstates, the probability of being in any one microstate is 1
4. 

There’s only one microstate with both molecules on the left, so the chances of being in the 
macrostate with two molecules on the left is also 14; the same is true for the macrostate with 
two molecules on the right. But two of the possible microstates have one molecule on each 
side, so the probability for this macrostate is 12.

Now consider a gas of four molecules. Figure 19.20 shows 16 possible microstates, corre-
sponding to five macrostates. Again, the probability of finding the system in a given macrostate 
depends on the associated number of microstates; Fig. 19.20 enumerates these probabilities. 
The figure shows that we’re most likely to find the system in the macrostate with the molecules 
evenly divided; the states with all the molecules on one side are now quite improbable.

Raise the number of molecules to 100, and the number of microstates becomes huge—
2100, or more than 1030. That makes the macrostates with all or nearly all the molecules 
on one side extremely improbable. The macrostate with half the molecules on each side 
remains the most likely, although states with nearly equal divisions of molecules are also 
quite probable. Rather than enumerate these probabilities, we graph them (Fig. 19.21a).

A 2.0-L cylinder contains 5.0 mol of compressed gas at 290 K. If the 
cylinder is discharged into a 150-L vacuum chamber and its temperature 
remains 290 K, how much energy has become unavailable to do work?

INTERPRET This problem asks about the loss of energy quality during 
an irreversible and therefore entropy-increasing process—namely, an 
adiabatic free expansion.

DEVELOP Figure 19.18 is a sketch of the situation, similar to Fig. 
19.17 except that here the gas is initially confined to a small cylinder, 
so its volume changes more dramatically as it expands into the large, 
empty chamber. In analyzing the free expansion of Fig. 19.17, we found 
∆S = nR ln1V2/V12. Our statement relating entropy and energy quality 
says that the energy made unavailable to do work is Tmin∆S. So our plan 
is to calculate ∆S and multiply by Tmin to find that unavailable energy.

EVALUATE Because the temperature doesn’t change, Tmin is the 
290-K temperature we’re given, and we have

 Eunavailable = T ∆S = nRT ln aV2

V1
b

 = 15.0 mol218.314 J/K # mol21290 K2 ln a152 L
2.0 L

b = 52 kJ

Here we set V2 =  152 L because the final volume includes both the 
larger chamber and the original cylinder.

ASSESS Make sense? Yes: This is the work we could have ex-
tracted from a reversible isothermal expansion. By letting the gas 
undergo an irreversible process, we gave up the possibility of ex-
tracting this work.

EXAMPLE 19.4 Increasing Entropy: The Loss of Energy Quality
Worked Example with Variation Problems

FIGURE 19.18 Our sketch for Example 19.4. Note that the final volume 
is 152 L.

Microstates 
(ways of distributing the two

atoms in the two halves of the box)

Macrostates 
(number of atoms

in each half)

2 0

1 1

0 2

FIGURE 19.19 A gas of two molecules 
has four possible microstates and three 
macrostates.
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358 Chapter 19 The Second Law of Thermodynamics

Typical gas samples have roughly 1023 molecules, and that makes macrostates with 
anything other than a nearly equal distribution of molecules extremely unlikely—as sug-
gested by the spike-like probability distribution in Fig. 19.21b. You could sit in your room 
for many times the age of the universe, and you’d never see all the air molecules sponta-
neously end up on one side of the room!

Entropy and the Second Law of Thermodynamics
The statistical improbability of more ordered states—in our example, those with signifi-
cantly more molecules on one side of the box—is at the root of the second law of thermody-
namics. Although we defined entropy in terms of heat flow and temperature (Equation 19.6),  
a more fundamental definition involves the probabilities of individual microstates. In that 
sense, entropy is indeed a measure of disorder.

Systems naturally evolve toward disordered or higher-entropy states simply because 
there are far more of these states available. So a general statement of the second law is:

Second law of thermodynamics The entropy of a closed system can never decrease.

At best, the entropy of a closed system remains constant—and that’s only in an ideal, 
reversible process. If anything irreversible occurs—friction, or any deviation from ther-
modynamic equilibrium—then entropy increases. As it does, energy becomes unavailable 
to do work, and nothing within the closed system can restore that energy to its original 
quality. This new statement of the second law subsumes our previous statements about the 
impossibility of perfect heat engines and refrigerators, for their operation would require an 
entropy decrease.

We can decrease the entropy of a system that isn’t closed—but only by supplying 
high-quality energy from outside. Running a refrigerator decreases the entropy of its 
contents, but this requires electrical energy to make heat f low from cold to hot. That 
high-quality electrical energy deteriorates into additional heat that’s rejected to the refrig-
erator’s environment. If we consider the entire system, not just the refrigerator’s contents, 
the overall entropy has increased.

Any system whose entropy seems to decrease—that gets more rather than less  
organized—can’t be closed. If we enlarge a system’s boundaries to encompass the entire 
universe, then we have the ultimate statement of the second law:

Second law of thermodynamics The entropy of the universe can never decrease.

Examples include the growth of a living thing from the random mix of molecules in 
its environment, the construction of a skyscraper from materials that were originally dis-
persed about Earth, and the appearance of ordered symbols on a printed page from a bottle 
of ink. All these are entropy-decreasing processes in which matter goes from near chaos 
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16
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16
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16
 = 0.06

 = 0.06

 = 0.25

 = 0.25

 = 0.38

Probability of macrostate

4 0

3 1

2 2

1 3

0 4

Microstates (16 total) Macrostates

FIGURE 19.20 Microstates, macrostates, and probabilities for a gas of four molecules.

0.5 * 1023 1.0 * 1023

Pr
ob

ab
ili

ty

500 100

Pr
ob

ab
ili

ty

Macrostate 
(number of molecules on left side of box) 

Macrostate 
(number of molecules on left side of box) 

0

(a)

(b)

For a 1023-molecule 
gas, the peak is 
much sharper.

FIGURE 19.21 Probability distributions for 
a gas of (a) 100 molecules and (b) 1023 
molecules.
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19.4 Entropy and Energy Quality 359

to a highly organized state—akin to separating yolk and white from a scrambled egg. But 
Earth isn’t a closed system. It gets high-quality energy from the Sun, energy that’s ulti-
mately responsible for life. If we consider the Earth–Sun system, the entropy decrease as-
sociated with life and civilization is more than balanced by the entropy increase associated 
with the degradation of high-quality solar energy. We living things represent a remarkable 
phenomenon—the organization of matter in a universe governed by a tendency toward 
disorder. But we can’t escape the second law of thermodynamics. Our highly organized 
selves and society, and the entropy decreases they represent, come into being only at the 
expense of greater entropy increases elsewhere.

19.4 In each of the following processes, does the entropy of the named system alone 
increase, decrease, or stay the same? (1) a balloon deflates; (2) cells differentiate in a 
growing embryo, forming different physiological structures; (3) an animal dies, and its 
remains gradually decay; (4) an earthquake demolishes a building; (5) a plant utilizes 
sunlight, carbon dioxide, and water to manufacture sugar; (6) a power plant burns coal 
and produces electrical energy; (7) a car’s friction-based brakes stop the car

G
O

T 
IT

?
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COPrefrigerator =
Tc

Th - Tc
   COPheat pump =

Th
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Applications
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pV diagram for Carnot engineEnergy-flow diagram
for an engine
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Volume, V

Isothermal
compression

Adiabatic expansion

Isothermal expansion

Adiabatic
compressione =

W
Qh

… emax = 1 -
Tc

Th

µ  µ

This defines 
an engine’s 
efficiency.

This is the 
maximum possible 

efficiency.

Similarly, the second law limits the coefficient of performance (COP) of refrigerators and heat pumps: Th

Tc

WQh

Qc

The second law sets the maximum possible efficiency 
of any heat engine as that of the Carnot engine, an en-
gine that combines adiabatic and isothermal processes.

Chapter 19 Summary

Big Idea
The big idea behind this chapter is the second law of thermodynamics—ultimately, the statement that systems tend naturally toward disorder,  
or states of higher entropy. The second law is manifest in the real world by forbidding the construction of perfect heat engines and perfect 
 refrigerators—therefore preventing us from extracting as useful work all the energy that’s contained in random thermal motions. Ultimately, the 
second law says that the entropy of any closed system, including the entire universe, cannot decrease.

v
u

v
u

Block moving;
molecular motion
ordered.

Block stopped;
molecular motion
disordered.

Can’t spontaneously
restore order!

v = 0
u

Key Concepts and Equations

Entropy is a quantitative measure of energy quality and of disorder; 
the higher the entropy, the lower the energy quality and the greater the 
disorder. The highest-quality energy is mechanical or electrical energy, 
followed by the internal energy of systems at high temperature, and 
finally low-temperature internal energy. Whenever entropy increases, 
energy becomes unavailable to do work.

Hot
water

Cold
water

Could
extract
some energy
as work

Instead,
mix.

Lukewarm
water—
can’t extract
any work

Th

Tf

Tc

• ∆S = L
2

1

dQ

T
  gives the entropy change as a system goes from 
state 1 to state 2.

• Eunavailable = Tmin∆S  is the energy that becomes unavailable as a 
result of entropy increase ∆S.
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14. A Carnot engine absorbs 900 J of heat each cycle and provides 
350 J of work. (a) What’s its efficiency? (b) How much heat is 
rejected each cycle? (c) If the engine rejects heat at 10°C, what’s 
its maximum temperature?

15. Find the COP of a reversible refrigerator operating between 0°C 
and 30°C.

16. How much work does a refrigerator with COP = 4.2 require to 
freeze 670 g of water already at its freezing point?

17. The human body can be 25% efficient at converting chemical 
energy of fuel to mechanical work. Can the body be considered 
a heat engine, operating on the temperature difference between 
body temperature and the environment?

Section 19.4 Entropy and Energy Quality
18. Calculate the entropy change associated with melting 1.0 kg of 

ice at 0°C.
19. You metabolize a 650-kcal burger, helping to maintain your 37°C 

body temperature. What’s the associated entropy increase?
20. You heat 250 g of water from 10°C to 95°C. By how much does 

the entropy of the water increase?
21. Melting a block of lead already at its melting point results in an 

entropy increase of 900 J/K. What’s the mass of the lead? (Hint: 
Consult Table 17.1.)

22. How much energy becomes unavailable for work in an isother-
mal process at 440 K, if the entropy increase is 25 J/K?

23. For a gas of six molecules confined to a box, find the probability 
that (a) all the molecules will be found on one side of the box and 
(b) half the molecules will be found on each side.

Example Variations
The following problems are based on two worked examples from the 
text. Each set of four problems is designed to help you make connec-
tions that enhance your understanding of physics and to build your 
confidence in solving problems that differ from ones you’ve seen be-
fore. The first problem in each set is essentially the example problem 
but with different numbers. The second problem presents the same sce-
nario as the example but asks a different question. The third and fourth 
problems repeat this pattern but with entirely different scenarios.

BIO

BIO

For Thought and Discussion

1. Could you cool the kitchen by leaving the refrigerator open? 
Explain.

2. Could you heat the kitchen by leaving the oven open? Explain.
3. Is there a limit to the maximum temperature that can be achieved 

by focusing sunlight with a lens? If so, what is it?
4. Name some irreversible processes that occur in a real engine.
5. Your power company claims that electric heat is 100% efficient. 

Discuss.
6. A hydroelectric power plant, using the energy of falling water, 

can operate with efficiency arbitrarily close to 100%. Why?
7. A heat-pump manufacturer claims the device will heat your home 

using only energy already available in the ground. Is this true?
8. The heat Q added during adiabatic free expansion is zero. Why 

can’t we then argue from Equation 19.6 that the entropy change is 
zero?

9. Energy is conserved, so why can’t we recycle it as we do materials?
10. Why doesn’t the evolution of human civilization violate the sec-

ond law of thermodynamics?

Exercises and Problems

Exercises

Sections 19.2 and 19.3 The Second Law of 
Thermodynamics and Its Applications
11. What are the efficiencies of reversible heat engines operating 

between (a) the normal freezing and boiling points of water,  
(b) the 25°C temperature at the surface of a tropical ocean and 
deep water at 4°C, and (c) a 1000°C flame and room temperature?

12. A cosmic heat engine might operate between the Sun’s 5800 K 
surface and the 2.7 K temperature of intergalactic space. What 
would be its maximum efficiency?

13. A reversible Carnot engine operating between helium’s melting 
point and its 4.25 K boiling point has an efficiency of 77.7%. 
What’s the melting point?

Mastering Physics

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems COMP Computer problems

Go to www.masteringphysics.com to access assigned homework and self-study tools such as 
Dynamic Study Modules, practice quizzes, video solutions to problems, and a whole lot more!

Learning Outcomes After finishing this chapter you should be able to:

LO 19.1 Distinguish reversible and irreversible thermodynamic 
processes.

LO 19.2 Articulate the second law of thermodynamics as it applies 
to engines and refrigerators, and calculate thermodynamic 
efficiencies.
For Thought and Discussion Questions 19.1, 19.2 , 19.3, 
19.4, 19.5, 19.6; Exercises 19.11, 19.12, 19.13, 19.14, 
19.15; Problems 19.38, 19.40, 19.44, 19.46, 19.47, 19.48, 
19.58, 19.66, 19.67

LO 19.3 Describe practical implications of the second law, especially 
for engines, power plants, and heat pumps.
For Thought and Discussion Question 19.7; Exercises 19.16, 
19.17; Problems 19.32, 19.33, 19.34, 19.35, 19.36, 19.37, 
19.38, 19.39, 19.41, 19.42, 19.43, 19.45, 19.46, 19.47, 
19.60, 19.61, 19.62, 19.63, 19.68, 19.73

LO 19.4 Describe entropy and its relation to energy quality.
For Thought and Discussion Question 19.9; Problems 
19.54, 19.69

LO 19.5 Determine quantitatively the entropy changes in simple 
thermodynamic processes.
For Thought and Discussion Question 19.8; Exercises 19.18, 
19.19, 19.20, 19.21, 19.22, 19.23; Problems 19.49, 19.50, 
19.51, 19.52, 19.53, 19.55, 19.56, 19.57, 19.59, 19.64, 
19.65, 19.70, 19.71, 19.72

LO 19.6 Articulate the second law of thermodynamics in terms of 
entropy.
For Thought and Discussion Question 19.10
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362 Chapter 19 The Second Law of Thermodynamics

Problems
32. A Carnot engine extracts 745 J from a 592-K reservoir during 

each cycle and rejects 458 J to a cooler reservoir. It operates at 
18.6 cycles per second. Find (a) the work done during each cycle, 
(b) its efficiency, (c) the temperature of the cool reservoir, and (d) 
its mechanical power output.

33. The maximum steam temperature in a nuclear power plant is 570 K. 
The plant rejects heat to a river whose temperature is 0°C in the winter 
and 25°C in the summer. What are the maximum possible efficiencies 
for the plant during these seasons?  

34. You’re engineering an energy-efficient house that will require an 
average of 6.85 kW to heat on cold winter days. You’ve designed 
a photovoltaic system for electric power, which will supply on 
average 2.32 kW. You propose to heat the house with an electri-
cally operated heat pump. What should you specify as the min-
imum acceptable COP for the pump if the photovoltaic system 
supplies its energy?

35. A power plant’s electrical output is 750 MW. Cooling water at 
15°C flows through the plant at 2.8 * 104 kg/s, and its tempera-
ture rises by 8.5°C. Assuming that the plant’s only energy loss 
is to the cooling water, which serves as its low-temperature res-
ervoir, find (a) the rate of energy extraction from the fuel, (b) the 
plant’s efficiency, and (c) its highest temperature.

36. A power plant extracts energy from steam at 280°C and delivers 
880 MW of electric power. It discharges waste heat to a river at 
30°C. The plant’s overall efficiency is 29%. (a) How does this 
efficiency compare with the maximum possible at these tempera-
tures? (b) Find the rate of waste-heat discharge to the river. (c) 
How many houses, each requiring 23 kW of heating power, could 
be heated with the waste heat from this plant?

37. The electric power output of all the thermal electric power plants 
in the United States is about 2*1011 W, and these plants operate 
at an average efficiency of around 33%. Find the rate at which all 
these plants use cooling water, assuming an average 5°C rise in 
cooling-water temperature. Compare with the 1.8 * 107 kg/s aver-
age flow at the mouth of the Mississippi River.

38. Consider a Carnot engine operating between 
temperatures Th and Ti, where Ti is interme-
diate between Th and the ambient tempera-
ture Tc (Fig. 19.22). It should be possible to 
operate a second engine between Ti and Tc. 
Show that the maximum overall efficiency of 
such a two-stage engine is the same as that of 
a single engine operating between Th and Tc 
(which is why combined-cycle power plants 
achieve high efficiencies).

39. You operate an industrial freezer that main-
tains its interior at –17°C and discharges 
heat to the surrounding environment at 36°C.  
It consumes electrical energy at the rate of 
27.3 kW. (a) Find the freezer’s COP, assuming it’s reversible.  
(b) How much water, initially at 0°C, can the unit turn to ice, at 
0°C, in one hour?

40. Use appropriate energy-flow diagrams to analyze the situation in 
GOT IT? 19.3; that is, show that using a refrigerator to cool the 
low-temperature reservoir can’t increase the overall efficiency 
of a Carnot engine when the work input to the refrigerator is 
included.

41. It costs $230 to heat a house with electricity in a winter month. 
(Electric heat converts all the incoming electrical energy to heat.) 
What would the monthly heating bill be after converting to an 
electrically powered heat pump with COP = 3.4?

ENV

ENV

ENV

ENV

ENV

24. Example 19.1: A Carnot engine extracts 2.84 kJ from its hot res-
ervoir during each cycle and rejects 1.31 kJ to its environment 
at 22.5°C. (a) How much work does the engine do in one cycle? 
(b) What’s its efficiency? (c) What’s the temperature of the hot 
reservoir?

25. Example 19.1: A Carnot engine’s mechanical power output is 
48.4 kW, and it rejects heat to the ambient environment at the 
rate of 41.7 kW. If the engine’s hot reservoir is at 625 K, what 
are (a) the rate of energy extraction from the hot reservoir, (b) 
the engine’s efficiency, and (c) the temperature of the ambient 
environment?

26. Example 19.1: California’s Ivanpah power station, which be-
came operational in 2014, is the world’s largest plant to use 
concentrating solar power (CSP) technology. Here, fields of 
Sun-tracking mirrors focus sunlight on high towers, bringing a 
heat-transfer f luid to a temperature that’s considerably hotter 
than the water and steam in nuclear and coal plants. (If you’ve 
flown into or out of Los Angeles, you may have seen Ivanpah’s 
three towers, each looking like a bright star on the desert floor.) 
Suppose that the total solar power Ivanpah’s mirrors deliver to 
the towers is 610 MW, that all that power goes into heating the 
fluid, and that the plant rejects 233 MW of waste heat to the en-
vironment at 320 K. Find (a) the plant’s electric power output, (b) 
its efficiency, and (c) the temperature of the fluid in the towers. 
Approximate the plant as a Carnot engine.

27. Example 19.1: Ocean thermal-energy conversion (OTEC) is an 
energy-producing scheme that uses the temperature difference 
between warm ocean surface waters in the tropics and cooler 
water several hundred meters down. Find the Carnot efficiency 
for an OTEC plant operating between 25°C surface water and 
5°C deep water. Your answer may seem low, but remember that 
OTEC’s “fuel” is free.

28. Example 19.4: A standard “C” cylinder for storing pressurized 
gasses has an internal volume of 6.88 L. Such a cylinder contains 
52.8 mol of compressed nitrogen gas (N

2
) at 282 K. If the cyl-

inder is discharged into a 445-m3 vacuum chamber, how much 
energy becomes unavailable to do work?

29. Example 19.4: Toyota’s Mirai fuel-cell car stores its hydrogen 
(H

2
) fuel in tanks that hold 5.0 kg of hydrogen at 70 MPa pres-

sure. During a test one of these tanks leaks its hydrogen into the 
surrounding test chamber, whose volume is 955 m3 and which is 
essentially at vacuum. The hydrogen stays at a constant 293-K 
temperature during this process. If the energy that becomes un-
available to do work is 54.6 MJ, what’s the fuel tank’s volume? 
Note: The unavailable energy here is not the energy that would 
have been released on reacting the hydrogen in the vehicle’s fuel 
cell; rather, it’s the much lower energy that could have been re-
covered by using the pressurized gas to turn a turbine.

30. Example 19.4: A cylinder holds n mol of compressed gas at tem-
perature T. It’s connected by a hose of negligible volume to an 
identical cylinder that’s been pumped down to vacuum. When the 
valve on the full cylinder is opened, the gas expands to fill the 
entire system while maintaining the constant temperature T. Find 
an expression for the energy that becomes unavailable to do work 
as a result of this process.

31. Example 19.4: A gas cylinder with interior volume 11.5 L holds 
compressed air at 16.8 MPa. The cylinder is joined by a hose of 
negligible volume to a second cylinder that’s been pumped down 
to vacuum. When the valve on the full cylinder is opened, the 
air expands to fill the entire system, all the while maintaining a 
constant temperature. If the energy that becomes unavailable to 
do work is 169 kJ, what’s the volume of the second cylinder?

W1

Th

Ti

Tc

W2

FIGURE 19.22  
Problem 38
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52. The temperature of n moles of ideal gas is changed from T1 to T2 
with pressure held constant. Show that the corresponding entropy 
change is ∆S = nCp ln1T2/T12.

53. A 6.36-mol sample of ideal diatomic gas is at 1.00 atm pressure 
and 288 K. Find the entropy change as the gas is heated revers-
ibly to 552 K (a) at constant volume, (b) at constant pressure, and 
(c) adiabatically.

54. A 250-g sample of water at 80°C is mixed with 250 g of water at 
10°C. Find the entropy changes for (a) the hot water, (b) the cool 
water, and (c) the system.

55. An ideal gas undergoes a process that takes it from pressure p1 
and volume V1 to p2 and V2, such that p1V

g
1 = p2V

g
2, where g 

is the specific heat ratio. Find the entropy change if the process 
consists of constant-pressure and constant-volume segments. 
Why does your result make sense?

56. In an adiabatic free expansion, 6.36 mol of ideal gas at 305 K ex-
pands 15-fold in volume. How much energy becomes unavailable 
to do work?

57. Find the entropy change when a 2.4-kg aluminum pan at 155°C is 
plunged into 3.5 kg of water at 15°C.

58. An engine with mechanical power output 8.5 kW extracts heat 
from a source at 420 K and rejects it to a 1000-kg block of ice at 
its melting point. (a) What’s its efficiency? (b) How long can it 
maintain this efficiency if the ice isn’t replenished?

59. Find the change in entropy as 2.00 kg of H2O at 100°C turns to 
vapor at the same temperature.

60. Gasoline engines operate ap-
proximately on the Otto cycle, 
consisting of two adiabatic 
and two constant-volume seg-
ments. Figure 19.25 shows 
the Otto cycle for a particular 
engine. (a) If the gas in the 
engine has specific-heat ratio 
g, find the engine’s efficiency, 
assuming all processes are 
reversible. (b) Find the maxi-
mum temperature in terms of 
the minimum temperature Tmin. (c) How does the efficiency com-
pare with that of a Carnot engine operating between the same 
temperature extremes?

61. The compression ratio r of an engine is the ratio of maximum to 
minimum gas volume. (For the gasoline engine of the preceding 
problem, Fig. 19.25 shows that the compression ratio is 5.) Find 
a general expression for the engine efficiency of an Otto-cycle 
engine as a function of compression ratio.

62. Gasoline engines burning regular-grade fuel are limited to a max-
imum compression ratio of about 9 because higher compression 
causes fuel to pre-ignite before the spark plug fires, resulting in 
“knocking” and reduced engine performance. This is less of a 
problem with natural gas, for which the optimum compression 
ratio is 12.7. Suppose a gasoline engine with compression ratio 
8.80 is modified to run solely on natural gas, including an in-
crease in compression ratio to 12.7. Use the result of the pre-
ceding problem to find the change in the engine’s efficiency, 
assuming that change is due entirely to the increased com-
pression ratio. Note: Although the new fuel is a gas (CH

4
, with 

g =  1.33), the air-to-fuel ratio of 17:1 for a natural-gas engine 
means the mixture in the cylinder still has essentially the specific 
heat ratio of air—namely, g =  1.4.

63. The 54-MW wood-fired McNeil Generating Station in 
Burlington, Vermont, produces steam at 950°F to drive its ENV

42. A refrigerator maintains an interior temperature of 4°C while 
its exhaust temperature is 30°C. The refrigerator’s insulation is 
imperfect, and heat leaks in at the rate of 340 W. Assuming the 
refrigerator is reversible, at what rate must it consume electrical 
energy to maintain a constant 4°C interior?

43. You operate a store that’s heated by a gas furnace that supplies 
24.4 kWh of heat from every hundred cubic feet (CCF) of gas. 
The gas costs you $1.28 per CCF. You’re considering switching 
to a heat-pump system powered by electricity that costs 14.6¢ per 
kWh. Find the minimum heat-pump COP that will reduce your 
heating costs.

44. Use energy-flow diagrams to show that the existence of a perfect 
heat engine would permit the construction of a perfect refrigera-
tor, thus violating the Clausius statement of the second law.

45. An air-source heat pump has an actual COP of 2.72 on a winter 
day when the outdoor temperature is –7.0°C. It supplies heat to a 
home at the rate of 18.8 kW and delivers heated air at 48.0°C. (a) 
Find the heat pump’s electrical power consumption. (b) Compare 
the heat pump’s daily operating cost with that of a gas furnace if 
electricity costs 11.4¢/kWh and gas costs $1.28 per hundred cubic 
feet (CCF), with each CCF supplying 25.3 kWh of heat. (c) What 
percent is the actual COP of the theoretical maximum COP?

46. A reversible engine contains 0.350 mol of ideal monatomic gas, 
initially at 586 K and confined to a volume of 2.42 L. The gas 
undergoes the following cycle:

• Isothermal expansion to 4.84 L
• Constant-volume cooling to 292 K
• Isothermal compression to 2.42 L
• Constant-volume heating back to 586 K

Determine the engine’s efficiency, defined as the ratio of the 
work done to the heat absorbed during the cycle.

47. (a) Determine the efficiency for 
the cycle shown in Fig. 19.23,  
using the definition given in 
the preceding problem. (b) 
Compare with the efficiency 
of a Carnot engine operating 
between the same temperature 
extremes. Why are the two ef-
ficiencies different?

48. A 0.20-mol sample of an ideal 
gas goes through the Carnot 
cycle of Fig. 19.24. Calculate 
(a) the heat Qh absorbed, (b) 
the heat Qc rejected, and (c) the 
work done. (d) Use these quan-
tities to determine the effi-
ciency. (e) Find the maximum 
and minimum temperatures, 
and show explicitly that the ef-
ficiency as defined in Equation 
19.1 is equal to the Carnot effi-
ciency of Equation 19.3.

49. A shallow pond contains 94 Mg of water. In winter, it’s entirely 
frozen. By how much does the entropy of the pond increase when 
the ice, already at 0°C, melts and then heats to its summer tem-
perature of 15°C?

50. Estimate the rate of entropy increase associated with your body’s 
normal metabolism.

51. The temperature of n moles of ideal gas is changed from T1 to T2 
at constant volume. Show that the corresponding entropy change 
is ∆S = nCV ln1T2/T12.
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ENV
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FIGURE 19.25 Problem 60
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FIGURE 19.23 Problem 47
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364 Chapter 19 The Second Law of Thermodynamics

there will be equal numbers on both sides. (d) Evaluate for 
N = 4 and N = 100.

73. Energy-efficiency specialists measure the heat Qh delivered by a 
heat pump and the corresponding electrical energy W needed to 
run the pump, and they compute the pump’s COP as the ratio        
Qh >W. They also measure the outdoor temperature, and they know 
that the pump produces hot water at Th = 52°C. The table below 
shows their results for Q and T. (a) Determine a quantity that,  
when you plot the COP against it, should give a straight line. (b) 
Make your plot, fit a straight line, and from it determine how the 
heat pump’s COP compares with the theoretical maximum COP.

Tc 1°C2 -18 -10 -5 0 10

COP Qh>W 2.7 3.2 3.6 3.7 4.7

Passage Problems
Refrigerators remain among the greatest consumers of electrical energy 
in most homes, although mandated efficiency standards have decreased 
their energy consumption by some 80% in the past four decades. In the 
course of a day, one kitchen refrigerator removes 30 MJ of energy from 
its contents, in the process consuming 10 MJ of electrical energy. The 
electricity comes from a 40% efficient coal-fired power plant.

74. The electrical energy
a. is used to run the lightbulb inside the refrigerator.
b. wouldn’t be necessary if the refrigerator had enough 

insulation.
c. retains its high-quality status after the refrigerator has used it.
d. ends up as waste heat rejected to the kitchen environment.

75. The refrigerator’s COP is
a. 1

3.
b. 2.
c. 3.
d. 4.

76. The fuel energy consumed at the power plant to run this refriger-
ator for the day is
a. 12 MJ.
b. 25 MJ.
c. 40 MJ.
d. 75 MJ.

77. The total energy rejected to the surrounding kitchen during the 
course of the day is
a. 10 MJ.
b. 30 MJ.
c. 40 MJ.
d. 75 MJ.

Answers to Chapter Questions

Answer to Chapter Opening Question
The second law of thermodynamics prevents us from converting ther-
mal energy to mechanical energy with 100% efficiency, and practical 
limits on temperature make it hard to achieve more than about 50% 
efficiency in conventional power plants.

Answers to GOT IT? Questions
19.1 (a), (c), and (f)
19.2 (c)
19.3 (c) see Problem 40 for a proof
19.4 (1) increase; (2) decrease; (3) increase; (4) increase;  
(5) decrease; (6) increase; (7) increase

DATA

turbines, and condensed steam returns to the boiler as 90°F wa-
ter. (Note the temperatures in °F, used in U.S. engineering situa-
tions.) Find McNeil’s maximum thermodynamic efficiency, and 
compare with its actual efficiency of 25%.

64. A 500-g copper block at 80°C is dropped into 1.0 kg of water at 
10°C. Find (a) the final temperature and (b) the entropy change 
of the system.

65. An object’s heat capacity is inversely proportional to its absolute 
temperature: C = C01T0/T2, where C0 and T0 are constants. Find 
the entropy change when the object is heated from T0 to T1.

66. A Carnot engine extracts heat from a block of mass m and spe-
cific heat c initially at temperature Th0 but without a heat source to 
maintain that temperature. The engine rejects heat to a reservoir at 
constant temperature Tc. The engine is operated so its mechanical 
power output is proportional to the temperature difference Th - Tc:

P = P0 
Th - Tc

Th0 - Tc

where Th is the instantaneous temperature of the hot block and P0 
is the initial power. (a) Find an expression for Th as a function of 
time, and (b) determine how long it takes for the engine’s power 
output to reach zero.

67. In an alternative universe, you’ve got the impossible: an infinite heat 
reservoir, containing infinite energy at temperature Th. But you’ve 
only got a finite cool reservoir, with initial temperature Tc0 and heat 
capacity C. Find an expression for the maximum work you can 
 extract if you operate an engine between these two reservoirs.

68. You’re the environmental protection officer for a 35% efficient nu-
clear power plant that produces 750 MW of electric power, situated 
on a river whose minimum flow rate is 110 m3/s. State environmen-
tal regulations limit the rise in river temperature from your plant’s 
cooling system to 5°C. Can you achieve this standard if you use 
river water for all your cooling, or will you need to install cooling 
towers that transfer some of your waste heat to the atmosphere?

69. (a) Continue the calculation begun on page 356 in the subsec-
tion “Irreversible Heat Transfer” to derive the expression given in 
the text for the entropy change when equal masses m of hot and 
cold water, at temperatures Th and Tc, respectively, are mixed: 
∆S = mc ln31Tc + Th22>4TcTh4 . (b) Show that the argument of 
the logarithm in this expression is greater than 1 for Th ≠  Tc,  
thus showing that ∆S is positive. Hint: This is equivalent to 
showing that 1Tc +  Th22 7  4TcTh. Expand the left side of this 
inequality, subtract 4TcTh from both sides, factor the resulting left 
side, and you’ll have your result.

70. Problem 76 of Chapter 16 provided an approximate expression 
for the specific heat of copper at low absolute temperatures: 
c = 311T/343 K23 J/kg #  K. Use this to find the entropy change 
when 40 g of copper are cooled from 25 K to 10 K. Why is the 
change negative?

71. The molar specific heat at constant pressure for a certain gas 
is given by Cp = a + bT + cT2, where a = 33.6 J/mol #  K, 
b = 2.93 * 10-3 J/mol #  K2, and c = 2.13 * 10-5 J/mol #  K3. Find 
the entropy change when 2.00 moles of this gas are heated from 
20.0°C to 200°C.

72. Consider a gas containing an even number N of molecules, 
distributed among the two halves of a closed box. Find ex-
pressions for (a) the total number of microstates and (b) the 
number of microstates with half the molecules on each side 
of the box. (You can either work out a formula, or explore the 
term “combinations” in a math reference source.) (c) Use these 
results to find the ratio of the probability that all the molecules 
will be found on one side of the box to the probability that 

CH

CH

ENV

CH

CH

CH
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Thermodynamics Summary
Thermodynamics is the study of heat, temperature, and related 
phenomena—and their relation to the all-important concept of energy. 
Thermodynamics provides a macroscopic description in terms of 
parameters like temperature and pressure.

Ideal gases exhibit a simple relation among temperature, 
pressure, and volume:

pV = NkT = nRT

This is the ideal-gas law, with k = 1.381 * 10-23 J/K 
and R = 8.314 J/K 

#
 mol.

Real substances undergo phase changes 
among liquid, solid, and gaseous phases. 
Substantial heats of transformation 
describe the energies involved in phase 
changes.

The first law of thermodynamics relates the change ∆Eint in a sys-
tem’s internal energy to the heat Q added to the system and the work 
W done by the system:

∆Eint = Q - W

For an ideal gas, reversible thermodynamic processes are de-
scribed by curves in the pressure–volume diagram. Common pro-
cesses include isothermal (constant temperature), constant volume, 
constant pressure, and adiabatic (no heat flow).

Entropy is a measure of disorder. The second law of thermo-
dynamics states that the entropy of a closed system can never 
decrease. Applied to the heat engines that provide most of human-
kind’s electrical and transportation energy, the second law shows 
that it’s impossible to extract as useful work all the random internal 
energy of hot objects.

Maximum efficiency (Carnot):

e =
W
Qh

= 1 -
Qc

Qh
= 1 -

Tc

Th

Part Three Challenge Problem
The ideal Carnot engine shown in the figure at right operates between a heat reservoir and a block of ice 
with mass M. An external energy source maintains the reservoir at a constant temperature Th. At time 
t = 0, the ice is at its melting point T0, but it’s insulated from everything except the engine, so it’s free to 
change state and temperature. The engine is operated in such a way that it extracts heat from the reservoir 
at a constant rate Ph. (a) Find an expression for the time t1 at which the ice is all melted, in terms of the 
quantities given and any other appropriate thermodynamic parameters. (b) Find an expression for the me-
chanical power output of the engine as a function of time for times t 7 t1. (c) Your expression in part (b) 
holds up only to some maximum time t2. Why? Find an expression for t2.

Th

Qh

W

Qc

Thermodynamic equilibrium occurs when two systems are 
brought into thermal contact and no further changes occur in any 
macroscopic properties. The zeroth law of thermodynamics says 
that two systems each in thermodynamic equilibrium with a third are 
also in thermodynamic equilibrium with each other. This law allows 
us to establish temperature scales and construct thermometers.

Systems A and C
are each in 
thermodynamic
equilibrium with B.

If A and C are placed in
thermal contact, their
macroscopic properties
don’t change—showing
that they’re already in
equilibrium.

(a) (b)

A B C A C

Heat is energy that’s flowing because of a temperature differ-
ence. Important heat-transfer mechanisms include conduction, con-
vection, and radiation. A system is in thermal-energy balance at a 
fixed temperature when its energy input balances heat transfer to its 
surroundings.

Incident sunlight

Earth’s energy balance

Outgoing infrared

This contrasts with statistical mechanics, which provides a 
microscopic description in terms of the properties and behavior of 
molecules.

Pr
es

su
re

Solid Liquid

GasTriple point

Temperature

Melting

Sublimation Boiling

Critical
point

PART THREE
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A-1

Appendix A Mathematics

A-1 Algebra and Trigonometry

Quadratic Formula

If ax2 + bx + c = 0, then x =
-b { 2b2 - 4ac

2a
.

Circumference, Area, Volume
Where p ≃ 3.14159. . . :

circumference of circle 2pr 

area of circle pr2 

surface area of sphere 4pr2 

volume of sphere 4
3 pr3 

area of triangle 1
2 bh 

volume of cylinder pr2l 

h

b

r

l

Trigonometry
definition of angle (in radians): u =

s
r

2p radians in complete circle

1 radian ≃ 57.3°
u

r

s

Trigonometric Functions

sin u =
y
r

cos u =
x
r

tan u =
sin u
cos u

=
y
x

u

y
yr

x
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A-2  Appendix A  Mathematics

Values at Selected Angles
P

6
 

P

4
 

P

3
 

P

2
 

Uu  0 (30°) (45°) (60°) (90°)

sin u 0
1
2

 12
2

 
13
2

 1

cos u 1
13
2

 
12
2

 
1
2

 0

tan u 0 13
3

    1 13 ∞  

Graphs of Trigonometric Functions

p

2

p

2

3p

2

3p

2

1

0

si
n
u

-1

u

p 2p

1

0

co
su

-1

u

p 2p

Trigonometric Identities
sin1-u2 = -sin u

cos1-u2 = cos u

sin au { p

2
b = {cos u

cos au { p

2
b = |sin u

sin2 u + cos2 u = 1

sin 2u = 2 sin u cos u

cos 2u = cos2 u - sin2 u = 1 - 2 sin2 u = 2 cos2 u - 1

sin1a { b2 = sin a cos b { cos a sin b

cos1a { b2 = cos a cos b | sin a sin b

sin a { sin b = 2 sin31
21a { b24cos31

21a | b24
cos a + cos b = 2 cos31

21a + b24cos31
21a - b24

cos a - cos b = -2 sin31
21a + b24sin31

21a - b24

Z01_WOLF8559_04_SE_APPA.indd   2 10/28/18   3:50 AM



Appendix A  Mathematics  A-3

Laws of Cosines and Sines
Where A, B, C are the sides of an arbitrary triangle and a, b, g the angles opposite those 
sides:

Law of cosines

C2 = A2 + B2 - 2AB cos g

A

B

C
a

b

g

Law of sines

sin a
A

=
sin b

B
=

sin g

C

Exponentials and Logarithms
eln x = x,  ln ex = x e = 2.71828. . .

ax = ex ln a   ln1xy2 = ln x + ln y

axay = ax + y   ln ax
y
b = ln x - ln y

1ax2y = axy   ln a1
x
b = - ln x

 log x K log10  x = ln1102 ln x ≃ 2.3 ln x

Approximations
For 0 x 0  V  1, the following expressions provide good approximations to common functions:

ex ≃ 1 + x

sin x ≃ x

cos x ≃ 1 - 1
2 x2

ln11 + x2 ≃ x

11 + x2p ≃ 1 + px 1binomial approximation2
Expressions that don’t have the forms shown may often be put in the appropriate form. For 
example:

12a2 + y2
=

1

a71 + y2

a2

=
1
a

 a1 +
y2

a2 b
-1/2

≃
1
a

 a1 -
y2

2a
b for y2/a2 V 1, or y2 V a2

Vector Algebra
Vector Products
A
S # B

S
= AB cos u

0 AS * B
S 0 = AB sin u, with direction of A

S
* B

S
 given by the right-hand rule:

A
S

A
S

B
S

B
S

u

A * B
(out of
 page)

S S
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A-4  Appendix A  Mathematics

Unit Vector Notation
An arbitrary vector A

S
 may be written in terms of its components Ax, Ay, Az and the unit 

vectors in, jn, kn that have magnitude 1 and lie along the x-, y-, z-axes:

Ay

Ax

A = Axi + Ay j
S

nn

  

jn

kn

in

x y

z

In unit vector notation, vector products become

A
S # B

S
= AxBx + AyBy + AzBz

A
S

* B
S

= 1AyBz - AzBy2 in + 1AzBx - AxBz2jn + 1AxBy - AyBx2kn

Vector Identities
A
S # B

S
= B

S # A
S

A
S

* B
S

= - B
S

* A
S

A
S # 1B

S
* C

S2 = B
S # 1C

S
* A

S2 = C
S # 1A

S
* B

S2
A
S

* 1B
S

* C
S2 = 1A

S # C
S2B

S
- 1A

S # B
S2C

S

A-2 Calculus

Derivatives

Definition of the Derivative
If y is a function of x, then the derivative of y with respect to x is the ratio of the change 
∆y in y to the corresponding change ∆x in x, in the limit of arbitrarily small ∆x:

dy

dx
= lim

∆xS0
 
∆y

∆x

Algebraically, the derivative is the rate of change of y with respect to x; geometrically, it is 
the slope of the y versus x graph—that is, of the tangent line to the graph at a given point:

y

x

∆x

∆y
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Derivatives of Common Functions
da
dx

= 0 1a is a constant2   
d
dx

 tan x =
1

cos2 x

 
dxn

dx
= nxn - 1 1n need not be an integer2   dex

dx
= ex

d
dx

 sin x = cos x   
d
dx

 ln x =
1
x

d
dx

 cos x = -sin x

Derivatives of Sums, Products, and Functions of Functions
1. Derivative of a constant times a function

d
dx

 3af1x24 = a 
df

dx
  1a is a constant2

2. Derivative of a sum

d
dx

 3 f1x2 + g1x24 =
df

dx
+

dg

dx

3. Derivative of a product

d
dx

 3 f1x2g1x24 = g 
df

dx
+ f 

dg

dx

Examples
d
dx

 1x2 cos x2 = cos x 
dx2

dx
+ x2 

d
dx

 cos x = 2x cos x - x2 sin x

d
dx

 1x ln x2 = ln x 
dx
dx

+ x 
d
dx

 ln x = 1ln x2112 + x a1
x
b = ln x + 1

4. Derivative of a quotient

d
dx

 c f1x2
g1x2 d =

1

g2 ag 
df

dx
- f 

dg

dx
b

Example

d
dx

 asin x

x2 b =
1

x4 ax2 
d
dx

 sin x - sin x 
dx2

dx
b =

cos x

x2 -
2 sin x

x3

5. Chain rule for derivatives
If f  is a function of u and u is a function of x, then

df

dx
=

df

du
 
du
dx

Examples

a. Evaluate 
d
dx

 sin1x22. Here u = x2 and f1u2 = sin u, so

d
dx

 sin1x22 =
d
du

 sin u 
du
dx

= 1cos u2 
dx2

dx
= 2x cos1x22

b. 
d
dt

 sin vt =
d

d vt
 sin vt 

d
dt

 vt = v cos vt  1v is a constant2
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c. Evaluate 
d
dx

 sin2 5x. Here u = sin 5x and f1u2 = u2, so

 
d
dx

 sin2 5x =
d
du

 u2 
du
dx

= 2u 
du
dx

= 2 sin 5x 
d
dx

 sin 5x

 = 1221sin 5x21521cos 5x2 = 10 sin 5x cos 5x = 5 sin 2x

Second Derivative
The second derivative of y with respect to x is defined as the derivative of the derivative:

d2y

dx2 =
d
dx

 ady

dx
b

Example

If y = ax3, then dy/dx = 3ax2, so

d2y

dx2 =
d
dx

 3ax2 = 6ax

Partial Derivatives
When a function depends on more than one variable, then the partial derivatives of that 
function are the derivatives with respect to each variable, taken with all other variables 
held constant. If f  is a function of x and y, then the partial derivatives are written

0f

0x
 and 

0f

0y

Example

If f1x, y2 = x3 sin y, then

0f

0x
= 3x2 sin y and 

0f

0y
= x3 cos y

Integrals

Indefinite Integrals
Integration is the inverse of differentiation. The indefinite integral, 1 f1x2 dx, is defined 
as a function whose derivative is f1x2:

d
dx

 c L f1x2 dx d = f1x2

If A1x2 is an indefinite integral of f1x2, then because the derivative of a constant is zero, 
the function A1x2 + C is also an indefinite integral of f1x2, where C is any constant. 
Inverting the derivatives of common functions listed in the preceding section gives the 
integrals that follow (a more extensive table appears at the end of this appendix).

La dx = ax + C  Lcos x dx = sin x + C

Lxn dx =
xn + 1

n + 1
+ C, n ≠ -1  

Lex dx = ex + C

Lsin x dx = -cos x + C
 

Lx-1 dx = ln x + C
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Definite Integrals
In physics we’re most often interested in the definite integral, defined as the sum of a 
large number of very small quantities, in the limit as the number of quantities grows arbi-
trarily large and the size of each arbitrarily small:

L
x2

x1

 f1x2 dx K lim
∆xS0
NS ∞

 a
N

i = 1
f 1xi2 ∆x

where the terms in the sum are evaluated at values xi between the limits of integration x1 
and x2; in the limit ∆x S 0, the sum is over all values of x in the interval.

The key to evaluating the definite integral is provided by the fundamental theorem of 
calculus. The theorem states that, if A1x2 is an indefinite integral of f1x2, then the definite 
integral is given by

L
x2

x1

f1x2 dx = A1x22 - A1x12 K A1x2 2 x2

x1

Geometrically, the definite integral is the area under the graph of f1x2 between the limits 
x1 and x2:

f 1x2dxL
x2

x1

f 1x2

x1 x2

x

Evaluating Integrals
The first step in evaluating an integral is to express all varying quantities within the inte-
gral in terms of a single variable; Tactics 9.1 in Chapter 9 outlines a general strategy for 
setting up an integral. Once you’ve set up an integral, you can evaluate it yourself or look 
it up in tables. Two common techniques can help you evaluate integrals or convert them to 
forms listed in tables:

1. Change of variables
An unfamiliar integral can often be put into familiar form by defining a new variable. 
For example, it is not obvious how to integrate the expression

L
x dx2a2 + x2

where a is a constant. But let z = a2 + x2. Then

dz
dx

=
da2

dx
+

dx2

dx
= 0 + 2x = 2x

so dz = 2x dx. Then the quantity x dx in our unfamiliar integral is just 12 dz, while the 
quantity 2a2 + x2 is just z1/2. So the integral becomes

L  
1
2

 z-1/2 dz =
1
2 z1/2

1
2

= 2z

where we have used the standard form for the integral of a power of the independent 
variable. Substituting back z = a2 + x2 gives

L
x dx2a2 + x2

= 2a2 + x2
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2. Integration by parts
The quantity 1u dv is the area under the curve of u as a function of v between spec-
ified limits. In the figure, that area can also be expressed as the area of the rectangle 
shown minus the area under the curve of v as a function of u. Mathematically, this 
relation among areas may be expressed as a relation among integrals:

u

v

vdu

udv

1
1 Lu dv = uv - Lv du  1integration by parts2

This expression may often be used to transform complicated integrals into simpler ones.

Example

Evaluate 1x cos x dx. Here let u = x, so du = dx. Then dv = cos x dx, so we have 
v = 1dv = 1cos x dx = sin x. Integrating by parts then gives

Lx cos x dx = 1x21sin x2 - L  sin x dx = x sin x + cos x

where the +  sign arises because 1  sin x dx = -cos x.

Table of Integrals
More extensive tables are available in many mathematical and scientific handbooks; see, 
for example, Handbook of Chemistry and Physics (Chemical Rubber Co.) or Dwight, 
Tables of Integrals and Other Mathematical Data (Macmillan). Some math software, 
including Mathematica and Maple, can also evaluate integrals symbolically. Wolfram 
Research provides Mathematica-based integration both at integrals.wolfram.com and 
through WolframAlpha at www.wolframalpha.com/calculators/integral-calculator.

In the expressions below, a and b are constants. An arbitrary constant of integration 
may be added to the right-hand side.

Leax dx =
eax

a
  L  

dx

x2 + a2 =
1
a

 tan-1 ax
a
b

L  sin ax dx = -  
cos ax

a
  L  

x dx2a2 - x2
= - 2a2 - x2

L  cos ax dx =
sin ax

a
  L  

x dx2x2 { a2
= 2x2 { a2

L  tan ax dx = -  
1
a

 ln 1cos ax2  L 
dx

1x2 { a223/2 =
{x

a22x2 { a2

L  sin2 ax dx =
x
2

-
sin 2ax

4a
  Lxeax dx =

eax

a2  1ax - 12

L  cos2 ax dx =
x
2

+
sin 2ax

4a
  Lx2eax dx =

x2eax

a
-

2
a

 c eax

a2  1ax - 12 d

Lx sin ax dx =
1

a2 sin ax -
1
a

 x cos ax   L  
dx

a + bx
=

1
b

 ln1a + bx2

Lx cos ax dx =
1

a2 cos ax +
1
a

 x sin ax  L 
dx

1a + bx22 = -  
1

b1a + bx2

L  
dx2a2 - x2

= sin-1a  
x
a

 b  L  ln ax dx = x ln ax - x

L 
dx2x2 { a2

= ln 1x + 2x2 { a22  L 
dx

a2 - x2 =
1
2a

ln ` a + x
a - x

`
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A-9

Appendix B The International System 
of Units (SI)

In 2019, the International Bureau of Weights and Measures approved the most substan-
tial revision of the International System of Units (SI) in over a century. The revised 
SI defines seven base units, expressing them in terms of the values of fundamental 

constants that are now taken, by definition, to have exact values. Here we list the formal 
statements of these explicit constant definitions.

time (second): The second, symbol s, is the SI unit of time. It is defined by taking the 
fixed numerical value of the cesium frequency ∆vCs, the unperturbed ground-state hyper-
fine transition frequency of the cesium-133 atom, to be 9,192,631,770 when expressed in 
the unit Hz, which is equal to s- 1.

length (meter): The meter, symbol m, is the SI unit of length. It is defined by taking the 
fixed numerical value of the speed of light in vacuum c to be 299,792,458 when expressed 
in the unit m #s- 1, where the second is defined in terms of the cesium frequency ∆vCs.

mass (kilogram): The kilogram, symbol kg, is the SI unit of mass. It is defined by taking 
the fixed numerical value of the Planck constant h to be 6.626 070 15 * 10- 34 when ex-
pressed in the unit J #s, which is equal to kg#m2 #s- 1, where the meter and the second are 
defined in terms of c and ∆vCs.

electric current (ampere): The ampere, symbol A, is the SI unit of electric cur-
rent. It is defined by taking the fixed numerical value of the elementary charge e to be 
1.602 176 634 * 10- 19 when expressed in the unit C, which is equal to A #s, where the 
second is defined in terms of ∆vCs.

temperature (kelvin): The kelvin, symbol K, is the SI unit of thermodynamic tempera-
ture. It is defined by taking the fixed numerical value of the Boltzmann constant k to be 
1.380 649 * 10- 23 when expressed in the unit J #K- 1, which is equal to kg#m2 #s- 2 #K- 1, 
where the kilogram, meter, and second are defined in terms of h, c, and ∆vCs.

amount of substance (mole): The mole, symbol mol, is the SI unit of amount of sub-
stance. One mole contains exactly 6.022 140 76 * 1023 elementary entities. This number 
is the fixed numerical value of the Avogadro constant, N

A
, when expressed in the unit 

mol- 1 and is called the Avogadro number.

luminous intensity (candela): The candela, symbol cd, is the SI unit of luminous in-
tensity in a given direction. It is defined by taking the fixed numerical value of the lumi-
nous efficacy of monochromatic radiation of frequency 540 *  1012 Hz, Kcd, to be 683 
when expressed in the unit lm #W- 1, which is equal to cd #sr #W- 1, or cd#sr #kg - 1 #m- 2 #s3,  
where the kilogram, meter, and second are defined in terms of h, c, and ∆vCs.
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A-10  Appendix B  The International System of Units (SI)

SI Prefixes

Factor Prefix Symbol

1024 yotta Y

1021 zetta Z

1018 exa E

1015 peta P

1012 tera T

109 giga G

106 mega M

103 kilo k

102 hecto h

101 deka da

100 — —

10-1 deci d

10-2 centi c

10-3 milli m

10-6 micro m 

10-9 nano n

10-12 pico p

10-15 femto f

10-18 atto a

10-21 zepto z

10-24 yocto y

SI Base and Supplementary Units

SI Unit

Quantity Name Symbol

Base Unit
Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Thermodynamic temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

Supplementary Units
Plane angle radian rad
Solid angle steradian sr

Some SI Derived Units with Special Names

SI Unit

Quantity Name Symbol

Expression 
in Terms of 
Other Units

Expression in 
Terms of SI Base 
Units

Frequency hertz Hz s-1 

Force newton N m # kg # s-2 

Pressure, stress pascal Pa N/m2 m-1 # kg # s-2 

Energy, work, heat joule J N # m m2 # kg # s-2 

Power watt W J/s m2 # kg # s-3 

Electric charge coulomb C s # A 

Electric potential, potential 
 difference, electromotive 
 force

volt V J/C m2 # kg # s-3 # A-1 

Capacitance farad F C/V m-2 # kg-1 # s4 # A2 

Electric resistance ohm Ω V/A m2 # kg # s-3 # A-2 

Magnetic flux weber Wb T # m2, V # s m2 # kg # s-2 # A-1 

Magnetic field tesla T Wb/m2 kg # s-2 # A-1 

Inductance henry H Wb/A m2 # kg # s-2 # A-2 

Radioactivity becquerel Bq 1 decay/s s-1 

Absorbed radiation dose gray Gy J/kg, 100 rad m2 # s-2 

Radiation dose equivalent sievert Sv J/kg, 100 rem m2 # s-2 
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Appendix C Conversion Factors

T he listings below give the SI equivalents of non-SI units. To convert from the units  
 shown to SI, multiply by the factor given; to convert the other way, divide. For con-
versions within the SI system, see the table of SI prefixes in Appendix B, Chapter 1, 

or the inside front cover. Conversions that are not exact by definition are given to, at most, 
four significant figures.

Length
1 inch 1in2 = 0.0254 m  1 angstrom 1A

∘ 2 = 10-10 m 

1 foot 1ft2 = 0.3048 m  1 light@year 1ly2 = 9.46 * 1015 m 

1 yard 1yd2 = 0.9144 m  1 astronomical unit 1AU2 = 1.496 * 1011 m 

1 mile 1mi2 = 1609 m  1 parsec = 3.09 * 1016 m 

1 nautical mile = 1852 m  1 fermi = 10-15 m = 1 fm 

Mass
1 slug = 14.59 kg  1 unified mass unit 1u2 = 1.661 * 10-27 kg 

1 metric ton 1tonne; t2 = 1000 kg  

Force units in the English system are sometimes used (incorrectly) for mass. The units 
given below are actually equal to the number of kilograms multiplied by g, the accelera-
tion of gravity.

1 pound 1lb2 = weight of 0.454 kg 1 ounce 1oz2 = weight of 0.02835 kg

1 ton = 2000 lb = weight of 908 kg 

Time
1 minute 1min2 = 60 s  1 day 1d2 = 24 h = 86,400 s 

1 hour 1h2 = 60 min = 3600 s  1 year 1y2 = 365.2422 d* = 3.156 * 107 s

Area
1 hectare 1ha2 = 104 m2  1 acre = 4047 m2 

1 square inch 1in22 = 6.452 * 10-4 m2  1 barn = 10-28 m2 

1 square foot 1ft22 = 9.290 * 10-2 m2  1 shed = 10-52 m2 

Volume
1 liter 1L2 = 1000 cm3 = 10-3 m3  1 gallon 1U.S.; gal2 = 3.785 * 10-3 m3 

1 cubic foot 1ft32 = 2.832 * 10-2 m3  1 gallon 1British2 = 4.546 * 10-3 m3 

1 cubic inch 1in32 = 1.639 * 10-5 m3  

1 fluid ounce = 1/128 gal = 2.957 * 10-5 m3  

1 barrel (bbl) = 42 gal = 0.1590 m3  

Angle, Phase
1 degree 1°2 = p/180 rad = 1.745 * 10-2 rad

1 revolution 1rev2 = 360° = 2p rad

1 cycle = 360° = 2p rad

*The length of the year changes very slowly with changes in Earth’s orbital period.
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Speed, Velocity
1 km/h = 11/3.62 m/s = 0.2778 m/s  1 ft/s = 0.3048 m/s 

1 mi/h 1mph2 = 0.4470 m/s  1 ly/y = 3.00 * 108 m/s 

Angular Speed, Angular Velocity, Frequency, and Angular Frequency
1 rev/s = 2p rad/s = 6.283 rad/s 1s-12  1 rev/min 1rpm2 = 0.1047 rad/s 1s-12 

1 Hz = 1 cycle/s = 2p s-1  

Force
1 dyne = 10-5 N  1 pound 1lb2 = 4.448 N 

Pressure
1 dyne/cm2 = 10- 1 Pa  1 lb/in2 1psi2 = 6.895 * 103 Pa 

1 atmosphere 1atm2 = 1.013 * 105 Pa  1 in H2O 160°F2 = 248.8 Pa 

1 torr = 1 mm Hg at 0°C = 133.3 Pa  1 in Hg 160°F2 = 3.377 * 103 Pa 

1 bar = 105 Pa = 0.987 atm  

Energy, Work, Heat
1 erg = 10-7 J  1 Btu* = 1.054 * 103 J 

1 calorie* 1cal2 = 4.184 J  1 kWh = 3.6 * 106 J 

1 electronvolt 1eV2 = 1.602 * 10-19 J  1 megaton (explosive yield; Mt)

1 foot@pound 1ft # lb2 = 1.356 J  = 4.18 * 1015 J 

Power
1 erg/s = 10-7 W  1 Btu/h 1Btuh2 = 0.293 W 

1 horsepower 1hp2 = 746 W  1 ft # lb/s = 1.356 W 

Magnetic Field
1 gauss 1G2 = 10-4 T  1 gamma 1g2 = 10-9 T 

Radiation
1 curie 1ci2 = 3.7 * 1010 Bq  1 rad = 10-2 Gy 

 1 rem = 10-2 Sv 

Energy Content of Fuels

Energy Source Energy Content

Coal 29 MJ/kg = 7300 kWh/ton = 25 * 106 Btu/ton 

Oil 43 MJ/kg = 39 kWh/gal = 1.3 * 105 Btu/gal 

Gasoline 44 MJ/kg = 36 kWh/gal = 1.2 * 105 Btu/gal 

Natural gas 55 MJ/kg = 30 kWh/100 ft3 = 1000 Btu/ft3 

Uranium (fission) 
 Normal abundance 
 Pure U-235

5.8 * 1011 J/kg = 1.6 * 105 kWh/kg 
8.2 * 1013 J/kg = 2.3 * 107 kWh/kg

Hydrogen (fusion) 
 Normal abundance 
 Pure deuterium 
 Water

7 * 1011 J/kg = 3.0 * 104 kWh/kg  
3.3 * 1014 J/kg = 9.2 * 107 kWh/kg  
1.2 * 1010 J/kg = 1.3 * 104 kWh/gal  

 = 340 gal gasoline/gal water

100% conversion, matter to energy 9.0 * 1016 J/kg = 931 MeV/u = 2.5 * 1010 kWh/kg 

*Values based on the thermochemical calorie; other definitions vary slightly.
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Appendix D The Elements

The atomic weights of stable elements reflect the abundances of different isotopes; 
values given here apply to elements as they exist naturally on Earth. For stable el-
ements, parentheses express uncertainties in the last decimal place given. For ele-

ments with no stable isotopes (indicated in boldface), at most three isotopes are given; for 
elements 99 and beyond, only the longest-lived isotope is given. (Exceptions are the unsta-
ble elements thorium, protactinium, and uranium, for which atomic weights reflect natural 
abundances of long-lived isotopes.) See also the periodic table inside the back cover.

Atomic Number Names Symbol Atomic Weight

1 Hydrogen H 1.00794 (7)

2 Helium He 4.002 602 (2)

3 Lithium Li 6.941 (2)

4 Beryllium Be 9.012 182 (3)

5 Boron B 10.811 (5)

6 Carbon C 12.011 (1)

7 Nitrogen N 14.00674 (7)

8 Oxygen O 15.9994 (3)

9 Fluorine F 18.998 403 2 (9)

10 Neon Ne 20.1797 (6)

11 Sodium (Natrium) Na 22.989 768 (6)

12 Magnesium Mg 24.3050 (6)

13 Aluminum Al 26.981 539 (5)

14 Silicon Si 28.0855 (3)

15 Phosphorus P 30.973 762 (4)

16 Sulfur S 32.066 (6)

17 Chlorine Cl 35.4527 (9)

18 Argon Ar 39.948 (1)

19 Potassium (Kalium) K 39.0983 (1)

20 Calcium Ca 40.078 (4)

21 Scandium Sc 44.955 910 (9)

22 Titanium Ti 47.88 (3)

23 Vanadium V 50.9415 (1)

24 Chromium Cr 51.9961 (6)

25 Manganese Mn 54.93805 (1)

26 Iron Fe 55.847 (3)

27 Cobalt Co 58.93320 (1)

28 Nickel Ni 58.69 (1)

29 Copper Cu 63.546 (3)

30 Zinc Zn 65.39 (2)

31 Gallium Ga 69.723 (1)

(continued)
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Atomic Number Names Symbol Atomic Weight

32 Germanium Ge 72.61 (2)

33 Arsenic As 74.92159 (2)

34 Selenium Se 78.96 (3)

35 Bromine Br 79.904 (1)

36 Krypton Kr 83.80 (1)

37 Rubidium Rb 85.4678 (3)

38 Strontium Sr 87.62 (1)

39 Yttrium Y 88.90585 (2)

40 Zirconium Zr 91.224 (2)

41 Niobium Nb 92.90638 (2)

42 Molybdenum Mo 95.94 (1)

43 Technetium Tc 97, 98, 99

44 Ruthenium Ru 101.07 (2)

45 Rhodium Rh 102.90550 (3)

46 Palladium Pd 106.42 (1)

47 Silver Ag 107.8682 (2)

48 Cadmium Cd 112.411 (8)

49 Indium In 114.82 (1)

50 Tin Sn 118.710 (7)

51 Antimony (Stibium) Sb 121.75 (3)

52 Tellurium Te 127.60 (3)

53 Iodine I 126.90447 (3)

54 Xenon Xe 131.29 (2)

55 Cesium Cs 132.90543 (5)

56 Barium Ba 137.327 (7)

57 Lanthanum La 138.9055 (2)

58 Cerium Ce 140.115 (4)

59 Praseodymium Pr 140.90765 (3)

60 Neodymium Nd 144.24 (3)

61 Promethium Pm 145, 147

62 Samarium Sm 150.36 (3)

63 Europium Eu 151.965 (9)

64 Gadolinium Gd 157.25 (3)

65 Terbium Tb 158.92534 (3)

66 Dysprosium Dy 162.50 (3)

67 Holmium Ho 164.93032 (3)

68 Erbium Er 167.26 (3)

69 Thulium Tm 168.93421 (3)

70 Ytterbium Yb 173.04 (3)

71 Lutetium Lu 174.967 (1)

72 Hafnium Hf 178.49 (2)

73 Tantalum Ta 180.9479 (1)

74 Tungsten (Wolfram) W 183.85 (3)

75 Rhenium Re 186.207 (1)

76 Osmium Os 190.2 (1)

77 Iridium Ir 192.22 (3)
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Atomic Number Names Symbol Atomic Weight

78 Platinum Pt 195.08 (3)

79 Gold Au 196.96654 (3)

80 Mercury Hg 200.59 (3)

81 Thallium Tl 204.3833 (2)

82 Lead Pb 207.2 (1)

83 Bismuth Bi 208.98037 (3)

84 Polonium Po 209, 210

85 Astatine At 210, 211

86 Radon Rn 211, 220, 222

87 Francium Fr 223

88 Radium Ra 223, 224, 226

89 Actinium Ac 227

90 Thorium Th 232.0381 (1)

91 Protactinium Pa 231.03588 (2)

92 Uranium U 238.0289 (1)

93 Neptunium Np 237, 239

94 Plutonium Pu 239, 242, 244

95 Americium Am 241, 243

96 Curium Cm 245, 247, 248

97 Berkelium Bk 247, 249

98 Californium Cf 249, 250, 251

99 Einsteinium Es 252

100 Fermium Fm 257

101 Mendelevium Md 258

102 Nobelium No 259

103 Lawrencium Lr 262

104 Rutherfordium Rf 263

105 Dubnium Db 268

106 Seaborgium Sg 266

107 Bohrium Bh 272

108 Hassium Hs 277

109 Meitnerium Mt 276

110 Darmstadtium Ds 281

111 Roentgenium Rg 280

112 Copernicium Cn 285

113 Nihonium Nh 284

114 Flerovium Fl 289

115 Moscovium Mc 288

116 Livermorium Lv 292

117 Tennessine Ts 294

118 Oganesson Og 294
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Appendix E Astrophysical Data

Sun, Planets, Principal Satellites

Body Mass (1024 kg)

Mean Radius 
(106 m  

except as 
noted)

Surface Gravity 
(m/s2) 

Escape Speed 
(km/s)

Sidereal 
Rotation 
Period* 
(days)

Mean Distance 
from Central 

Body† (106 km)
Orbital 
Period

Mean 
Orbital 
Speed 
(km/s)

Sun 1.99 * 106 696 274 618 36 at poles 
27 at equator

2.6 * 1011 200 My 250

Planets
Mercury 0.330     2.44   3.70   4.25 58.6   57.9   88.0 d 47.4
Venus 4.87     6.05   8.87 10.4 -243 108 225 d 35.0
Earth 5.97     6.37   9.81 11.2   0.997 149.6 365.2 d 29.8
Moon 0.0735     1.74   1.62   2.38 27.3     0.3844   27.3 d   1.02

Mars 0.642     3.39   3.71   5.03   1.03 228     1.88 y 24.1
Phobos 1.07 * 10-8 9–13 km   0.0057   0.0114   0.319 9.4 * 10-3     0.319 d   2.14

Deimos 1.48 * 10-9 5–8 km   0.003   0.00556   1.26 23 * 10-3     1.26 d   1.35

Jupiter 1.90 * 103 69.9 24.8 60.2   0.414 778   11.9 y 13.1

Io 0.0893     1.82   1.80   2.38   1.77     0.422     1.77 d 17.3
Europa 0.480     1.56   1.32   2.03   3.55     0.671     3.55 d 13.7
Ganymede 0.148     2.63   1.43   2.74   7.15     1.07     7.15 d 10.9
Callisto 0.108     2.41   1.24   2.44 16.7     1.88   16.7 d   8.20
and at least 75 smaller satellites

Saturn 568 58.2 10.4 36.1   0.444 1.43 * 103   29.5 y   9.69

Tethys 0.0007     0.53   0.2   0.4   1.89 0.294     1.89 d 11.3
Dione 0.00015     0.56   0.3   0.6   2.74 0.377     2.74 d 10.0
Rhea 0.0025     0.77   0.3   0.5   4.52 0.527     4.52 d   8.5
Titan 0.135     2.58   1.35   2.64 15.9 1.22   15.9 d   5.6
and at least 58 smaller satellites

Uranus 86.8 25.4   8.87 21.4 -0.720 2.87 * 103   84.0 y   6.80

Ariel 0.0013     0.58   0.3   0.4   2.52 0.19     2.52 d   5.5
Umbriel 0.0013     0.59   0.3   0.4   4.14 0.27     4.14 d   4.7
Titania 0.0018     0.81   0.2   0.5   8.70 0.44     8.70 d   3.7
Oberon 0.0017     0.78   0.2   0.5 13.5 0.58   13.5 d   3.1
and at least 23 smaller satellites

Neptune 102 24.6 11.2 23.5   0.673 4.50 * 103 165 y   5.43

Triton 0.134   1.9   2.5   3.1   5.88 0.354     5.88 d   4.4

and at least 13 smaller satellites
Dwarf Planets

Ceres 0.000 947       0.476   0.27   0.51   0.38 414     4.60 y 17.9
Pluto 0.0130     1.20   0.58   1.2 -6.39 5.91 * 103 248 y   4.67

Charon 0.00586       0.604   0.278   0.580 -6.39 0.00196     6.39 d   0.23
and 4 smaller satellites

Eris 0.0166     1.16   0.827   1.38   1.1 1.02 * 104 560 y   3.43

and 1 small satellite, Dysnomia

*Negative rotation period indicates retrograde motion, in opposite sense from orbital motion. Periods are sidereal, meaning the time for the body to 
return to the same orientation relative to the distant stars rather than the Sun.
†Central body is galactic center for Sun, Sun for planets, and planet for satellites.
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Answers to Odd-Numbered Problems

Chapter 1
11. (a) 109 W; (b) 106 kW; (c) 1 GW
13. 0.299792458 m or about 1 ft
15. 108

17. 0.62 rad = 35°
19. 30 g
21. 106

23. 8.6 m2>L
25. 3.6 km>h
27. 57.3°
29. 24 Zm
31. 7.4 * 106 m>s2

33. 4 * 106

35. 41 m
37. 20 m>s
39. 12 rev>day
41. 22 mm
43. 2 ms
45. (a) 5.18 (b) 5.20
47. 3 * 106

49. About 0.08%
51. 105

53. ∼250 mm
55. (a) 40 nm (b) 5 * 105 calculations 

per second
57. 0.4% for 1.27, 0.05% for 9.97
59. In the U.S.; cost is 50% greater in 

 Canada.
61. about 2000
63. about 1-2 m2

65. (a) 1.0 m (b) 0.001 m2 (c) 0.0 m (d) 1.0
67. 439 W, more than the consumption rate
69. slope =  4.09 g>cm3

71. b
73. c

Chapter 2
11. 10.4 m>s
13. With northward taken as positive,

(a) 24 km; (b) 9.6 km>h; (c) -16 km>h;
(d) 0; (e) 0

15. 26.6 km>h
19. (a) v = b-2ct (b) 8.4 s
21. 0.35 m>s2

23. falling: 9.82 m>s2, stopping: 84.0 m>s2

25. 17 m>s2

27. v = dx>dt = d>dt1x0 + v0t + at2>22
 = v0 + at

29. (a) a = v2>2h; (b) t = 2h>v
31. 27 ft>s2

33. 15 s
35. 3.26 m
37. (a) v2>2g; (b) v>22
39. 11 m>s

41. 947 m
43. 102 m
45. (a) 13.4 m>s; (b) 1.37 s
47. (a) 15.7 m>s; (b) 1.60 s
49. 48 mi>h
51. 2.2 s
53. (a) 9.82 m>s (b) 9.34 m>s (c) 9.18 m>s 

(d) 9.18 m>s
55. 14.1 m
57. 4.3 m>s2

59. 2.75 s
61. 55%
63. (a) 0.014 s (b) 51 cm
65. 0.89 km
67. (a) 25 m>s (b) 180 m
69. 0.0051 m>s2

71. 11 m>s
73. 270 m

75. -
1
2
2hg

77. (a) 7.88 m>s, 7.67 m>s (b) 0.162 s
79. 70 mm>s2

81. 4.8 m>s (17 km>h)
83. (a) v = (v1 + v2)>2 (b) 

v = (2v1v2)>(v1 + v2)  
(c) in the first case

85. 70.7 %
87.  -0.3 m>s

89. 
h
4
a 2h

g∆t2 ba
g∆t2

2h
- 1b

2

91. 15s-1

95. (a) 22b>c; (b) -5b

97. (a) v0 7 2gh0>2 (b) h0 - gh0
2>2v0

99. c
101. b

Chapter 3
11. (a) 1.78 km; (b) 28.3° east of north
13. 710 km, 21° west of north
15. 105 in + 58jn km
17. 1.414, u = 45°
19. 135° or 315° (equivalently, -45°)
21. 3ct2jn
23. (a) vu = -2.2 * 10-6jn m>s  

(b) au = -3.2 * 10-10 in m>s2

25. v
u

2 = 1.3 in + 2.3jn m>s
27. (a) 26° upstream (b) 53.9 s
29. 42.8° west of south
31. 49 m, 6.4° to your original direction
33. (a) 1.3 s (b) 15 m
35. 34 nm
37. 1090 m
39. 2.28 * 10-7 m>s2

41. 2.73 mm>s2

43. 9.60 km
45. 0.752 m>s2

47. 497 m>s2

49. 90 km>h
51. 229 m>s (826 km>h)
53. C

u
= -15 in + 9 jn - 18kn

55. (a) 4c>3d (b) c>3d
57. 96 m
59. (a) 0.249 m>s (b) 7.00 * 10-4 m>s2  

(c) 7.21 * 10-4 m>s2, about 3%  difference
61. A = B
63. 0.50 m>s2

65. 5.7 m>s
67. (a) x1 = x2 implies 

y1 = ha1 -
gh

v0
2 b = y2 (b) v0 Ú 2gh

69. (a) 3.74 m>s; (b) 68.7° from horizontal
73. semi-circle of radius 2.5 cm; 6.54 m>s, 

17.1 m>s2

75. Yes
77. 66° 
79. (a) v22>23 ≈ 1.07v

(b) 24 3t ≈ 1.3t
81. 77.2 m
83. 2h
85. 19 m
87. dx>du0 = 2v0

2>g cos(2u0) = 0 1 u0 = 45°

89. y = x tanu0 +
b

6(v0 cosu0)
a x3

93. (a) 2(1 + p2)at; (b) 
3p>2 - tan-1(1>p) ≅ 252°

95. c
97. c

Chapter 4
11. 946 kN
13. 1.53 * 103 kg
15. 2.0 * 106 m>s2

17. 22 cm
21. 210 kg
23. 9000 kg
25. 490 N
27. 380 N
29. M1g + v2>2h2
31. 55 kN
33. 130 N
35. 19 cm
37. (a) 5.94 s; (b) 137 m
39. (a) 59.8 ms; (b) 6.58 m
41. 0.733 m>s2, downward
43. 3.98 m>s2

45. 2.94 m>s2, downward
47. 4.9 m>s2
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49. 0.53 s
51. 6.0 N
53. 1.62 * 10-7 N>m
55. (a) 5.3 kN (b) 1.1 kN (c) 0.49 kN  

(d) 0.59 kN
57. (a) 393 N; (b) 348 N
59. 0.96 m
61. 950 N
63. F-35A: yes, 0.81m>s2; A-380: no
67. 1.96 m>s2

69. (a) 60.0 m>s (b) 0.672 m
71. 11.8 m>s2

73. 0.92 kg, 1.4 kg
75. vF0>M
77. a
79. b

Chapter 5
11. 5.40 in + 11.0 jn N
13. 22.2°
15. 3.0 kN
17. (a) 6.3 m>s2; (b) 0.44 s
19. (a) 3.9 m>s2 (b) 530 N
23. Train was speeding at 71 km>h
25. 490 km>h
27. 0.18
29. no; the minimum safe frictional 

 coefficient is 0.25
31. 8430 kg
33. 47.2 g
35. 451 N, downward
37. no; it experiences a force of 84.7 N  

from the water
39. 0.43 m
41. about 2.62 times
43. T = m2g, t = 2p21m1R2>1m2g2
45. 310 N downward (b) -mSBv2>R  

(c) nothing
47. 8.5 km
49. 0.15
51. a = 0.19 m>s2; t = 23 s
53. Yes
55. 0.23 … ms … 0.30
57. 4.2 m>s2

59. 0.62
61. (a) 9.8 cm (b) no
63. 100 km>h
67. 17 rev>min
69. Brake, don’t swerve
71. 28 cm

73. v1t2 =
mg

b
1e-bt>m-12

75. Yes
77. a
79. b

Chapter 6
11. 900 J
13. 150 kJ
15. 190 MN
17. A

u # 1B
u

+ C
u2 = AB cos1uAB2

+ AC cos1uAC2 = A
u # B

u
+ A

u # C
u

19. 1.9 m
21. (a) 1 J (b) 3 J
23. 30 cm
25. 7.5 GJ
27. {120 km>h
29. 110 m>s
31. 97 W
33. (a) 60 kW (b) 1 kW (c) 41.7 W
35. 9.4 * 106 J
37. 0 W
39. 22 s
41. 10.8 kJ
43. 4.50 * 10-23 J
45. 864 W
47. (a) 163 MW; (b) 273 MW
49. (a) 400 J (b) 31 kg
51. 25°
53. (a) 0 (b) 90°
55. kB = 8kA

57. W = F0 ax -
x2

2L0
+

L0
2

L0 + x
- L0b

59. v2 = {2v1

61. (a) 1.3 * 10-17 W (b) 1.4 * 10-14 J
63. 9.6 kW
65. F0 x0>3
67. p>3 or 60°
69. about 700 GW
71. (a) 90.3 km>h (25.1 m>s); (b) 107 hp
73. 0.60
75. (a) 196 W; (b) 3.32 kJ; (c) 227 W, 3.85 kJ

77. (a) 2P0; (b) 
1
2
13 - 132  t01≅ 0.634 t02

79. 6.0 years
83. Wx1

ux2
= 2b11x2 - 1x12,

W1x1 = 02 = 2b1x2

85. (a) 
1
2

kL0
2 +

1
3

bL0
3 +

1
4

cL0
4 +

1
5

dL0
5

(b) 12 kJ
87. 135 J
89. 30 people
91. Stopping force is 35 times weight of leg
93. c
95. c

Chapter 7
9. Path (a): Wa = -mkmg12L2; 

Path (b) Wb = - 22mk mgL
11. (a) 60 kJ; (b) 110 kJ; (c) 0
13. (a) 7.0 MJ; (b) 1.0 MJ
15. 55 cm
17. {22 m>s, {35 m>s
19. 92 m
21. 2.3 kN>m
23. 0.75
25. {2.0 m
27. 2.28 kJ, less than the 2.67 kJ for the ideal 

spring
29. 2.49 * 10-19 J
31. 55.2 cm
33. 3.55 m
35. (a) 4.4 * 1013 J (b) 11 h

37. 778 J, 4.90%

39. U1x2 = -
1
3

ax3 - bx

41. r =
kx2

2mg sin u
45. (a) -11 cm (b) {4 m>s
47. h Ú 5R>2
51. U1x2 = 8.83x3 - 3.05x4 J
53. 20 m>s, 30 m>s
55. 1.4 m
57. 62.5 cm
59. 2.9 m
61. 14 m

63. v = 2x3>4A a
3m

65. 5.8 s

67. 
mgh

2d
22g1h - d2

69. 185 N>m
71. d
73. b

Chapter 8
11. Rp = RE>22
13. 57.5%
15. 8.6 kg
17. 542 m
19. 3070 m>s
21. 1.77 d
23. 0.28 * 106 m
25. 3.17 GJ
27. 4.29 km>s
29. (a) 2.44 km>s (b) 2.10 * 108 m>s
31. (a) 20,190 km; (b) 3.872 km>s
33. (a) 17,100 km; (b) 1.45 km>s
35. 5.62 km>s
37. Less, by about 2 km>s
39. g1h2>g102 = 0.414
41. 36 GJ—positive, so not bound to the Sun
43. 60.5 min
45. 2.6 * 1041 kg

47. T2 =
4p2L3

3GM
49. 2.79 AU
51. E 7 0, hyperbolic path
55. 7.2 km>s
59. (a) 2.06 * 106 m (b) 0.805 * 106 m
61. 11.89 km>s
63. 4.17 km>s
65. 4.60 * 1010 m
67. 1.42 * 103 km
69. 1.58 * 1016 kg
71. 3.8 m>century
73. No danger, since the puck needs at least 

6100 km>h to go into orbit
75. 1.5 * 106 km
77. d
79. d

Chapter 9
11. 2m
13. (0, 0.289L)

Z06_WOLF8559_04_SE_ANS.indd   18 11/17/18   1:06 AM



Answers to Odd-Numbered Problems  A-19

15. vu2 = -67 in
 
cm>s

17. 0.268 Mm>s
19. 47.9 J
21. (a) ~20 kN·s; (b) ~10 m>s
23. 41.8 s
27. The truck’s load was 6800 kg, 1200 kg 

under the limit
29. 46 m>s
31. v1f = -11 Mm>s, v2f = +6.9 Mm>s, 

velocities are exchanged
33. 7.65 Mm>s at 12.4° to the alpha 

 particle’s original direction with 
 perpendicular component opposite  
that of the alpha particle

35. 195 km>s at 25.9° to the original 
 direction with perpendicular component 
opposite that of the orbiter

37. 28.4%
39. 75.6%
41. (0, 0.115a)
43. Kcm = 2.35 J; Kint = 47.5 J
45. mb = 4mm

47. (0, 0, h>4)
49. (a) 0.99 m (b) 3.9 m>s
51. about 6 N
55. 3R>8
57. vu3 = 4.4 in + 3.0 jn

 
m>s

59. 9.4 m>s

61. 
2
5

 v; 
7
5

 v

63. (a) 37.7° (b) -65.8 cm>s
65. 5.8 s
67. 0.92 m>s
69. If the Leaf was at the speed limit, 

then the Land Cruiser was speeding at 
76.4 km>h; if the Land Cruiser was at the 
speed limit, then the Leaf was speeding at 
92.2 km>h.

71. 120°
73. 5.83
77. 18.6%
79. (a) 12.0 m>s (b) 15.4 m>s
81. v1 = v>6, v2 = 5v>6
87. The center of mass lies along line 

through the middle of the slice, at a 

distance of 
4R
3u

 sin1u>22 from the tip.

89. 3.75 min

91. (a) 
M

1 + a
 (b) 

1 + a
2 + a

 L  

(c) M and 
1
2

 L

93. 3 collisions, final speeds 0.26v0 and 0.31v0

95. b
97. a

Chapter 10
11. (a) 7.27 * 10-5 s-1 (b) 1.75 * 10-3 s-1 

(c) 1.45 * 10-4 s-1 (d) 31.4 s-1

13. (a) 75 rad>s (b) 2.4 * 10-4 rad>s  
(c) 6 * 103 rad>s (d) 2 * 10-7 rad>s

15. (a) 0.068 rpm>s (b) 7.1 * 10-3 s-2

17. (a) 0.16 rev (b) 0.07 rad>s

19. Disc brake torque is about 30% greater 
(400 vs 300 N # m).

21. 7.9 * 10-2 N # m
23. (a) 2mL2 (b) mL2

25. 1.1 * 10-3 kg # m2 (b) 3.6 * 10-3 N # m
27. (a) 1038 kg # m2; (b) 3 * 1019 N # m
29. 20 min
31. ∼104 years
33. (a) 1.6 * 108 J (b) 16 MW
35. 1>3
37. (a) 14.3 g # m2; (b) low by 0.064%
39. 127 Mg # m2

41. 1.84 m>s
43. (a) 11.9 m>s; (b) in between
45. (a) 6.9 rad>s (b) 3.7 s
47. (a) 170 s-2 (b) 2.9 m>s2  

(c) 150 revolutions
49. 570 rev
51. 5MR2>8
53. 33 pN
55. (a) 7.2 h (b) 1900 rev
57. 0.36
59. {2.1 rad>s

61. v = A6
5

gd sin u

63. 17%
65. 0.494 MR2

67. 33 m

69. (a) M =
2pr0wR2

3
 (b) I = 3MR2>5

71. MR2>4
73. 3MR2>10

75. am +
M
2
bva + mgv

77. The specs are incorrect. The  
storage capacity is 3 MJ below what’s 
claimed.

79. 4.91 * 10-5 kg # m2

81. a
83. b

Chapter 11
11. vu = 63 s-1 west
13. (a) 0.524 s-2 (b) -37°
15. (a) -12kn N # m (b) 36kn N # m  

(c) 12 in - 36 jn N # m
17. 3.1 N # m, out of the page
19. ∼1056 kg # m2>s
21. 2.3 J # s along axis
23. 17.4 rpm
25. 2.5 days
27. 6.79 * 106 kg # m2>s
29. (a) 0.288 kg # m2>s; (b) down
31. 3.57 min
33. 4.88 rev>s
35. -9.0kn  N # m
37. 1600 N # m
39. mva>6
41. 2.66 * 105 J # s, out of plane of figure
43. 3.1 * 10-16 J # s
45. 0.21 kg # m2

47. 63%
49. 5.5 m>s
53. (a) 0.25 rad>s (b) 6.4 kJ

55. (a) dv a1
2

- I>2md2b  (b) dv

(c) dv12 + I>2md22
57. Area increases by factor of 1.61; length 

of day increases by factor of 2.22

59. (a) 2v0>7 (b) t =
2Rv0

mkg

63. 9.2 * 1026 N # m
65. d
67. d

Chapter 12
13. (a) t = mgL>2 (b) t = 0 

(c) t = mgL>2
15. 16 m relative to the wall
17. (a) 0.61 m from left end  

(b) 1.42 m from left end
19. 480 N
21. -0.797 m, unstable; 1.46 m, stable
23. 3.00 m
25. no; the climber can only get 90% of the 

way across the log
27. (a) 18 aJ>nm2 (b) yes
29. (b) stable in x, unstable in y
31. (a) 40 N # m (b) 1.3 kN
33. 500 N
35. 79 kg
37. 1.4 W

41. 
1
2

 Mg12L2 + D2 - L2
43. tan-11L>W2
45. (a) 

mg

2
3Lsinu - W11 - cosu24

(b) tan- 11L>W2
(c) concave down, unstable

47. f = tan-112>5m2
49. 0.366 mgs
53. Fapp = Mg tan1u>22
55. ms 6 tan a = 1>2

59. m Ú
tanu

2 + tan2u
61. 840 N
63. 170 N

65. (a) F = G 
MEm

RE
2  11.2292, 21.3°  

(b) t = G 
MEm

RE
1-0.03562

67. stable equilibrium at ∼6 nm and ∼14 nm, 
unstable equilibrium at ∼11 nm

69. a
71. b

Chapter 13
11. T = 0.88 s, f = 1.1 Hz
13. 11.5 fs (1.15 * 10-14 s)
15. 22 ms
17. 0.59 Hz; 1.7 s
19. (a) 19 rad>s; (b) 0.33 s; (c) 92 m>s2
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A-20  Answers to Odd-Numbered Problems

21. 1.21 s
23. 1.6 s
25. 7 oscillations in x direction for  

4 oscillations in the y direction
27. {1.7 rad, {15 rad>s
29. 0.25 s
31. 65 km>h
33. 238 Mg
35. 6.78 s
37. (a) 49.1 cm; (b) 1.17 m>s
39. (a) mg2T211 - cosumax2>4p2

(b) gTsin1umax>22>p; equivalently,

1gT>p2211 - cosumax2>2
41. 0.147%
43. (a) t = p1m>k (b) A = v01m>k
45. 50 min
47. (a) 67 mN>m (b) 3.4 * 10-10 kg 
51. 821 kg
53. (a) � ru � = A 

(b) vu = 1vA cos vt2 in - 1vA sin vt2 jn 
(c) � vu � = vA (d) v

55. 1p>32258D>g
57. (a) 7.9 N>m (b) 0.80 kg
63. v = 22k>3M
65. 34
67. (a) 6.5 cm (b) 0.51 s

69. f =
1

2p
22a>m

71. (a) E1 = 4E2 (b) amax,1 = 4amax,2

75. T = 2p27>110ga2
77. R>22 above the center
79. 1.13 Hz
81. 65 g
83. 1.39 kg # m2

85. (a) d2u>dt2 = -1mgL>I2sin u= -1g>L2sin u 
(b) Case (i) gives simple  harmonic 
motion; case (ii) gives oscillatory 
 motion that is not simple harmonic; case 
(iii) gives nonuniform circular motion.

87. a
89. d

Chapter 14
11. 3.4 s
13. 3.35 m
15. (a) 0.19 mm (b) 0.43 mm
17. (a) 1.3 cm (b) 9.1 cm (c) 0.20 s  

(d) 45 cm>s (e) -x direction
19. y1x,t2 = 11.5 cm2cos310.785 cm-12x

- 10.604 s-12 t4
21. 250 m>s
23. 30 m>s
25. 9.9 W
27. 343 m>s
29. 269 m>s
31. 940 Hz
33. 5.4 m
35. (a) 280 Hz (b) 70 Hz (c) 210 Hz
37. 14 cm
39. 93 Hz
41. Galaxy receding
43. 7.08 s

45. (a) 102 m; (b) lwater = 4.32lair

47. 381 Hz
49. shorter by 0.142 nm
51. 77.9 m>s
53. 1.0 * 102 W

57. v = AkL1L - L02
m

59. 10 m
61. L0 = 5L1>7
63. 440 mph
67. 6.3 m
73. 7.3 km
75. (a) southern hemisphere;  

(b) about 45∘ (using great-circle distance 
of ~3000 km; waves’ straight-line path 
through Earth would be slightly shorter)

77. radar worked properly
79. Not sufficient: The minimum measurable 

speed is 5.4 km>h.
81. 256 Hz
83. b
85. c

Chapter 15
11. 1.2 kg
13. (a) 180 kg>m3 (b) 7.3 m3

15. 200 GPa
17. 1.7 * 103 kg>m3

19. 92 m
21. 2.4%
23. 46 kg
25. 0.75%
27. 2.8 m>s
29. (a) 1.8 * 104 m3>s (b) 1.5 m>s
31. 1.8 m>s
33. mice = 124,000 t; mgravel = 14,000 t
35. 2.25 m
37. 1.52 m
39. 278 kPa (2.74 atm)
41. 830 cm2

43. (a) 620 Pa (b) 1.2 kPa
45. 3.6 mm
47. (a) 798 N; (b) 2.16 mm;  

(c) 7.03 J for both
49. The accused apparently drank 51 oz.
51. 27 m
53. (a) 49 kg (b) 2500 kg
55. 14 kPa
57. 14 m
59. (a) 1.5 m>s (b) 0.47 L>s
61. 70%
63. 6.89 m
65. (a) 603 Pa (b) 11.0 km
67. 15 kg
69. Yes, the wind farm could produce 1 GW 

of power.

71. t =
A0

A1A2h
g

73. (b) 5.8 km
75. 2.1 * 1012 N # m
77. Yes

79. rH2OL tan
u

2
1h0

2 - h1
22

81. c
83. e

Chapter 16
11. 5.4° F to 7.6° F
13. 20° C
15. -40° C = -40° F
17. 102.4° F
19. 32 kJ
21. 100 W
23. (a) 1.7 * 105 J (b) 84 s
25. (a) 110 W>m2 (b) 29 W>m2

27. 4 W
29. Rair = 0.98 m2 # K>W, 

Rconcrete = 0.03 m2 # K>W, 
Rfiberglass = 0.60 m2 # K>W, 
Rglass = 0.03 m2 # K>W, 
RStyrofoam = 0.88 m2 # K>W, 
Rpine = 0.23 m2 # K>W

31. 2.2 kW
33. 2 * 10-5

 

   m2

35. 24.1o C
37. 2.0o C
39. 59.3o F
41. 203 K
43. (a) 138 kPa (b) 33.4 kPa (c) 233 kPa
45. 263K = -10° C
47. 364 g
49. (a) 23.2 kJ (b) 337 kJ (c) 65.2 kJ
51. 138 s
53. 0.56 kg
55. 1.8 kg
57. 9.2 K
59. 0.20 kg
61. 2.0 * 102 W
63. The house will remain at a comfortable 

19° C
65. (a) 23 k>s∆x (b) 217 K
67. 24° C
69. 1200 K
71. (a) $319>month (b) $37.58>month
73. 44 K
75. 418.76 kJ, 0.09% higher
77. Mars: 207 K vs. ~210 K measured; 

Venus: 301 K vs. ~740 K measured
79. The solar increase accounts for only 4% 

of recent warming.
81. -19° C
83. c
85. a

Chapter 17
11. 1.8   m3

13. 1.8 * 106  
  Pa

15. (a) 27 L (b) 330 K
17. hydrogen
19. lead
21. 146 kJ
23. 0.987 L
25. 263° C
27. 62.7 L
29. 5.2 L
31. all liquid water at 8.8° C
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Answers to Odd-Numbered Problems  A-21

33. 0o C, with 3.53 * 106 kg of ice left
35. 1 * 1015 m-3, which is over  

10 billion times less dense than 
Earth’s atmosphere

37. (a) 235 mol (b) 5.65 m3

39. (a) 1.27 atm (b) 0.980 mol (c) 0.786 atm
41. 27.6 min
43. 79.3 s
45. 43.9 min
47. ISM
49. 14.8 hours
51. 4.9° C
53. 19 kW
55. (a) yes (b) no
57. 251 K
59. 307 K

61. d =
L0

2
22a∆T + a2∆T2

63. (a) 61 h (b) 52 h
65. 3.97° C
67. 25.0238 mL

71. (a) y2 =
1
4
1L0

2 - d22 +
1
2

L0
2 a∆T

(b) a = 2.35 * 10-5>C°, d = 80.00 cm
(c) aluminium

75. (a) 244 K (b) 247 K
77. c
79. c

Chapter 18
11. 29.3 kJ
13. 250 J
15. -14 kW
17. 2p1V1

19. (a) 4>3 (b) 220 J
21. 0.177
23. 2.1 MJ
25. 57.7%
27. (a) 200 K (b) 120 K
29. 1.22 J
31. (a) 28.9 kPa; (b) 13.0 cm
33. 165 kPa
35. 136 kPa
37. 380 W
39. (a) 1.49 mm (b) 10.7 mJ
41. 1.35
43. (a) 300 kPa (b) 240 J
45. 440° C
47. (a) 886 K; (b) 4.25 MPa = 42.0 atm
49. 354
51. (a) 255 K, 1.75 kJ (b) 279 K  

(c) 272 K, 500 J
53. (a) 40 kPa (b) 83 kPa (c) 80 kJ
55. 930 J
57. The temperature rises 75° C, missing the 

criteria.
59. 1.17 kJ
61. 330 K
63. (a) 202 J (b) 500 J transferred out of the gas
65. 20 mol
67. 140 atm
73. 189 J
75. 4p1V1>3

77. 154,000
79. 18%
81. a
83. c

Chapter 19
11. (a) 26.8% (b) 7.05% (c) 77.0%
13. 0.948 K
15. 9.10
17. No
19. 8.8 kJ>K
21. 21.9 kg
23. (a) 1>64 (b) 5>16
25. (a) 90.1 kW (b) 57.3%  

(c) 289 K = 16° C
27. 6.7%
29. 122 L
31. 16.08 L
33. 52.1% (winter), 47.7% (summer)
35. (a) 1.75 GW (b) 43.0% (c) 232° C
37. 2 * 1011 kg>s
39. (a) 4.83; (b) 1.42 tonnes (1420 kg)
41. $68
43. 2.78
45. (a) 6.91 kW; (b) $22.83>day for gas, 

$18.91>day for electricity; (c) 46.6%
47. (a) 17.4% (b) 83.3%
49. 140 MJ>K
53. (a) 86.0 J>K (b) 120 J>K (c) 0
55. 0
57. 160 J>K
59. 12.1 kJ>K
61. 1 - r1 -g

63. 61%
65. C0(1 - T0>T1)
67. W = CTh(ln x - 1 + 1>x)
71. 36.2 J>K
73. 62%
75. c
77. c

Chapter 20
11. 3 C, or about 0.05 C>kg
13. (a) uud (b) udd
15. 1.1 * 109

17. 5.1 m
19. (a) jn (b) - in (c) 0.316 in + 0.949 jn
21. 3.8 * 109 N>C
23. (a) 2.2 * 106 N>C (b) 77 N
25. -1.6 in  pN
27. (a) 26 MN>C, to the left;  

(b) 5.2 MN>C, to the right;  
(c) 58 MN>C, to the right

29. 1.1 kN>C
31. E =  kQ> 118a22
33. 5.1 * 104 N>C
35. 980 N>C
37. (a) 264 nN; (b) no
39. Fmax = 4kqQ>323a2

41. -661 nC
43. (a) E

u
(x) = 34kQ>14x2 - L224 in

(b) E
u
(x W L) S 3kQ>x24 in

45. -0.18 in + 0.64 jnnN

47. 4q
49. (a) 20 mC (b) 1.6 N
51. -4e
53. (a) 8 .0 jn GN>C (b) 190 jn MN>C

(c) 220 jn kN>C
55. 0
57. q1 = {40 mC, q2 = |6.9 mC
59. q = -Q>4
61. -14 mC>m
63. The device doesn’t work because its two 

halves depend on charge-to-mass ratio in 
the same way.

65. 3.64 * 10-26 J
67. 0.4e, 0.03e

69. (a) E
u
(x) = 2kqa2 (3x2 - a2)

x2(x2 - a)2 in

(b) E
u
(x) ≈

6kqa2

x4 in

71. (a) 2.5 mC>m (b) 300 kN>C  
(c) 1.8 N>C

73. (a) dq = 2psrdr 

(b) dEx =
2pksxr

(x2 + r2)3>2dr

77. 
u
E =

kQ

L
c a

121x - L
2 22 + y2

-
121x + L
2 22 + y2b in

+ °
x + L

2

y21x + L
2 22 + y2

-
x - L

2

y21x - L
2 22 + y2¢ jn§

79. mdv2>qL2

81. a
83. a

Chapter 21
11. 3 mC
13. QC = 2Q = -QB

15. {1.5 kN # m2>C
17. 69 N # m2>C
19. (a) -q>e0 (b) -2q>e0 (c) 0 (d) 0
21. 49 kN # m2>C
23. (a) 1.2 MN>C (b) 2.0 MN>C 

(c) 50 * 104 N>C
25. Line symmetry
27. 49 * 103 N>C
29. (a) 5.1 * 106 N>C (b) 34 N>C
31. (a) 2.0 * 106 N>C (b) 7.2 * 103 N>C
33. (a) 0 (b) 4.0 * 10-3 C>m2

35. 1.8 MN>C
37. (a) q = -732 nC; (b) Q = 17.6 µC; 

(c) E = 6.75 MN>C, radially outward
39. 1a2 l1 = -4.88 mC>m; 

1b2 l2 = 40.3 mC>m; 
1c2 E = 4.25 MN>C, radially outward

41. 7.31 µC
43. (a) 281 nC; (b) 187 kN>C
45. {E0a

2>2
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A-22  Answers to Odd-Numbered Problems

47. 7.0 MN>C; 17 MN>C
49. (a) 2.8 cm (b) 3.5 nC
51. (a) 176 µC; (b) 1.21 m on each side
53. (a) 3 .6rn MN>C (b) 3.8rn MN>C  

(c) 7.8rn MN>C
55. (a) 20rn kN>C (b) 1.7rn kN>C
57. (a) 1.34 µC; (b) 1.26 MN>C
59. (a) rx>e0 (b) rd>2e0; away from the cen-

ter plane of slab if r 7 0, toward center 
plane if r 6 0

61. 18 N>C
63. (b) -Q
67. (a) Q = pr0a

3 (b) E(r) = r0r
2>(4e0a)

69. a = 5r0>(3R2)
71. n = 3

73. 
r0r

2

3e0R

75. Ein =
r0x

2

2e0d
, Eout =

r0d

8e0

77. c
79. d

Chapter 22
11. 600 mJ
13. 3.0 kV
15. 910 V
17. Proton, ionized He atom: 1.6 * 10-17 J, 

proton: 3.2 * 10-17 J
19. -E0 y
21. 53 nC
23. (a) 440 kV, 9.2 * 106 m>s
27. (a) 4 V 

(b) Ex = 1 V>m, Ey = -12 V>m, 
      Ez = 3 V>m

29. 3 kV
31. 7.20 kV
35. 319 kN>C
39. 5.6 kV>m
41. 4.5 V
45. 6.1 mC
47. 12keQ>(mR)
49. 2V2R

51. -ax2>2
53. -52 nC>m
55. -a>2, a>4
57. (a) 2.6 kV (b) 1.8 kV (c) 0
59. V =  2kQ>R
65. (V>R)rn
67. (a) 43 kV (b) 1.7 MN>C  (c) 540 V (d) 0
69. -E0 R>3
71. (a) 6.19 kV; (b) –221 nC
73. 14 cm, 1.7 nC
75. 0.12 J
77. v = 232 nC>m2,   q = 3.75 nC, 

r = 7.18 cm
79. (a) p ks0a321 + 1x >a22 - 1x >a22

ln1a>x + 21 + 1a>x222 4
81. -

kl0

L2 cLx + x2 ln a2x - L
2x + L

b d
83. 8.0 mm
85. d
87. b

Chapter 23
11. 4.4 kJ
13. -48.5 eV
15. (a) 1.4 J (b) 4.2 J
17. 22 nF
19. 740 pF
21. 39 J
23. (a) 1.20 mF  

(b) Q1 = 14.4 mC, Q2 = 4.80 mC, 
      Q3 = 9.60 mC  
(c) V1 = 7.2 V, V2 = V3 = 4.8 V

25. 8.2 * 105 V>m
27. No
29. 3.4 µF
31. 1.4 µF
33. kQ2>2R
37. Qy =  4Q0>(22 + 1) ≈ 1.66Q0

39. 2 .8 mC
41. The 1.0 mf, 250 V capacitor can store 

more energy.
43. (a) 4.4 kV (b) 120 kW
45. 129 F
49. (a) 4.1 nF (b) 1.3 kV
51. 2.7 nm
53. 24 mJ
55. U = kQ2>(2R)
57. 6 .0 *  10-4 J
59. 13 min

61. C =
4pe0ab

b - a

63. 
1
6

65. (b) 
C0V0

2

2
akx + L - x

L
b  (c) 

C0V0
2(k - 1)

2L

67. 
pr2R4

8e0

69. (b) 4.3 mF
71. a
73. c

Chapter 24
11. 9.4 *  1018

13. 1 .9 *  1011

15. 3 .2 *  106 A>m2

17. 6.8 cm
19. (a) 5 .95 *  107(Ω # m)-1  

(b) 4.55(Ω # m)-1

21. 360 V
23. 32 mΩ
25. 4R
27. (a) 6.0 V (b) 8.0 Ω
29. 230 V
31. 300 Ω
33. (a) 0.12 mA (b) no
35. (a) 1.6 mm; (b) 0.20 V>m
37. 1a2 2.24 * 104 m; 1b2 19.1 pV>m
39. (a) aluminum; (b) 2.00 A if copper
41. 1a2 2 * 103 Ω·m; 1b2 silicon
43. (a) 420 A>mm2 (b) 0.24 A>mm2

45. greater in Cu by factors of (a) 7.6; (b) 4
47. 9 .7 mC
49. (a) 5 .8 MA>m2 (b) 97 mV>m

51. Ge
53. 50 ft
55. 948 nΩ, 8.20 mΩ, 15.3 mΩ
57. (a) 81 miles (b) 7.3 h at 3.3 kW, 3.6 h at 

6.6 kW, 33 min at 44 kW (c) 203A
59. (a) 2.5 TW; (b) the two are essentially 

equal
61. 2.8 min
63. d1 =  22d2

65. 0.63 A
67. Aluminum, at $3.19>m, is more econom-

ical than copper at $20.51>m.
69. 2.5 A
73. 19°
75. a
77. c

Chapter 25
15. 1.4 h
17. 43 kΩ
19. 10.5 V
21. 50 Ω
23. I1 = 2A, I2 = 0.2A, I3 = 2A
25. 0 A
27. -0.66 %
33. eR2>1R1 + R22
35. 3.2 V
37. 40 mW
39. 1.5 kΩ
41. -2∆t>Rln11 - f2
43. 1.5 mA
45. 30 A
47. (a) 2.9 A, (b) 0.52 A
49. 2.4 W
51. I1 =  2.8 A, I2 =  2.4 A, I3 =  0.43 A
53. (a) 48 V (b) 57 V (c) 60 V
55. (a) 18.25 Ω; (b) 18.07 Ω; (c) high by 1%
57. 360 mF; 1200 V
59. 3.4 mJ
61. a . VC =  0, I1 =  25 mA, I2 =  0

b. VC =  60 V, I1 =  I2 =  10 mA
c. VC =  60 V, I1 =  0, I2 =  10 mA
d. VC =  0, I1 =  I2 =  0

63. (a) 5.015 V (b) 66.53 Ω
65. 1.07 A, left to right
67. 2.15 mF
69. 80 ms
71. 8 Ω; 89 W
73. (a) R1  (b) R1  (c) R1

77. (a) 9 V (b) 1.5 ms (c) 0.3 mF
79. 220 mV

81. t =
R1R2C

R1 + R2

83. (a) 3e>4R; (b) 2e>3R
85. a
87. b

Chapter 26
11. (a) 16 G (b) 23 G
13. (a) 2.0 * 10- 14 N (b) 1.0 * 10- 14 N  

(c) 0
15. 400 km>s
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Answers to Odd-Numbered Problems  A-23

17. 360 ns
19. (a) 87.6 mT (b) 1.25 keV
21. 0.373 N
23. 5.00 A
25. (a) 9.85 cm (b) 14.8 mT
27. 1.2 mT
29. 5 mN>m
31. (a) 4.05 * 10- 2 A # m2 (b) 

7.78 * 10- 2 N # m
33. 7.0 A
35. (a) 0.569 mT (b) 3.90 mT (c) 2.85 mT
37. 17 T
39. yes; arsenic appears at 41.1 cm
41. 0.119 T … B …  0.257 T
43. 1.4 kA
45. s1a2 2.39 A; 1b2 522 mT; 442 kA>m2

47. 2.3 * 1027A # m2

49. 3.8 GA
53. (a) 71 mm (b) 440 mm
55. 0.53 A
57. 8.5 * 1022 cm- 3

59. 0.021 N, 45° above horizontal

61. 11 + p2 m0I

2pa
, out of page

63. 
m0I

2pa
, into page

65. 16 mN, toward long wire
67. (a) 0 (b) B = m0 I>12pr2
71. 3.67 * 10- 26 N·m

73. 
m0 Js x

d

75. (a) B ≈
m0I

2w
 (b) B ≈

m0I

2pr

77. (a) pR2J0>3 (b) B =
m0 J0 R2

6r
 

(c) B =
m0 J0r

2
a1 -

2r
3R

b
79. Since t ∝ 1>N, more torque from a 

1-turn loop.

81. 
m0 I

2

2pw
lnaa + w

a
b

83. m0nI>2l2 + 4a2

85. No; the force between each meter of the 
two conductors is 150 N.

87. The hall potential is 10,000 times smaller 
than bioelectric potentials.

89. d
91. d

Chapter 27
11. 1.2 * 10-4 Wb
13. 160 T>s
15. 6.5 mH
17. 42 kV
19. 330 mH
21. 3.1 kJ
23. 22.6 mJ
25. 800 MJ>m3

27. 1.1 T>ms
29. 43.7 mA
31. 1a2 E>R; 1b2 E>Bl; 1c2 0
33. 16.9 ms

35. 31.7 s
37. (a) - 0.30 A (b) - 0.20 A
39. 15 mT
41. (a) 3 s (b) clockwise
43. (a) 2.0 mA (b) 4.4 mA
45. - 42 mA, clockwise
47. 130
49. (a) 25 mA (b) 1.3 mN (c) 2.5 mW  

(d) 2.5 mW
51. 58 T>ms
55. 0.76 s
57. 20 s
59. (a) 5 Ω (b) 500 J
61. (a) 1.0 A (b) 0.43 A (c) -1.7 A
63. 190 mΩ
65. 3.4 * 1021 J>m3

67. 
m0I

2

16p
69. 3.0 * 108 m>s (speed of light)

71. (a) -br>12r2 (b) 
pb2ha4

8r
73. 3.69
75. (a) I(t) = V(t)>R = 1E - Blv(t)2>R

(b) F(t) = I(t)lB = lB1E - Blv(t)2>R

(c) F(t) = lB1E - Blv(t)2>R = m
dv(t)

dt

77. (a)
m0 I2

4p
ln1b>a2

81. c
83. a

Chapter 28
11. V =  1325 V2sin31314 s- 12t4
13. (a) V(0) ≈ Vp>22, 45° 

(b) V(0) =  0, fb =  0 
(c) V(0) =  Vp, fc =  90° 
(d) V(0) =  0, fd =  {p 
(e) V(0) = -Vp, fe = -90°

15. IR,rms = 13 mA, IC,rms = 24 mA, 
IL,rms = 22 mA

17. (a) 250 V (b) 15 V
19. 16 kHz
21. 8.1 H
23. (a) 32 mH (b) 1.0 V
25. 3.5 kΩ
27. 5.0 mA
29. 390 mA
31. 1
33. (a) 6.71 µF; (b) 1.51 H
35. (a) 1.07 MHz (this is in the AM radio 

band); (b) 3.24 µH
37. (a) 9.01 µF; (b) 16.0 Ω
39. (a) 23.1 mH; (b) 12.0 mA rms
41. (a) 150 mA (b) 330 mA
45. (a) 53 nF (b) 350 Hz
47. 0.199 mH

49. 1a2 
p

3
2LC; 1b2 

p

4
2LC; 1c2 

p

2
2LC

51. 50
53. 6.2 Ω
55. (a) Above resonance; (b) ~50°
57. (a) 0.369 (b) 6.43 W

59. (a) 5.5% (b) 9.1%
61. 3.7 mF
63. 2.7 V
65. 1620 Hz
67. R = 134 Ω, L = 67.1 mH, C = 0.628 mF
71. 910 Hz, 36 V
73. c
75. b

Chapter 29
11. 1.3 nA
13. -kn

17. 11.2 km
19. 2.57 s
21. 5.00 * 106 m
23. x-direction
25. 12%
27. 1 * 106 W>m2

29. The radio has a minimum intensity of 
0.27 nW>m2, so it will work at the cabin.

31. 20 kW
33. (a) 1.55 µm; (b) 98.4 kV>m;  

(c) parallel to the z-axis
35. (a) 3.38 m; (b) 8.55 V>m; (c) vertical
37. 1.8 W
39. 43 nV>m
41. (a) 7.2 * 1011 V>m·s; (b) increasing
43. 10 mT
45. 91%
47. 19%
49. 0.00004%
51. Quasar power is greater by factor  

of 4 * 1010

53. (a) 4.6 kW (b) 53 mV>m
55. (a) 136 nT; (b) 181 nT
57. (a) 8.9 * 106 W>m2 (b) 58 * 103 V>m
59. 6.2 * 103 y
61. 2.52 kPa
63. 6
67. 2.4 GHz: 6.25 cm; 5.0 GHz: 3.00 cm
69. (a) 431 nW>m2

71. (a) 51 MV>m (b) 0.17 T (c) 96 TW
73. b
75. d

Chapter 30
11. 15°
13. 0.5°
15. Ice
17. 77.7°
19. 14.2°
21. 1.9
23. 79.1°
25. 1.66
27. 6.41°
29. (a) n = 1.83;  

(b) No; u4 = u1 regardless of n

31. dsinu1a1 -
cosu12n2 - sin2u1

b
33. (a) 36.93°; (b) 1.586
35. The red beam emerges from the prism 

at 81.72° to the normal, while the blue 
beam undergoes total internal reflection.
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A-24  Answers to Odd-Numbered Problems

37. (a) 18° (b) 390 nm
39. Ethyl alcohol.
41. (a) 69.1°; (b) no, because the incidence 

angle is less than the critical angle
43. 5.1 m
45. 139 nm
47. Diagonal face, 23°
49. 1.07
53. 63.8°
55. 1a2 9.53°; 1b2 2.07 * 108 m>s; 

1c2 2.04 * 108 m>s 
57. 2.7 m
61. (a) 50.9°

65. 
d
c
a2

3
 n1 +

1
3

 n2b
67. c
69. b

Chapter 31
11. 35°
13. (a) -1>4 (b) real, inverted
15. (a) 3f  (b) 3f>2 (c) real
17. -2
19. 21 cm
21. 40 cm
23. 0.86 mm
25. 2.2 diopters
27. -1.3 diopters
29. -200
31. (a) 4.38 m; (b) 21.1 m; (c) behind
33. (a) 30.0 m; (b) reduced by factor of 0.875
35. 8.19 cm
37. 1.46 m
39. (a) -24 cm (b) 29 mm  

(c) virtual, upright, enlarged
41. 18 cm
43. 31 cm
45. 12 cm
47. (a) -7.7 cm, inverted, real  

(b) +7.7 cm, upright, virtual
49. 29 cm or 41 cm
51. 11 cm
53. s′ = 1.1 m, inverted real image
55. (a) bD> 32b11 - n2 + n4 ;  

(b) it appears to be located at its actual 
distance, D>2

57. 2.0
59. 2
61. Choose plastic, because it meets require-

ments and is cheaper.
63. (a) Real, inverted image (b) -2.82
65. 3.3 diopters
67. 0.3°
69. 72 cm

79. (a) dn = -
2c

l3 dl (b) 0.858 mm

81. c
83. d

Chapter 32
11. 1.7 cm
13. 420 nm

15. 4
17. (a) 4.8°, 9.7° (b) 2.9°, 6.8°
19. 103 nm
21. 594 nm, 424 nm
23. The top 1.5-cm of the film
25. 29.3°
27. 1.62%
29. 37 cm
31. 3 * 10-4 rad
33. Ha1656.3 nm2 and Hg1434.0 nm2
35. d = �l1 - l2 � >∆u

37. 22.4 m
39. 1.1 m
41. 96°
43. 44 mm
45. 2
47. Not feasible because a 2-km-diameter 

telescope is needed
49. 3.3 Å
51. 5
53. 236
55. 128.8 m
57. 1 + 2.93 * 10-4

59. 14.2 m
61. 2.0 mm
63. 6.9 km
65. Rep is correct, but microscope won’t 

resolve rhinovirus.

67. ngas = 1 +
ml

2L
69. (a) 0.34 fm; (b) 6.3 * 10-10 m
71. 54
73. c
75. a

Chapter 33
11. (a) 4.50 h (b) 4.56 h (c) 4.62 h
13. 33 ly
15. 40 m
17. 0.14c
19. (a) 2.0 (b) 2.5
21. 0.14c
23. (a) 2.1 MeV (b) 1.6 MeV
25. (a) 42.52 years; (b) 1345 years
27. 2.00 half-lives in the O-15’s own  

reference frame (which is the  
relevant one for their radioactive  
decay “clocks”)

29. Civilization B is first by 116,000 years.
31. (a) Civilization B is first by 77,100 years; 

(c) An observer moving at 0.260c on the 
same path as civilization C’s  spacecraft 
will judge the two launches to be 
 simultaneous.

35. (a) 0.86c (b) 9.7 min
37. c>22
39. Twin A = 83.2 years old, twin B = 39.7 

years old
41. 0.96c
45. earlier by 5.2 min
49. 0.94c

51. (a) 10 ly, 13 y 
(b) 0 ly, 7.5 y

55. (a) 4.2 ly 
(b) -2.4 ly

57. (a) 0.758c (b) 1.09 GeV>c
59. 25 h
63. 0.866c
67. 0.994c
69. (a) 100,000 y; (b) 10 s
71. (a) 2.976 * 108 m>s (b) 9.46 * 10-31 kg,  

4% higher than known electron mass 
(Answers are very sensitive to the precise 
values used for constants and conversion 
factors.)

73. a
75. a

Chapter 34
11. 16
13. (a) 11.4 µm; (b) 16.2 µm; (c) both are 

in the far infrared, meaning far from the 
visible

15. (a) 500.0 nm (b) 708.6 nm
17. 2.8 * 10-19 J to 5.0 * 10-19 J
19. 1.44
21. 122 nm, 103 nm, 97.2 nm
23. 91.2 nm
25. (a) 3.7 * 10-63 m (b) 73 nm
27. The electron moves 1836 times faster 

than the proton.
29. 6 * 107 m>s
31. 130 nm
33. 5.8 keV
35. n = 17
37. n = 5 (the only such value)
39. 35 pm
41. 0.62 nm
43. UV is smaller by a factor 5.4 * 10-2

45. (a) 5.19 * 103 K (b) 0.748
47. (a) 1 .7 * 1028 s- 1 (b) 3.2 * 1015 s- 1 

(c) 1 .3 * 1018 s- 1

49. (a) 1.12 * 1015 Hz (b) 2.79 eV
51. (a) 2.9 eV and 1.9 eV (b) Plants absorb 

blue and red, reflect green.
53. 440 nm
55. (a) 154 pm (b) 222 eV
57. (a) 313 m>s (b) 96 km>s
59. 0.22 meV
61. (a) 26.4 cm (b) 4.70 µeV
63. 229
65. 3.40 eV
67. 1.62 km>s
69. 2.5 km>s
71. 1 ps

75. E0 =
1
2

 mec
2 c 1g - 12

+ 21g - 121g + 32 d
81. (a) 6.65 * 10-34 J # s (b) 2.3 eV  

(c) potassium
83. b
85. c
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Answers to Odd-Numbered Problems  A-25

Chapter 35
11. (a) 0 (b) {a2ln 2>2
13. 5
15. 3.8 MeV
17. (a) 1.6 eV (b) 6.5 eV
19. Electron
21. 0.2 MeV
23. 33 eV
25. E S E>4
27. 930 pm
29. 0.972 nm
31. 0.950 nm
33. ~3>4
35. 60% of the well
39. (a) 2.2 eV (b) 570 nm
41. 21 mm
43. (a) 6 (b) l4u1 = 153 nm, l4u2 = 191 nm, 

l4u3 = 328 nm, l3u1 = 287 nm, 
l3u2 = 459 nm, l2u1 = 765 nm, 
(c) UV, visible, and IR

45. (a) cn - odd1x2 = A 2
L

 cos anpx
L

b ,

cn - even1x2 = A 2
L

 sin anpx
L

b

(b) En = n2h2>18mL22
47. 0.759 nm
49. 2.5 *  10-17 eV; Quantization is 

 insignificant
51. (a) 0.30 (b) 0.15
57. 4
59. (c) A0 = 1a2>p21>4

61. 2.23 nm
63. c
65. d

Chapter 36
11. 3
13. 5
15. 3d
17. 2.58 *  10- 34 J # s
19. 3>2, 5>2
21. 11.5 Uv
23. 1s2 2s2 2p6 3s2 3p6 4s2 3d1

27. 0.69 meV
29. 1.34a0

31. 5.80a0

33. 4p1>2; 330.39 nm, 4p3>2; 330.33 nm
35. (a) 91.6 cm; (b) 1.36 µeV
37. n =  4, l =  3
39. 2 .67 * 1068

41. 90°, 65.9°, 114°, 35.3°, 145°
43. 0, {1, {2, {3
47. (a) 16 Uv (b) 4 Uv
49. 1s2 2s2 2p6 3s2 3p6 4s1 3d10

51. 3 .0 * 1017

53. 0.1
55. 71.1 µeV

57. even N: Uv1N - 12>2; odd N: UvN>2
59. (a) 5 (b) 9E1

61. (a) 1225 - 262U ≅ 2.02h (b) 5g
63. 0.0595
65. P1r2dr = 4pr2c2

2s dr, 3 + 25
67. (b) 54.4 eV, 870 eV, 91.4 keV, 115 keV
69. (b) 141 eV, 65.8 eV, 47.0 eV, 28.2 eV
71. 3a0>2
73. a
75. c

Chapter 37
11. 3.48 mm
13. 9.41 *  10-46 kg # m2

15. 7.08 *  1013 Hz
17. 181 kcal>mol
19. 549 nm
21. 3.54 mm
23. (a) 14; (b) 1.51 * 10-33 J # s
25. (a) 9; (b) 1.00 * 10-33 J # s
27. 10.2
29. 8.07
31. 1.34 meV
33. lU2>I
35. 0.121 nm
37. (a) 0.179 eV (b) 0.358 eV
39. 14.95 mm
41. (a) 15.09 meV (b) 82.22 mm  

(c) far infrared
43. 35.8 mm
45. 6.53 J
49. 4.68 eV
51. 6.36 * 104 K, ∼200 times room 

 temperature
53. 709 nm, no
55. 1.8 kA
57. 508 nm
63. (a) 129>2pm3>2L3>3h32 E3>2

65. 64 kA
67. c
69. b

Chapter 38
11. 211

86Rn, 220
86Rn, and 222

86Rn
13. (a) A = 35 for both  

(b) ZK =  ZCl +  2
15. 5 fm
17. 64

29Cu S 64
30Zn +  e- + v

64
29Cu S 64

28Ni +  e+ + v
64
29Cu +  e- S 64

28Ni + v
19. (a) 6.2 hours; (b) 11

5B
21. 26 days
23. 59.930 u
25. 5.612 MeV
27. 2
29. 1.0 * 1020 s-1

31. 2 * 1020 m-3

33. 103 s

35. It should be 0.7060 times that of living 
wood

37. 23.8%
39. 9 * 10-28 kg
41. 5.0064 * 10-27 kg
43. 5.3 * 10-12 eV
45. 8.80 MeV
47. 0.145%
49. 9.6 d
51. (a) 228

90Th
53. 8.9 * 103 y
55. Poland: 8.04 d; Austria: 16.2 d, 

 Germany:10.0 d
57. 3.11 Gy
59. 3.31%
61. 3 * 10-13

63. 1.2 * 103 kg
65. 88.9%
67. 580 kg
69. 0.461 s
71. (a) 4 * 1038 s-1 (b) 7 * 109 y
73. 8 * 1017 s, which is about 20 billion 

years longer than the Sun will shine
75. Bohrium-262 1262

107Bh2
77. (a) 165

29Cu2 (b) 4 h
79. (a) 210 MJ (b) 14 s-1 (c) 450 kg
81. Yes
85. (b) 1.4 ms 
87. b
89. d

Chapter 39
11. 0.336 fs
13. p+ S m+ + vm
15. h S p+ + p- + p0

17. No, violates conservation of baryon 
number and angular momentum

19. sss
21. 4.54 * 107 L
23. 1028 K
25. 1.1 Gly
27. +e,-1
29. 0, -2
31. 18 Gy
33. (a) 108 years; 1012 (b) years
35. Reaction (a) is not possible because it 

violates conservation of baryon number 
and angular momentum.

37. (a) No (b) yes
39. cc
41. (a) 9.78 * 105;  

(b) v = 0.99999999999948c
43. 1010

45. (a) 256 fm (b) -2.81 keV
47. (a) 5 .740 *  103 km>s (b) 261 Mly
49. 2.6 * 10-25 s
51. 5 .0 km>s>Mly
53. b
55. c
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Index

A
Aberrations

chromatic aberrations, 597, 614
of starlight, 650

ABS (antilock braking system), 86
Absolute motion, 649, 652
Absolute temperature, 298
Absolute zero, 297, 738, 744
Absorption spectra, 680
Acceleration, 21, 48

angular acceleration, 177–178, 190
average, 20
average acceleration vector, 37
centripetal, 47
constant acceleration, 28
force and, 57
gravitation and, 60
gravity, 25–26
of gravity, 135–136
instantaneous, 20, 37
instantaneous acceleration vector, 37
mass and, 57–58, 61
near Earth’s surface, 25–27, 135–136
in one dimension, 20–24, 21, 22–25, 28
radial, 48, 177
simple harmonic motion and, 234–235
in space, 135–136
straight-line motion, 20–24, 28
tangential, 48, 177
in two dimensions, 37–38, 39–40
uniform circular motion and, 46–47
without velocity, 21

Acceleration vectors, 37–38, 46, 47
Acceptor levels, 739
Acousto-optic modulators (AOMs), 632
Actinide series, 722
Action-at-a-distance forces, 59, 144
Activation analysis, radioactivity and, 759
Activity of radioisotopes, 754–755
Addition

scientific notation and, 5–6
of vectors, 35, 37

Adiabat, 335
Adiabatic compression, heat engine, 348
Adiabatic equation, 335–336
Adiabatic expansion, heat engine, 348
Adiabatic path, 335
Adiabatic processes, 335–337, 341
Aerodynamic lift and airflow, 286–287
Air

dielectric constant of, 438
optical properties of, 591
thermal properties of, 301

Air resistance, acceleration of gravity and, 25
Aircraft

aerodynamic lift and airflow, 286–287
motion, 18
motion of, 24, 39
pitot tube, 284

Alkali metals, electronic structure of, 721
Allowed transitions, 723
Alpha decay, 704, 757, 772
Alpha particle, properties of, 761
Alpha radiation, 757
Alternating current (AC), 545–546, 559

Alternating-current circuits (AC circuits), 545–559
circuit elements in, 546–550
electric power in, 556
high-Q circuit, 554
LC circuits, 550–553, 559
RLC circuits, 553–556, 559

Aluminum
electrical properties of, 452
thermal properties of, 299, 301, 322
work function of, 678

Aluminum oxide, dielectric constant of, 438
Ammeters, 477, 482
Amorphous solids, 735
Ampere (A), 4, 449
Ampère, André Marie, 449
Ampère’s law, 503–508, 509, 565–567, 587

Biot–Savart law and, 504
electromagnetic waves, 570–571
in magnetic fields, 564, 566–567, 582

Ampèrian loop, 504
Amplifier, transistor as, 454
Amplitude

oscillatory motion, 231, 234
waves, 252

Anderson, Carl, 778–779
Angle measures, 11
Angle of incidence, 589, 598
Angle of reflection, 589, 598
Angle, units of, 4, 176
Angular acceleration, rotational motion, 177–178, 190
Angular displacement, 176
Angular frequency, 245, 253, 270
Angular magnification, 616, 619
Angular momentum, 200–201, 205

calculation, 199
conservation of, 201–203, 205, 780
coupling rules, 717–718
gyroscopes, 203–205
of the nucleus, 751
orbital, 714–715
quantization of, 744
space quantization, 715
spin angular momentum, 716, 725
total, 717–718

Angular speed, 176, 190
Angular velocity, rotational motion, 176, 190
Annihilation, 664, 780
Anti-electron, 758
Antibaryons, 780
Anticolor, 783
Antineutrinos, 758, 780
Antinodes, 264, 265
Antiparticles, 706, 782
Antiquarks, 782
Antireflection coatings, 591
Apparent weight, 64, 65, 67, 68, 69
Apparent weightlessness, 61, 69
Archimedes’ principle, 279–281, 289
Argon, electronic structure of, 721
Argon, specific heat, 339
Aristotle, 54
Artificial radioactivity, 758–759
Astigmatism, 614, 615

of lenses, 614
spherical aberration, 614

Astronauts
escape speed, 141, 145
orbital motion of, 138
space maneuvers, 143
weightlessness, 61, 65

Astronomy
gravitational-wave astronomy, 668
multimessenger, 668

Astrophysics
Big Bang theory, 788, 792
cosmic rays, 779
double-star system, 631
expansion of the universe, 787–788
Hubble’s law, 787
neutron star, 718
nucleosynthesis, 762
in Sun’s core, 769
supernova explosions, 660
telescopes, 607, 617–618, 619, 638–639
white dwarf, 718

Astrophysics, pulsars, 201–202
Asymmetric decay, 782
Atmosphere (atm), 276
Atmosphere of Earth, light and, 577
Atomic bomb, 769
Atomic clock, 3, 27
Atomic energy, 687
Atomic number, 719, 749, 772
Atomic physics, 711–725

classical model of atom, 502
electron spin, 706, 715–718
exclusion principle, 718–719, 725, 783
hydrogen atom, 711–715
isotopes, 750, 754, 772
magnetic moment of electrons, 716
nuclear force, 750
periodic table, 719–722
spin-orbit coupling, 717–718
Stern–Gerlach experiment, 716–717
total angular momentum, 717–718, 725

Atomic physics, nuclear force, 59
Atomic spectra, 680, 689, 723–724

hydrogen spectrum, 680–681, 689
sodium doublet, 723

Atoms. See Atomic physics;  
Nucleus (nuclei)

Bohr model, 682, 683, 689
ground state, 712–713
monatomic structure, 339
multielectron, 719–722

Automobiles. See Cars
Average acceleration, 20
Average acceleration vector, 37
Average angular velocity, 176
Average motion, 16–17
Average speed, 16–17
Average velocity, 17, 18, 20
Average velocity vector, 37

B
Back emf, 529
Ballistic pendulum, 163–164
Balmer series, 681
Balmer, Johann, 681
Band gaps, 737
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Band theory, 744
Bands, 737, 744
Bandwidth, 595
Bar magnet, 502
Bardeen, John, 743
Barometers, 277
Baryon number, 780
Baryons, 780, 782–783, 784, 792
Baseball, 43, 54, 286
Batteries, 454, 468, 470–471
BCS theory, 742–743
Beam splitter, 634
Beats, 261
Becquerel (Bq), 754, 772
Becquerel, Henri, 754
Benzene, optical properties, 591
Bernoulli effect, 284–285, 289
Bernoulli’s equation, 283–284, 284–285,  

286, 289
Beryllium, electronic structure, 721
Beta decay, 757–758, 772, 780, 782
Beta radiation, 757
Bicycling, 205
Big Bang theory, 788, 792
Binding energy, 760–762
Binnig, Gerd, 704
Biot–Savart law, 495–496, 509, 587

Ampère’s law and, 504
Birds, aerodynamic lift and airflow, 286–287
Blackbody, 304
Blackbody radiation, 675–677, 689

lightbulbs and, 677
Blu-ray discs, 640, 740
Bohr atom, 681–684, 689
Bohr magneton, 725
Bohr model of hydrogen atom, 682, 683, 689
Bohr radius, 682, 689, 712
Bohr, Aage, 754
Bohr, Niels, 681, 688, 701, 754
Boiling point, 297
Boiling-water reactors (BWRs), 766
Boltzmann’s constant, 297, 324, 676
Bonding, 725, 744

covalent bonding, 731–732
hydrogen bonding, 732
ionic bonding, 725
metallic bonding, 732, 744
van der Waals bonding, 732

Bone scans, 759
Born, Max, 696
Bose–Einstein condensate, 719, 724, 725
Bose, Satyendra Nath, 719
Bosons, 719, 725, 779
Bottom quarks, 783, 784
Bound state, 704, 707
Bound system, 126
Boundary conditions, 699
Bragg condition, 632
Brahe, Tycho, 134
Brain cells, counting, 9
Brass, thermal properties of, 322
Breeder reactors, 737
Brewster angle, 593
Bridges, 211, 219, 244
Btu (British thermal unit), 105, 299
Bubble chamber, 779
Buckminsterfullerene, 732
Buildings, 236, 244

cogeneration, 355
energy-saving windows, 305
household voltage, 546
household wiring, 453

insulating properties of building materials, 302–303
solar greenhouse, 307
water heater, 306, 355

Bungee jumping, 101–102
Buoyancy

center of, 281
fish swim bladder, 279
of fluids, 279–280
working underwater, 279

C
Calatrava, Santiago, 211
Calculations. See Problem solving
Caloric, 298
Calorie (cal), 105, 299
Calorimeters, 779
Cameras, 441, 616

charging capacitors, 480
infrared, 576

Cancer
from radiation exposure, 759
radiotherapy for, 759

Candela (cd), 4
CANDU reactor, 766
Capacitance, 436
Capacitive reactance, 547, 559
Capacitors, 435–437, 444

in AC circuits, 547
displacement current, 566
in electric circuits, 477–481, 482
electrolytic, 438
energy storage in, 436–437, 444
equivalent capacitance, 440–441
in LC circuits, 552
in parallel, 439, 444
parallel-plate capacitor, 435–438, 440, 442, 444, 

566–567
practical version of, 437–439
reactance, 547, 559
in series, 439–441
ultracapacitors, 441
working voltage, 438

Carbon dioxide, optical properties of, 591
Carbon-14, 756
Carbon-14 dating, 756, 757
Carnot cycle, 348, 355
Carnot efficiency, 340, 349
Carnot engine, 348–349, 361
Carnot, Sadi, 348
Carnot’s theorem, 350
Cars

ABS brakes in, 86
acceleration of, 104
banked curve, 81
crash tests, 161
engines, 353
flywheel-based hybrid vehicles, 186
friction in engine, 85
frictional forces in stopping, 85
hybrid cars, 501, 525
lightning and, 408
regenerative braking, 525
shock absorbers, 243
speed traps, 24
starting, internal resistance and, 471

Cartesian coordinate system, 35
Cavendish experiment, 137
Cavendish, Henry, 137
CDs, 626, 740

diffraction and, 640
diffraction grating, 632
refraction and, 592–593

Cell membranes
current density, 451–452
electric circuits and, 475

Cellphones, 580–581
Celsius temperature scale, 297–298, 309
Center of gravity, 213, 220
Center of mass, 150–155, 169

of continuous distribution, 153–155
finding location of, 152–153
kinetic energy of, 160
motion of, 150, 155
reference frame, 168

Center-of-mass frame, 168
Centripetal acceleration, 47
Centripetal force, 80
Ceramics, electrical properties of, 452
Cesium chloride, crystal structure of, 735–736
Cesium, work function of, 678
Chain reaction, 764–765, 772
Charge. See Electric charge
Charge conjugation, 782
Charge distributions, 372

continuous, 378–380
electric dipole, 377–378
electric field lines of, 389
of electric fields, 375–380

of arbitrary charge distributions, 403–404
with line symmetry, 401–402, 409
with plane symmetry, 402, 409
with spherical symmetry, 397–400, 409

electrical potential of, 416
Charged capacitors, 437
Charged conductors, 405–406
Charged disk, 404
Charged particles

electromagnetic force on, 490
in magnetic field, 491–493
trajectories in three dimensions, 492–493

Charmed quarks, 783, 784
Chart of the nuclides, 751
Chelyabinsk meteor, 142
Chemical properties, 721
Chemical reactions, energy of, 434
Chernobyl accident, 766
Chlorine atom, ionization energy of, 731
Chlorine, electronic structure of, 721
Chromatic aberrations, 597, 614, 617
Chromium, electronic structure of, 721
Circular motion, 47

constant acceleration and, 47
forces involved in, 80
harmonic motion and, 239–240
Newton’s second law and, 79, 227
nonuniform, 47
in two dimensions, 46
uniform, 46–47, 48
See also Rotational motion

Circular orbits, 137–138, 139, 142, 145
Circus train, center-of-mass motion, 155
Classical physics, 674, 684, 696–697, 738
Clausius statement, 350
Cliff diving, 26
Climate modeling, 96
Climber rescue, multiple objects and, 78
Closed circuits, induced current in, 527
Closed orbits, 139
Closed-shell nuclear structure, 754
Cloud chamber, 779
CMB. See Cosmic microwave background (CMB)
Coal versus uranium, 764
Coaxial cable, 409
Cobalt-60, beta decay of, 782
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Coefficient of kinetic friction, 84, 89
Coefficient of linear expansion, 324
Coefficient of performance (COP), 353, 361
Coefficient of static friction, 84, 89
Coefficient of volume expansion, 322, 324
Coherence length, 625
Coherence, waves, 625
Cohesive energy, ionic, 736
Collective model, 754
Collisions, 169

center-of-mass frame, 168
defined, 161, 169
elastic, 161, 164–169
energy in, 161
impulse, 161
inelastic, 162–164
kinetic energy and, 164
momentum and, 161, 164
in systems of particles, 161–162
totally inelastic, 162–164, 169

Color charge (quarks), 782, 783, 785
Colorless particles, 783
Combined cycle power plant, 353
Comets, orbits of, 139
Complementarity, 688, 689
Compound microscope, 616, 619
Compressibility, of gases and liquids, 276, 289
Compression force, 59
Compton effect, 679–680, 689
Compton shift, 679
Compton wavelength, 679–680
Compton, Arthur Holly, 679
Computer disks, 502–503, 526
Concave lenses, 607–608, 609, 610, 613
Concave meniscus lenses, 613
Concave mirrors, 607
Concrete, thermal properties of, 299, 301
Condenser, 351
Conditionally stable equilibrium, 217
Conduction

in electric fields, 452–456, 738, 739
in ionic solution, 454, 462
in metals, 453–454, 462
in plasma, 454, 462
in semiconductors, 454–455, 462
in superconductors, 456, 462, 538

Conduction band, 739
Conduction of heat, 300–303, 309
Conductivity, electrical, 452, 462
Conductors, 382–383, 462

charged, 405–406
electric field at conductor surface, 406–407
Gauss’s law, 405, 409
magnetic force between, 497–498
mechanism of conduction in, 452–456

Confinement time, 769
Conservation of angular momentum, 201–203,  

212, 780
Conservation of baryon number, 780
Conservation of electric charge, 369, 780
Conservation of energy, 113–128

in fluid flow, 283–284
gravitational potential energy, 141
mechanical energy, 119–121, 129
nonconservative forces, 119, 122–123
rolling downhill, 188–189

Conservation of mass–energy
conservation, 125

Conservation of mass, in fluid flow, 282–283
Conservation of momentum

angular momentum, 201–203, 212
fusion, 162

Constant acceleration, 21–23, 28
angular, 190
gravity, 25–27

Constant of universal gravitation, 135
Constant-volume gas thermometers, 297
Constant-volume processes, 334, 341, 349
Constructive interference, 259, 624, 626, 641, 646
Contact forces, 59
Continuity equation, 282, 289
Continuous charge distributions, 378–380
Continuum state, 705
Control rods, 765
Controlled fusion, 769
Convection, 304, 309
Converging lenses, 608, 609
Convex lenses, 608, 610, 611, 613
Convex meniscus lenses, 613
Convex mirrors, 606, 607
Coolant, for nuclear power reactors, 766
Cooper, Leon, 743
Coordinate systems, 17

vectors and, 35
COP. See Coefficient of performance (COP)
Copernicus, Nicolaus, 134
Copper

electrical properties of, 452
electronic structure of, 721
work function of, 678

Copper, thermal properties of, 299, 301, 319, 322
Corner reflector, 590
Corona discharge, 428
Corrective glasses, 615
Correspondence principle, 688, 701–702
Cosmic microwave background (CMB), 788, 

 789, 792
Cosmic rays, 779
Cosmological constant, 791
Coulomb (C), 370
Coulomb, Charles Augustin de, 370
Coulomb’s law, 369–373, 384, 395, 403, 587

Gauss’s law and, 504
Covalent bonding, 731–732, 744
CP conservation, 782
CPT conservation, 782
CPT symmetry, 782
Crash tests, 161
Credit cards, 502, 526
Critical angle, 593–595, 598
Critical damping, 245, 553
Critical density, 791
Critical field, 742, 744
Critical ignition temperature, 769
Critical mass, 764–765, 772
Critical point, 321, 324
Croquet, 167–168
Cross product, 198, 205
Crossover network, 550
Crystal structure, 735–737
Crystalline solids, 735–737
Curie (Ci), 754
Curie temperature, 502
Curie, Irène, 759
Curie, Marie, 754
Curie, Pierre, 754
Curiosity rover, 54, 60
Current. See Electric current
Current density, 451–452, 462

Ohm’s law, 452, 456–458, 457, 462, 473, 587
Current loops, 496–497, 498–499, 509
Curve of binding energy, 761–762, 772
Curved mirrors, 604–606, 619
Cyclic processes, thermodynamics, 337–338

Cyclotrons, 492–493
frequency, 492, 509

D
D-D reaction (deuterium–deuterium reaction), 768,  

771
D-T reaction (deuterium–tritium reaction), 768, 771
Damped harmonic motion, 242, 245
Damping, 553
Dark energy, 791, 792
Dark matter, 791, 792
Daughter nucleus, 757
Davisson, Clinton, 685
de Broglie wavelength, 684, 689
de Broglie, Louis, 684
de Broglie’s wave hypothesis, 685, 696, 699
Decay

asymmetric decay, 782
radioactive, 786

Decay constant, 755
Decay rate (radioactivity), 754–757
Decay series, 758–759
Deceleration, 21
Decibel (dB), 258
Defibrillator, 434, 441, 460
Definite integral, 100
Degenerate electron pressure, 718
Degenerate states, 705
Degree of freedom, 339, 341
Delayed neutrons, 765
Democritus, 675
Density of fluids, 276
Density of states, 738
Derivative, 19, 21
Descartes, René, 592
Destructive interference, 259, 624, 641, 646
Deuterium, 750, 768
Deuterium oxide, 766
Deuteron, 166
Diesel power, adiabatic process and, 336
Diffraction gratings, 629–632, 646
Diffraction limit, 638–640, 641, 646
Diffuse reflection, 590
Diodes, 559
Diopter, 615
Dipole moment, 384

electric, 378, 384
induced, 383
magnetic, 498, 752
nuclear magnetic, 752

Dirac equation, 706
Dirac, Paul, 696
Direct current (DC), 557–558
Directions, 17
Disk, rotational inertia by integration, 182–183
Disorganized states, 347
Dispersion in wave motion, 260–261
Dispersion, of light, 595–597, 598
Displacement, 16–17, 28, 97–98

angular displacement, 176
coordinate systems, 17

Displacement current, 566–567
Displacement vector, 35
Dissociation energy, 731
Diverging lenses, 608
Division, scientific notation and, 6, 7
DNA, bonding in, 732
Donor levels, 739
Doping, 455, 739, 744
Doppler effect (Doppler shift), 266–270

light, 268
Doppler effect (Doppler shift), redshift and, 787
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Doppler, Christian Johann, 267
Dot product, 98

See also Scalar product
Double concave lenses, 613
Double convex lenses, 613
Double-slit interference, 626–629
Double-star system, 631
Doublet, 718
Down quarks, 782, 784
Drag forces, 88
Drift velocity, 450, 453, 462
Driven oscillations, 243–344
DVDs, 1–2, 175–176, 740

diffraction and, 640
diffraction grating, 632

Dynamics, 54, 55
rotational dynamics, 184
See also Motion

E
Earth

atmosphere, light, 577
convection and solar heat, 304
ether concept and motion of, 649, 669
global warming, 307–308
greenhouse effect, 307
Greenland ice cap, 280–281
interior structure of, 264
magnetic field of, 499
ocean waves, 1, 261, 262
precession of, 204–205
pressure at ocean depths, 277
rainbow, 596, 598
seasons, 196
smog, 337
tides, 144

Eddy currents, 526–527
Efficiency

of Carnot engine, 349
of engine, 349
thermodynamic, 350

Eightfold Way, 782
Einstein cross, 668
Einstein, Albert, 55, 61

photoelectric effect, 678, 689
relativity and, 648, 651–652, 656, 791

Elastic collisions, 161, 164–169
in one dimension, 164–167, 169
in two dimensions, 167–168

Elastic potential energy, 117
Electric charge, 368–369, 384, 780

charge distribution, 372
conservation of, 369, 780–781
Coulomb’s law, 369–373, 384, 395, 403, 587
magnetism and, 489
moving, 587
point charges, 372
quantity of, 369
quantization of, 369, 674–675
source charge, 370
superposition principle, 372, 375, 384
test charge, 374
units of, 369

Electric circuits, 467–482
AC circuits, 545–546
capacitors in, 477–481, 482
electromotive force (emf), 468
high-Q circuits, 554
inductors in, 531–533
Kirchoff’s laws, 474, 482
LC circuits, 550–553, 559
multiloop circuits, 474–475

parallel circuits, 587
RC circuits, 477–481, 559
resistors, 468–473, 482
RL circuits, 531–532, 559
RLC circuits, 553–556, 559
with series and parallel components, 472–473
series circuits, 587
symbols used, 467

Electric current, 382, 449–452, 462, 587
ammeters, 477
current density, 451–452
induced currents, 516–517
magnetic force and, 493–495
Ohm’s law, 452, 456–458, 457, 462, 587
units of, 4, 449
See also Conductors

Electric dipole moment, 378
Electric dipole potential, 429
Electric dipoles, 377–378, 381–382, 384

in electric fields, 381–382, 384, 403
oscillating, 577
point charge, 403

Electric eels, 454
Electric field, 373–375, 384, 414, 587

of arbitrary charge distributions, 403–404
of charge distributions, 375–380

charged ring, 379
continuous, 378–380

conduction in, 452–456
in ionic solutions, 454, 462
in metals, 453–454, 462
in plasmas, 454, 462
in semiconductors, 454–455, 462
in superconductors, 456, 462, 538

at conductor surface, 406–407
conductors, 382–383
conservative/nonconservative, 537–538
corona discharge, 428
dielectrics, 383, 384
electric dipoles in, 381–382, 384
electric field lines, 389–390
energy in, 441–443
Gauss’s law, 394–402, 409, 503, 564,  

567, 582
insulators, 383
magnetic field and, 506–507
Ohm’s law, 452, 456–458, 457, 462, 473, 587
or charge distributions, linear, 378, 384
of point charge, 374, 384
point charges in, 380–381, 384
solenoids, 507–508, 509
zero, 376

Electric field lines, 389–391, 409
of charge distribution, 390

Electric flux, 391–394, 409
Electric force, 368, 384, 414, 587

gravity and, 372
superposition principle, 372, 375, 384

Electric generators, 2, 525, 526, 539
Electric motors, 2
Electric potential, 414, 429, 711

calculating field from potential, 424–425
of charge distribution

charged disk, 423–424
charged ring, 423
charged sheet, 417
continuous, 422–424
curved paths, 417–418
dipole potential, 421–422
nonuniform fields, 417–418
point charge, 419
with superposition, 421–422

charged conductors, 427–428
electric field and, 424–426
zero of, 419–420

Electric potential difference, 415, 429, 587
calculating, 418–424
high-voltage power line, 421
units of, 418
using superposition, 421–422

Electric power, 458–459, 462
in AC circuits, 556
fusion energy, 770–771
nuclear power, 767–768
nuclear reactors, 765
pumped storage, 117
See also Electric generators; Electric power plants

Electric power lines, 458–459
magnetic force and, 493–495
potential relative to ground, 421

Electric power plants
combined cycle power plant, 353
steam system, 353
thermodynamics of, 352–353
See also Nuclear power; Nuclear reactors

Electric power supply direct current (DC), 557–558
transformers and, 459, 557–558, 559

Electric shock, 461
Electrical conduction. See Conduction
Electrical conductivity, 452, 462
Electrical energy. See Electric power
Electrical measurements, 476–477
Electrical meters, 476–477
Electrical safety, 459–461, 462
Electrolytic capacitors, 438
Electromagnetic force, 490, 587, 792

electroweak unification, 785
quantum electrodynamical description of, 778

Electromagnetic induction, 516–539, 587
defined, 518
eddy currents, 526–527
energy and, 522–527
Faraday’s law, 518–523, 526, 530, 536, 539, 547, 

564, 582, 587
induced currents, 516–517
induced electric fields, 536–538
inductance, 528–533
Lenz’s law, 523, 539

Electromagnetic radiation, blackbody radiation, 
675–677, 689

Electromagnetic spectrum, 576–577, 582
Electromagnetic systems, 2
Electromagnetic waves, 251, 265, 568–572, 582,  

587, 778
Ampere’s law, 570–571
Doppler effect, 270
electromagnetic spectrum, 576–577, 582
Faraday’s law, 570
Gauss’s laws, 570
in localized sources, 580
momentum, 578–581
photons in, 689
plane electromagnetic wave, 568–569
polarization, 575, 582
producing, 577–578
properties of, 572–575
radiation of, 304, 309
radiation pressure, 581
in vacuum, 568, 582
wave amplitude, 573
wave fields, 571–572
wave intensity, 578–580
wave speed, 572–573
See also Light
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Electromagnetism, 2, 59, 368–384, 587
four laws of, 504, 564–565, 587
Maxwell’s equations, 567, 582, 587, 635, 649, 669, 695
quantization and, 674–675, 689
quantum-mechanical view of, 778
relativity and, 649, 651–652, 666
See also Electromagnetic waves

Electromotive force (emf), 468, 482
back emf, 529, 530
induced emf, 518
motional emf, 518

Electron capture, 758
Electron diffraction, 685
Electron microscope, 685
Electron neutrinos, 781
Electron spin, 706, 715–718
Electron–positron pair, annihilation of, 780
Electronic scales, 67
Electrons

Bohr atom, 685, 689
Compton effect, 679–680, 689, 695
discovery of, 675
exclusion principle, 718–719, 725, 783
magnetic moment of, 716
photoelectric effect, 678, 689, 695
properties of, 761, 781
relativistic electron, 639
split, 715–716

Electronvolt (eV), 105, 416
Electrophoresis, 374
Electrostatic analyzer, 381, 384
Electrostatic energy, 434–435
Electrostatic equilibrium, 404–405, 427–428
Electrostatic precipitators, 428
Electroweak forces, 59
Electroweak unification, 785
Elementary charge, 369
Elementary particles. See Particles
Elements

chemical behavior and, 721
isotopes, 750, 772
origin of, 762
periodic table, 719–722
radioisotopes, 755

Elevators, 61–62, 117
Elliptical orbits, 139
Emission spectra, 680
Emissivity, 304
Energy, 94, 108, 227

of chemical reactions, 434
in circular orbits, 142–143
climate modeling, 96
in collisions, 161
conservation of, 113–132

in fluid flow, 283–284
consumption by society, 106–107
density, 442, 444
in electric field, 441–443
electromagnetic induction and, 522–527
energy–momentum relation, 665, 669
energy–time uncertainty, 687
fusion energy, 770–771
kinetic energy, 108
magnetic, 533–535
mass and, 663–665, 669
mass–energy equivalence, 663–665
from nuclear fission, 764
versus power, 107
quantization and, 674–675, 689
in simple harmonic motion, 240–242, 245
society and, 106
units of, 105, 298

wind energy, 287
work and, 443
work–kinetic energy theorem, 104, 108, 119,  

129, 283
Yankee Stadium, 106
See also Heat; Kinetic energy; Potential energy

Energy levels in molecules, 732–735
Energy quality, 355
Energy storage, 434

in capacitors, 436–437, 444
Energy storage in flywheels, 186
Energy-level diagram, Bohr model, 682
Energy–momentum 4-vector, 662
Energy–momentum relation, 665
Energy–time uncertainty, 687
Engines, internal combustion, 349
English system, 5
English units of energy, 105
Enrichment of uranium, 764
Entropy, 353, 355–356, 361

availability of work, 357–358
second law of thermodynamics and, 359–360
statistical interpretation of, 359–360

Equation of motion, 23–24
Equilibrium

conditionally stable, 217
conditions for, 211–212
hydrostatic, 276–279, 288, 294
metastable, 217, 220
neutrally stable, 217, 220
potential energy and, 217, 220
stable, 216–219, 220
static equilibrium, 211–227
thermodynamic, 296–297
unstable, 216, 217, 220

Equilibrium temperature, 300, 309
Equilibrium, electrostatic, 404–405, 427–428
Equipartition theorem, 339–340, 341
Equipotentials, 424, 429
Equivalent capacitance, 440–441
Erg, 105
Escape speed, 142, 145
Estimation, 8
Eta particles, 781
Ether concept, 649, 669
Ethyl alcohol, optical properties of, 591
Ethyl alcohol, thermal properties of, 319
Events in relativity, 652–654, 657
Excimer laser, 615
Excited states

of energy, 682
of hydrogen atom, 714

Exclusion principle, 718–719, 725, 783
Expansion, thermal, 322–323, 324
Explicit constant, 3, 4
External forces, 151, 157–159
External torque, 201, 203
Eye, 614–616
Eyeglasses, 615
Eyepiece, of microscope, 616

F
Fahrenheit temperature scale, 297, 309
Farad (F), 436
Faraday, Michael, 436
Faraday’s law, 518–522, 530, 536, 539, 564, 567, 582, 587

electromagnetic waves, 570
Farsightedness, 615
Fermi energy, 738, 744
Fermi, Enrico, 763
Fermilab, 783
Fermions, 719, 725, 780

Ferromagnetism, 502
Feynman, Richard, 778
Fiber optics, 595
Fiberglass, thermal properties of, 301
Field particles, 780, 784
Field point, 376
Field-effect transistor (FET), 455–456
Films, thin films, 633–634
Filtering (electrical), 558
Fine structure, 718, 725
Finite potential wells, 704–705, 707
Fire safety, radioactivity and, 759
First law of thermodynamics, 329–331, 330, 335, 341
Fish swim bladder, buoyancy, 279
Fissile nuclei, 764, 772
Fission products, 762–763, 767
Fissionable nuclei, 764
Fitzgerald, George F., 656
Flash camera, 441

charge capacitors, 480
Floating objects, Archimedes’ principle, 280
Flow tube, 282, 283
Fluid dynamics, 282–283, 294

aerodynamic lift and airflow, 286–287
applications of, 284–287
Bernoulli’s equation, 283–284, 284–285, 286, 289
conservation of energy, 283–284
conservation of mass, 282–283
continuity equation, 282, 289
turbulence, 288
See also Fluids

Fluid flow
Bernoulli’s equation, 283–284, 284–285, 286, 289
viscosity, 288, 289

Fluid friction. See Viscosity
Fluid motion, 275–288

steady flow, 281
unsteady flow, 281
venturi flowmeters, 285–286
See also Fluid dynamics; Fluid flow

Fluid speed, 285–286
Fluids, 275–288

Archimedes’ principle, 279–281, 289
buoyancy, 279–281
density, 276
hydrostatic equilibrium, 276–279, 288, 289, 294
Pascal’s law, 289
pressure, 277, 289
viscosity, 288, 289
See also Fluid dynamics

Fluorine, electronic structure of, 721
Flywheels, 186
Focal length, 607, 613, 615, 619, 646
Focal point, 604, 608, 619
Food preservation, radioactivity and, 759
Foot-pound, 105
Forbidden transitions, 723
Force(s), 54, 55, 57–58, 62, 227

action-at-a-distance, 59, 145
buoyancy force, 279–281
centripetal, 79
compression, 59
conservative, 95, 114
contact forces, 59
displacement, 97–98
drag forces, 88
electroweak, 59
external/internal, 151
frictional, 56, 59, 83–87
fundamental forces, 59, 785, 792
grand unification theories (GUTs), 785, 792
gravitational, 59
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Force(s) (continued )
interaction forces, 55
measurement of, 66–67
momentum and, 56
net force, 55, 56
nonconservative, 114–115
normal, 66
potential energy and, 127–128
strong, 59, 783, 792
tension, 59

of massless rope, 80
of spring, 67

unification of, 59, 785–787
units of, 57, 60
varying, 99–103
varying with position, 100–102
weak, 59
work, 96–99
See also Gravity

Forward bias, 740
Four-vectors, 662, 669
Fourier analysis, 260
Fourier, Jean Baptiste Joseph, 260
Frames of reference, 38

inertial, 58–59
Frames of reference, inertial, 652, 669
Franklin, Benjamin, 368
Free expansion, 357
Free fall, 25–27, 61, 66
Free-body diagram, 62, 69
Frequency, 252

angular frequency, 245, 253, 270
oscillatory motion, 231, 233–234, 245
units of, 231

Friction
kinetic, 84, 89
Newton’s first law and, 83–87, 89
rough sliding, 102
static, 84, 89

Frictional forces, 59, 83–84
Frisch, Otto, 762
Fuel cells, 454
Fuel rods (nuclear reactor), 767
Fukushima accident, 749, 756
Fundamental forces, 59, 785, 792
Fusion

conservation of momentum, 162
heat of, 319

G
Galaxies, Hubble’s law and, 787
Galilean relativity, 649
Galileo, 25, 55, 60, 134
Gallium, electronic structure of, 721
Gamma decay, 758, 772
Gamma rays, 577, 758
Gas thermometers, 297
Gas water heater, cogeneration, 355
Gas-cooled nuclear reactors, 766
Gas–cylinder system, heat engine, 347
Gases, 324

adiabatic free expansion, 357
adiabatic processes, 335–337, 341
constant-volume processes, 334, 341
cyclic processes, 337–338
distribution of molecular speeds, 318
equipartition theorem, 339–340, 341
ideal-gas law, 314–315, 324, 336
isobaric processes, 334–335, 341
isothermal processes, 332–333, 337, 341
microstates/macrostates, 358
phase changes, 319–321

quantum effect, 340
real gases, 318–319
specific heat of, 300
thermodynamics of, 331–338
universal gas constant, 315, 324
van der Waals force, 319
See also Ideal gases

Gases, plasmas, 454
Gasoline engine, 335, 353
Gasoline, thermal expansion of, 322–323
Gauge bosons, 780, 792
Gauge pressure, 278
Gauss’s law, 394–396, 409, 564

conductors and, 405, 409
Coulomb’s law and, 504
for electric field, 394–402, 503, 564, 567, 582

for infinite line of charge, 401
with line symmetry, 401–402, 409
with plane symmetry, 402, 409
for point charge within a shell, 398–399
with spherical shell, 397–398
with spherical symmetry, 397–398, 409

for electromagnetic waves, 570
experimental tests of, 406
hollow conductor, 405
hollow pipe, 402
for magnetism, 499–500, 503, 504, 509, 519, 

564, 567, 582
sheet of charge, 402

Geiger, Hans, 680
Gell-Mann, Murray, 782
General theory of relativity, 59, 134, 652, 667–668, 

669, 791
Generation time, 765
Generators, 2, 500, 526, 539
Geomagnetic storm, 535
Geometrical optics, 589, 624, 646. See Light
Geostationary orbit, 138–139, 140, 146
Gerlach, Walther, 716
Germer, Lester, 685
Giant Magellan Telescope, 617
Glashow, Sheldon, 783, 785
Glass

dielectric constant, 438
electrical properties of, 452
optical properties of, 591
thermal properties of, 299, 301, 322

Global Positioning System. See GPS 
(Global Positioning System)

Global warming, 307–308
Gluons, 783, 784, 785
Glycerine, optical properties of, 591
Goeppert Mayer, Maria, 754
Gold, electrical properties of, 452
Goudsmit, Samuel, 716
GPS (Global Positioning System), 15, 22, 229, 597, 667
Grand unification theories (GUTs), 785, 792
Graphite moderators, 766
Grating spectrometer, 630–631
Gratings

acousto-optic modulators (AOMs), 632
diffraction gratings, 629–632, 646
reflection gratings, 630
resolving power of, 631–632
transmission gratings, 630
X-ray diffraction, 631–632

Gravitation
center of gravity, 213, 220
universal, 135–137, 145, 227
See also Gravity

Gravitational field, 144–146, 145, 373
Gravitational force, 58, 59

Gravitational potential energy, 116, 129, 140–141, 145
Gravitational waves, 251, 668
Gravitational-wave astronomy, 668
Gravitons, 780, 785
Gravity, 60–62, 134–145, 792

acceleration and gravitation, 60
Cavendish experiment, 137
center of gravity, 213, 220
constant acceleration, 25–27
electric force and, 372
escape from, 142, 145
historical background, 134–135
hydrostatic equilibrium with, 276–279, 294
inertia and, 60
inverse square feature of, 136
near Earth’s surface, 136

free fall, 25–27, 60, 61, 66
projectile motion, 137
work done against, 103, 121–122

orbital motion and, 135, 137–139
quantum physics and, 786
third-law pair, 67
universal law of, 135–137, 145
weight and, 60
work done against, 103

Gray (Gy), 759
Green-antired, 783
Greenhouse effect, 244
Greenhouse gases, 318–319
Greenland ice cap, 280–281
Ground fault circuit interrupter, 461
Ground state, 712–713
Ground state of energy, 682
Ground-state energy, 700
Ground-state wave function, 700
Guth, Alan, 790

H
Hadrons, 780, 782, 784, 792
Half-life, 755, 756, 772
Hall coefficient, 495
Hall effect, 495
Hall of Electricity, Boston Museum, 420
Hall potential, 495
Hard ferromagnetic materials, 502
Harmonic oscillators, 702–703. See Oscillatory motion

quantum harmonic oscillator, 734
quantum mechanical, 702–703, 707
selection rule for, 734

Harmonics, 265
Head-on collisions, 165–166
Headphones, noise-cancelling, 260
Heat, 309, 335

defined, 298
phase changes and, 319–321
units of, 299

Heat capacity, 298–300, 309
specific heat and, 298–300

Heat conduction, 301–303, 309
Heat engines, 347–349

adiabatic compression, 348
adiabatic expansion, 348
isothermal compression, 348
isothermal expansion, 348
limitations of, 351–353

Heat loss, thermal-energy balance, 306–308, 309
Heat of fusion, 319

nuclear power plant meltdown, 319
Heat of sublimation, 319
Heat of transformation, 319, 324, 366
Heat of vaporization, 319
Heat pumps, 353–354, 361
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Heat transfer, 300–305, 335
conduction, 301–303, 309
convection, 304, 309
first law of thermodynamics, 329–331,  

330, 341
radiation, 304, 309

Heavy water, 276, 766
Heisenberg, Werner, 686, 688, 696
Helicopters

aerodynamic lift and airflow, 286–287
weight in, 68

Helium
atomic structure of, 750
mass defect in, 761
specific heat of, 339
thermal properties of, 301

Helium atom, electronic structure of, 721
Helium-3, 752
Helium-4, 752, 761
Henry (H), 529
Henry, Joseph, 516, 529
Hertz (Hz), 231
Hertz, Heinrich, 231, 576, 677
Higgs bosons, 784
High-energy particles, 779–780
High-Q circuit, 554
High-temperature superconductors, 743
Hiroshima bomb, 763, 769
Hockey, 162
Hodgkin, Alan L., 475
Holes (semiconductors), 739
Holograms, 724
Hooke’s law, 67, 68
Horizontal range of projectile, 43–44
Horsepower (hp), 105
Hubble constant, 787
Hubble Deep Field, 788, 792
Hubble Space Telescope, 604, 605,  

607–608, 618
Hubble, Edwin, 787
Hubble’s law, 787
Human body

cardiac catheterization, 460
electric current, effects on, 460
electric shock, 461
eye, 614–616
radiation, effects of on, 759–760
resistance of skin, 460
sound and the ear, 258
static equilibrium, 215–216
See also Medical devices and procedures

Huxley, Andrew F., 475
Huygens, Christian, 636
Huygens’ principle, 635–636, 641, 646
Hybrid-car motor, 501
Hydraulic lift, 278
Hydrogen

fusion, 768
isotopes, 750, 755
tritium, 755

Hydrogen atom, 711–715
Bohr model, 683, 684, 689
excited states of, 680
fine structure of, 718
ground state, 712–713
potential-energy curve for, 744

Hydrogen bomb, 769
Hydrogen bonding, 732, 744
Hydrogen spectrum, 680–681, 689
Hydrostatic equilibrium, 276–279, 294
Hyperfine splitting, 753
Hyperfine structure, 718

I
Ice

boiling point of, 297
bonding in, 732
crystal structure of, 323
melting point of, 297
optical properties of, 591
thermal properties of, 299, 322
See also Water

Ice skating, 201
IDEA strategy, 9–10, 11

See also Problem solving
Ideal emf, 468
Ideal gases, 315–317, 324, 335

adiabatic free expansion, 357
adiabatic processes, 335–337, 341
constant-volume processes, 334, 341
cyclic processes, 337–338
equipartition theorem, 339–340, 341
internal energy of, 334
isobaric processes, 334, 341
isothermal processes, 332–333, 337, 341, 366
quantum effect, 340
specific heats of, 339–340

Ideal spring, 67, 69, 118, 121, 129, 231
Ideal-gas law, 314–315, 324, 336, 366
Image distance, 607, 613, 617
Images, 603, 619

with lenses, 609
with mirrors, 603–608
real images, 603, 605–607, 609, 610, 612, 615, 616, 

617, 619, 646
virtual images, 603, 605–613, 615, 616, 617, 619, 646

Impact parameter, 167
Impedance, 554, 559
Impulse, 161
Incandescent lightbulbs, 677
Incompressibility, of liquids, 276, 294
Index of refraction, 591, 646
Induced current, 516–517, 522

closed and open circuits, 527
eddy currents, 526–527

Induced dipole moments, 383
Induced electric fields, 536–538
Induced emf, Faraday’s law and, 518–522, 530, 536, 

539, 564, 567, 582
Inductance, 528–533, 539

mutual inductance, 528
self-inductance, 528–530

Inductive reactance, 548, 559
Inductive time constant, 532, 539
Inductors, 539, 548

in AC circuits, 547–548, 549–550
in electric circuits, 531–533
magnetic energy in, 533–535
reactance, 548, 559

Inelastic collisions, 162–164
Inert gases

electronic structure of, 721
specific heat of, 339

Inertia, 57
gravitation and, 60
rotational, 180–185, 190, 200, 245

Inertial confinement, 769–770
Inertial confinement fusion, 769–770, 772
Inertial guidance, 22
Inertial navigation systems, 22
Inertial reference frames, 58, 652, 669
Infinite square well, 698–700, 707
Infinitesimals, 19
Inflation (of universe), 790–791
Infrared cameras, 576

Infrared frequency range, 577
Insect control, radioactivity and, 759
Instantaneous acceleration, 20
Instantaneous acceleration vector, 37
Instantaneous angular velocity, 176
Instantaneous power, 105
Instantaneous speed, 18
Instantaneous velocity, 18–20
Instantaneous velocity vector, 37
Insulators, 382–383, 452, 738, 739
Integrals

definite integral, 100
line integral, 102–103, 108
setting up, 154

Integration, rotational inertia, 181–182
Intensity, waves, 257–258, 270
Interaction force pair, 65
Interaction forces, 55, 69
Interference, 259, 261, 294, 625–626, 641

constructive interference, 259, 624, 627, 631–632, 646
destructive interference, 259, 624, 646
double-slit interference, 626–629
fringes, 626, 646
interferometry, 633–635
multiple-slit interference, 629–632, 630
noise-cancelling headphones, 260
pattern, intensity in, 628–629
in two dimensions, 261–262
waves, 260, 262
X-ray diffraction, 631–632

Interferometry, 633–635, 641
Internal combustion engines (ICE), 349
Internal energy, 298, 329, 330, 334
Internal kinetic energy, 160
Internal resistance, 470, 482
International Space Station, 47, 61, 135, 138, 143, 152–153
Invar, thermal properties of, 322
Invariants, relativistic, 662, 669
Inverse Compton effect, 680
Inverse square force laws, gravity as, 136
Inversion (of atmosphere), 337
Inverted image, 605, 606, 607, 610, 617

curved mirrors, 605
Iodine-131, 755
Ionic bonding, 731, 744
Ionic cohesive energy, 736
Ionic conduction, 454, 462
Ionic solutions, electrical conduction in, 454, 462
Ionization, 683
Ionization energy, 683
Iron

electrical properties of, 452
thermal properties of, 299, 301

Irreversible/reversible processes, 331, 332–333,  
347, 357

Isobaric processes, 334–335, 341
Isochoric processes, 334
Isometric processes, 334
Isotherm, 332–333
Isothermal compression, heat engine, 348
Isothermal expansion, heat engine, 348
Isothermal processes, 332–333, 337, 341
Isotopes, 750, 772

radioisotopes, 755
transuranic isotopes, 767

Isovolumic processes, 334
ITER fusion reactor, 770

J
Jensen, J. Hans, 754
Joliot-Curie, Frédéric, 758
Jordan, Pascal, 696
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Joule (J), 97, 98, 105, 108, 298
Joule, James, 97, 298

K
Kaon particles, 781
Kayaking, 158
Keck Telescopes, 618
Kelvin (K), 4, 297
Kelvin temperature scale, 297, 309
Kelvin–Planck statement, 347
Kepler, Johannes, 134, 139
Kepler’s third law, 138
Kibble balance, 4
Kilocalorie, 299
Kilogram (kg), 3
Kilowatt-hours (kWh), 105, 106
Kinematics, 16, 28

See also Motion
Kinetic energy, 103–105, 108

of center of mass, 160
collisions and, 164–165
of composite object, 187
defined, 104, 108
internal, 160
of mass element, 185
relativistic, 663–664
rotational, 185
of systems of particles, 160
work and, 103–105

Kinetic friction, 84, 89
Kirchoff’s laws, 474, 482
Krypton, electronic structure of, 721

L
Ladders, 214–215
Lakes

heat conduction in, 302
turnover, 323
wave motion in, 265

Lambda particles, 781
Lanthanide series, 722
Lanthanum, electronic structure of, 721
Large Electron Positron Collider, 784
Large Hadron Collider (LHC), 787
Laser Interferometer Gravitational Wave 

Observatory (LIGO), 635, 668
Laser light, 574, 625
Laser printer, 428
Lasers, 719, 724

CDs or DVDs, 1, 2, 740
excimer laser, 615
laser light, 574, 625
vision correction with, 615

LASIK, 615
Law of conservation of mechanical energy,  

129
Law of inertia, 57
Law of Malus, 575
Law of universal gravitation, 145
Laws of motion. See Newton’s laws of motion
Lawson criterion, 769
LC circuits, 550–553, 559
LCDs (liquid crystal displays), 575
Lead, thermal properties of, 319
LEDs (light emitting diodes), 740
Lee, Tsung-dao, 782
Length contraction, 656–657, 669
Length, units, 3
Lens equation, 610–611
Lenses, 608, 646

aberrations of, 614, 617
antireflection coatings, 591
astigmatism, 614
chromatic aberration, 614, 617

concave lenses, 608, 613
contact lenses, 615
converging lenses, 608, 609
convex lenses, 613
corrective glasses, 615
diverging lenses, 608
image formation with, 609, 619
lens equation, 610–611
magnifying glass, 611
optics of, 612–613
refraction in, 611–614
thin lenses, 608

Lensmaker’s formula, 613, 619
Lenz’s law, 523, 539
Lepton number, 780
Lepton–antilepton pairs, 780
Leptons, 780, 784–785, 792
Lever arm, 179
Levitation, magnetic, 538, 742
Light

Compton effect, 679–680, 689, 695
diffraction, 636–638, 641, 646
diffraction limit, 638–640, 641, 646
dispersion of, 595–597, 598
Doppler effect, 268
double-slit interference, 626–629
as electromagnetic phenomenon, 572–573
interference, 260, 262, 625–626, 641, 646
laser light, 574, 625
Michelson–Morley experiment, 650–651, 652, 669
multiple-slit interference, 629–632, 641
photoelectric effect, 677–680, 689, 695
photons, 677–680
polarization of, 574–575, 582, 593
prisms, 596
rainbow, 596, 598
reflection of, 590, 593, 646
refraction of, 591–593, 646
Snell’s law, 592, 646
speed of, 3, 676
total internal reflection of, 593–595, 598
visible light, 576
wave–particle duality, 679, 688, 689, 695–696
See also Electromagnetic waves

Light-water reactors (LWRs), 766
Lightbulbs, 677
Lightning, 374–375, 383, 408
Line–charge density, 378
Line integral, 102–103, 108
Line symmetry, charge distributions,  

401–402, 409
Linear accelerators, 786
Linear momentum conservation of, 156–159
Linear speed versus angular speed, 176–177

See also Speed
Linear-expansion coefficient, 322, 324
Liquid-drop model, 754
Liquids, optical properties of, 591
Liquids, phase changes, 319–321
Liter (L), 4
Lithium atom, electronic structure of, 721
Longitudinal waves, 252, 270
Lorentz transformations, 659–662, 669
Lorentz–Fitzgerald contraction, 656
Lorentz, H. A., 656
Loudspeaker systems, 550, 555–556
Luggage, pulling, 98
Luminosity, units of, 4
Lyman series, 681

M
Mach angle, 270
Mach number, 270
Macrostates, 358

Madelung constant, 736
Magic numbers, 753
Magnetic confinement, 769
Magnetic confinement fusion, 770, 772
Magnetic dipole moment, 498, 752
Magnetic dipoles, 498–501
Magnetic domain, 502
Magnetic energy, 533–535
Magnetic field, 488, 587

Ampere’s law, 503–508, 564, 565–567,  
570–571, 582

Biot–Savart law, 496–497, 509, 587
charged particles in, 491–493
electric field and, 506–507
Gauss’s law, 499–500, 503, 504, 509, 564–565, 567, 

570, 582
induced currents, 516–517
Maxwell’s equations, 582, 587
origin of, 495–498
solenoids, 507–508, 509
superposition principle, 496, 502, 503
toroids, 508
units of, 488

Magnetic flux, 500–502, 519–520
Magnetic force, 489, 509, 587

between conductors, 497–498
electric current and, 493–495
Hall effect, 495

Magnetic levitation, 538, 742
Magnetic matter, 501–503
Magnetic moment of electrons, 716
Magnetic monopoles, 499
Magnetic permeability, 503
Magnetic recording, 526
Magnetic resonance imaging. See MRI 

(magnetic resonance imaging)
Magnetic torque, 500–501
Magnetic-energy density, 535, 539
Magnetism, 488, 509

diamagnetism, 503, 509, 538, 539
ferromagnetism, 502, 509
Gauss’s law for, 499–500, 502, 504, 509, 564–565, 

567, 582
magnetic matter, 501–503
paramagnetism, 502, 509
superconductivity and, 741–743

Magnets, 502
Magnification, 610, 616, 619
Magnifiers, 616–617, 616–618
Malus, law of, 575
Manometers, 277, 278
Marconi, Guglielmo, 576
Mars Climate Orbiter, 3
Marsden, Ernest, 680
Mass, 4

acceleration of, 57–58, 61
center of mass, 150–156
conservation of, in fluid flow, 282–283
energy and, 663–665, 669
mass–energy equivalence, 664–665
versus weight, 60, 69

Mass defect, 760
Mass elements, 153
Mass flow rate, 282
Mass number, 750, 772
Mass spectrometers, 491
Mass–energy conservation, 125
Mass–energy equivalence, 664–665
Mass–spring system

harmonic motion in, 235, 240–241, 243
vertical, 235
wave propagation in, 252

Mass–spring system, harmonic motion in, 
702
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Matter
annihilation, 664, 780
antiparticles, 706
Bose–Einstein condensate, 719, 724, 725
in electric fields, 380–383
electromagnetic waves in, 473–574
matter-wave interference, 685
phase changes in, 319–321
quantization of, 675, 689
relativistic particles, 665
thermal behavior of, 314–323
wave–particle duality, 679, 688, 689, 695–696
See also Gases; Liquids; Particles; Solids

Matter waves, 684–685
Matter-wave hypothesis, 684–685
Matter-wave interference, 685
Maxima, 218
Maxwell–Boltzmann distribution, 318, 339
Maxwell, James Clerk, 318, 566, 572–573, 576
Maxwell’s equations, 567, 582, 587, 634

relativity and, 649, 669, 695
Mayer, Maria Goeppert, 754
Measurement

prefixes for units, 4
units, 2–5

Mechanical energy
conservation of, 119–122, 129
defined, 119

Mechanical waves, 251
Mechanics, 1, 15, 647, 649
Media, mechanical waves and, 251
Medical devices and procedures

bone scans, 759
defibrillator, 434, 441, 460
laser vision correction, 615
lasers, 615, 724
MRI, 456, 489–490, 534, 741, 753
PET, 664, 756, 758
radioactivity used in, 759

Meissner effect, 538, 744
Meitner, Lise, 762
Melting point, 298
MEMS (microelectromechanical systems), 68
Mendeleev, Dmitri, 719
Mercury barometers, 277
Mercury, electrical properties of, 452
Mercury, thermal properties of, 299, 319
Merry-go-rounds, 202
Mesons, 778, 780, 782, 784, 792
Metal detectors, 527
Metallic bonding, 732, 744
Metallic conductors, 738–739
Metals, electrical conduction in, 453–454, 462
Metals, thermal conduction in, 301
Metastable equilibrium, 217, 220
Metastable states, 723
Meter (m), 3
Metric system, 2–5
Michelson interferometer, 634–635, 641, 650
Michelson–Morley experiment, 650–651, 652, 669
Michelson, Albert A., 634, 650
Microamperes, 449
Microelectromechanical systems (MEMS), 68
Microelectronics, 686–687
Microgravity, 62
Microscopes, 616–617, 619

electron microscope, 685
scanning tunneling microscope, 694, 704

Microstates, 358
Microwave ovens, 265, 383
Microwaves, 576

cosmic microwave background, 788–789, 792
Milliamperes (mA), 449
Millikan, Robert A., 369, 675, 678

Minima, 218
Mirrors, 603–608, 646. See Reflection

aberrations of, 604, 605, 614
concave, 607
convex mirrors, 606, 607–608
curved mirrors, 604–606, 619
magnification, 606, 619
mirror equation, 606–608
parabolic mirrors, 604–605
plane mirrors, 603–604

Mode number, 265
Moderator (nuclear power reactor), 166, 766
Modern physics, 2, 648
Modes, 265
Molar specific heat at constant pressure, 335
Molar specific heat at constant volume, 334
Mole (mol), 4
Molecular spectra, 734–735
Molecular speed, 317, 318
Molecules

as electric dipoles, 377–378
energy levels in, 732–735
equilibrium states of, 219
potential-energy curve for, 127
resonance in, 244
spectra of, 734–735

Moment of inertia, 180
Momentum, 156–159, 227

in collisions, 161, 164
conservation of, 157–159, 227
defined, 56, 69, 156
electromagnetic waves, 581
energy–momentum relation, 665, 669
forces and, 56
relativistic, 663, 669
uncertainty principle, 686–688, 689
viscosity and, 288, 294
See also Angular momentum

Monatomic structure, 339
Moon

circular orbit of, 138
gravity and, 135, 136

Morley, Edward W., 650
Motion

aircraft, 18
Aristotle on, 54
average motion, 16–18
of center of mass, 150, 155
changes in, 55
equations of, 23–24
ether concept and, 649, 669
kinematics and, 28
kinetic energy and, 108
mechanics and, 1
relative motion, 38–39
straight-line motion

acceleration, 20–25
velocity, 18–20

in three dimensions, 48
in two dimensions

circular, 46–47
with constant acceleration, 38, 47
projectile, 39–40, 48
relative motion, 38–39

uniform motion, 56
vectors, 34–38
See also Circular motion; Fluid motion; 

Newton’s laws of motion; Oscillatory 
motion; Projectile motion; Rotational 
motion; Wave motion

Motional emf
and changing fields, 518–519
defined, 518
and Lenz’s law, 524

Motors. See Electric motors
Mountain climbing, 106
MRI (magnetic resonance imaging), 204, 244, 456, 

489–490, 534, 741, 753
Multimessenger astronomy, 668
Multimeters, 477
Multiple-slit diffraction systems, 638
Multiple-slit interference, 629–632, 641
Multiplication

scientific notation and, 6, 7
of vectors, 35, 36, 198

Multiplication factor, 765
Multiwire proportional chamber, 779
Muon neutrinos, 781, 784
Muons, 654, 779, 781, 784
Music

CDs, 626, 632, 741
refraction and, 592–593

loudspeaker systems, 550, 555–556
sound waves, 258, 265–266

Musical instruments standing waves in,  
265–266

Musical instruments standing waves in, tuning a 
piano, 552–553

Mutual inductance, 528
Myopia, 615

N
N-type semiconductor, 455, 739
Nagasaki bomb, 763
Nanotube, 647
National Ignition Facility (NIF), 769
Natural frequency, oscillatory motion, 244
Natural greenhouse effect, 318–319
Ne’eman, Yuval, 782
Near point, 615
Nearsightedness, 615
Negative work, 115
Neon

electronic structure of, 721
specific heat of, 339

Net charge, 369
Net force, 55, 56
Neutral buoyancy, 279
Neutrally stable equilibrium, 217, 220
Neutrinos, 758, 768, 779–780, 785
Neutron star, 718
Neutrons, 750, 758, 792

beta decay of, 757–758, 780
high-energy fission, 769
properties of, 761, 781

New Horizons spacecraft, 134
Newton (N), 57
Newton-meter (N m), 97, 108
Newton, Sir Isaac, 47, 54, 55, 134, 135, 137,  

139, 596
Newton’s laws of motion, 54, 89, 227

first law, 55–56, 57, 69, 227
friction and, 83–87, 89

uniform motion, 55–56
rotational analogs of, 196, 197
second law, 56–57, 69, 169, 227

applications, 62–65, 74–77, 89
circular motion, 79–83
drag forces, 88
for multiple objects, 77–78
for rotational motion, 178, 180, 184
for systems of particles, 150, 151, 156
weight and, 60

third law, 65–68, 69, 169, 227,  
286–287

Newtonian mechanics, 15
Nickel, work function of, 678
NIF (National Ignition Facility), 769
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NIST-F1 atomic clock, 27
Nitrogen dioxide, specific heat of, 339
NMR (nuclear magnetic resonance), 244, 752
Nodal line, 262
Nodes, 265

circuit components and, 474
Noise-cancelling headphones, 260
Nonconservative electric field, 537–538
Nonconservative forces, 114–115, 119

conservation of energy, 119, 122–123
Nonlinear pendulum, 238
Nonohmic materials, 452
Nonuniform circular motion, 48
Normal force, 66
Normalization condition, 698, 701–702, 707,  

713
North Star, 204
Nuclear energy, 687
Nuclear fission, 761, 762–768, 772

chain reaction, 764–765, 772
energy from, 764
fission products, 763–764, 767
nuclear power, 766–767
radioactive waste, 763, 767–768
to trigger fusion reactions, 769
uranium versus coal, 764
weapons, 763, 765, 766

Nuclear force, 59, 750, 778, 783
Nuclear fuel, 7
Nuclear fusion, 761, 768–771, 772

inertial confinement fusion, 769–770, 772
magnetic confinement fusion, 770, 772

Nuclear magnetic dipole moment, 752
Nuclear magnetic resonance (NMR), 244
Nuclear magneton, 752
Nuclear physics, 749–771

binding energy, 760–762
nuclear structure, 749–754
radioactivity, 754–760

Nuclear power, 766–767, 767–768
Nuclear power plants

elastic collisions in, 166
meltdown, 320
thermal pollution, 331

Nuclear radius, 751
Nuclear reactors, 765, 766
Nuclear shell model, 754
Nuclear spin, 751–753
Nuclear structure, 749–754
Nuclear symbols, 749–754
Nuclear waste, 764, 767–768
Nuclear weapons, 763, 765, 766, 769
Nucleons, 750, 751
Nucleosynthesis, 762
Nucleus (nuclei), 749, 750

angular momentum of, 751–752
binding energy, 760–762
models of nuclear structure, 753–754
nuclear force, 59, 750
size of, 751
spin of, 751–753
stability of, 750–751

Nuclides, 751
Numbers estimation, 9

prefixes, 4
scientific notation, 5–6
significant figures, 7–8

O
Object distance, 607, 611, 619
Objective lens, 616
Oceans

Archimedes’ principle, 280

pressure at depths, 277
turnover, 323
waves, 1, 261, 262

Ohm, 452
Ohm, Georg, 452
Ohm’s law, 457, 459, 462, 473, 587

macroscopic version of, 456–458, 457
microscopic version of, 452, 457

Ohmic materials, 452
Ohmmeters, 477
Oil drop experiment, 369, 675
Omega particles, 781
One dimension

acceleration in, 20–24
collisions in, 164–166, 169
straight-line motion, 17, 20–24
velocity, 18–20

Onnes, H. Kamerlingh, 456
Open circuits, 457, 527
Open orbits, 139
Operational definitions, 3
Optical fibers, 595, 598
Optical instruments, 441, 603, 614–618

cameras, 441, 480, 576, 616
contact lenses, 615
corrective glasses, 615
diffraction gratings, 629–632, 646
electron microscopes, 685
magnifiers, 611, 616–617
microscopes, 616–617, 619
telescopes, 607, 617–618, 638–639

Optical spectra, 723
Optics, 2, 589, 646

chromatic aberration, 597, 614, 617
focal length, 604, 606–619, 646
focal point, 604, 608, 619
geometrical, 589, 624, 646
lens equation, 610–611
lensmaker’s formula, 613, 619
magnification, 606, 619
mirror equation, 606–608
physical, 624, 646
Snell’s law, 592, 646
See also Light

Orbital angular momentum, 714–715
Orbital magnetic quantum number, 715, 725
Orbital motion

circular orbits, 137–138, 139, 145
closed/open, 139
elliptical orbits, 139
geostationary orbits, 138–139, 140, 146
gravity and, 135, 137–139
precession, 203–205, 206

Orbital period, 138
Orbital quantum number, 714–715, 725
Orbitals, 719
Orbits, uniform circular motion, 46, 47
Order (of dispersion), 630
Organized states, 347
Oscillating dipole, 577–578
Oscillatory motion, 230–245, 294

amplitude, 231, 234
basic characteristics of, 231
damped harmonic motion, 242–243, 245
driven, 243–244
frequency, 231, 233–234, 245
period, 231, 233–234, 245
phase, 233–234
resonance, 243–244, 245
simple harmonic motion, 232–235, 245

applications, 235–239
circular motion, 239–240
energy in, 240–242

pendulum, 236–239
potential-energy curves and, 241–242
tuned mass damper, 235, 236

universality of, 230, 231
in waves, 252

Oscillatory system, 2
Oxygen

isotopes of, 750
radioisotope of, 755

Oxygen-15, 755
Oxygen, thermal properties of, 319
Ozone, 577

P
P-type semiconductor, 739
Pair creation, 706
Paper, dielectric constant of, 438
Parabolic mirrors, 604–605
Parallel circuits, 587
Parallel resistors, 468, 471–472, 482
Parallel-axis theorem, 183
Parallel-plate capacitor, 435, 444, 566–567
Paramagnetism, 502, 509
Paraxial rays, 604
Parent nucleus, 757
Parity, 782
Parity conservation, 782
Parity reversal, 782
Partial derivatives, 255, 570
Partial differential equation, 255
Partial reflection, 591
Particle accelerators, 783, 786–787
Particles

classifying, 779–780
conservation laws and, 780–781
detection of subatomic particles, 779
high-energy particles, 779–780, 792
particle accelerators, 783, 786–787
potential-energy curve, 698–700
properties of, 780–781, 792
quarks, 59, 369, 782–784, 785, 792
spin-1/2 particles, 716, 725, 751
standard model, 752, 777, 784–785
symmetries, 782
wave–particle duality, 679, 688, 689, 695–696
See also Systems of particles

Pascal (Pa), 276
Pascal’s law, 278

hydraulic lift, 278
Paschen series, 681
Pauli, Wolfgang, 716
Peak radiance, 676, 677, 689
Peak-to-peak amplitude, 231
Pendulum, 236–239

ballistic pendulum, 163–164
nonlinear, 238
physical, 238–239
simple, 236–238

Perfect emitter, 304
Perihelion, 139
Period

oscillatory motion, 231, 233–234, 245
waves, 252, 253, 270

Periodic table, 719–722
Permeability constant, 496, 509
PET (positron emission tomography), 664, 756,  

758
Phase

oscillatory motion, 233–234
wave motion, 254

Phase changes, 319–321, 366
critical point, 321, 324
heat and, 319, 321
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sublimation, 319, 321
triple point, 321, 324

Phase constant, 234
Phase diagrams, 321, 324

critical point, 321, 324
triple point, 321, 324
of water, 321, 324

Phasor diagrams, 549, 554
Phasors, 549, 559
Phosphorescent materials, 723
Photocopier, 428
Photoelectric effect, 677–680, 689, 695
Photomultipliers, 785
Photons, 677–680, 689, 719, 758, 778, 780. 

See Electromagnetic waves; Light
Compton effect, 679–680, 689, 695
energy states of, 778
gamma decay and, 758
in particle physics, 783
properties of, 785
virtual photon, 778
wave–particle duality, 679, 688, 689, 695–696
waves and, 695–696

Physical optics, 624, 646
Physical pendulum, 238–239
Physics

IDEA strategy, 9–10
realms of, 1–2, 11
simplicity of, 9

Piano, 552–553
Pions, 779, 780–781
Piston–cylinder system, 332
Pitot tube, 284
Planck, Max, 676
Planck’s constant, 4, 676, 689
Planck’s equation, 676
Plane electromagnetic wave, 568–569
Plane mirrors, 603–604
Plane symmetry, charge distributions, 402, 409
Plane waves, 257
Planetary orbits, 135, 137, 139
Plano-concave lenses, 613
Plano-convex lenses, 613
Plasmas, 769

electrical conduction in, 454, 462
quark–gluon plasma, 790

Plexiglas, dielectric constant of, 438
Plutonium weapons, 766
Plutonium-239, 755, 764, 766
PN junction, 455, 744
Point charges, 372

in electric field, 380–381, 384
field of, 374, 384, 403

Point of symmetry, 397
Polaris, 204
Polarization, 574–575, 582, 593
Polarizing angle, 593, 598
Pollution control, 428
Polyethylene, dielectric constant of, 438
Polystyrene

dielectric constant of, 438
electrical properties of, 452
optical properties of, 591

Population inversion, 724
Position

angular position, 190
with constant acceleration, 22, 28
constant acceleration and, 21
as vector, 48

Position vector, 34–35, 40
Position–momentum uncertainty, 686–688, 689
Position, uncertainty principle, 686–688, 689
Positron emission tomography (PET), 664, 756, 758

Positrons, 664, 706, 758, 768, 779
Potassium

electronic structure of, 721
radioisotope of, 755
work function of, 678

Potassium-40, 755
Potential barrier, 126
Potential energy

defined, 129
elastic, 117–118
equilibrium and, 217–218, 220
force as derivative of, 128
gravitational, 116–117, 129, 140–142, 145
stability and, 217
work and, 115–119
zero of, 140–141

Potential well, trapping in, 126
Potential-energy curves, 117, 125–128, 129, 698–700

for complex structures, 219
finite potential wells, 704–705, 707
hat-shaped, 786
for hydrogen atom, 744
infinite square well, 698–700, 707
molecular, 127
simple harmonic motion, 241–242
symmetry breaking and, 786

Potential-energy difference, 414
Potential-energy function, for ionic crystals, 736
Pound (lb), 60
Power, 105–106

bicycling and, 107
defined, 105, 108
versus energy, 107
energy storage, 186
mountain climbing, 106
units of, 105, 108
velocity and, 107
of waves, 257
work and, 105
See also Electric power

Power factor, 556–557, 559
Power plants. See Electric power; Electric power plants; 

Nuclear power plants
Power supply

direct current (DC), 557–558
transformers and, 459, 557–558, 559

Power transmission, 459
Powers, numbers, 5, 6
Poynting vector, 579
Poynting, J. H., 579
Precession, 203–205, 206
Prefixes, 4, 11
Presbyopia, 615
Pressure, 276, 294

barometers, 277
hydrostatic equilibrium, 276–279, 294
manometers, 277, 278
measuring, 277–278

Pressure melting, 324
Pressurized-water reactors (PWRs), 766
Priestley, Joseph, 370
Primary coil, transformer, 557
Principal quantum number, 714, 725
Principle of complementarity, 688, 689
Prisms, 596
Probability, 695–696, 701–702

radial probability distribution, 713
Probability density, 707
Probability distribution hydrogen atom, 713
Problem solving

Ampère’s law, 504, 505–506
checking answer, 10
conservation of mechanical energy, 120

Coulomb’s law, 370
Faraday’s law and induced emf, 521
fluid dynamics, 284
Gauss’s law, 395
with IDEA strategy, 9–10
Lorentz transformations, 660
motion with constant acceleration, 24
multiloop circuits, 474–475
Newton’s second law, 63, 77–78
projectile motion, 42
static equilibrium, 214
thermal-energy balance, 306
variation problems, 26

Projectile motion, 39–40, 48
drag and, 88
flight times, 45
range of projectile, 43–44
trajectories, 43, 45, 139
washout flood, 42

Projectiles, range of, 43–44
Propagation (wave), 251
Proper time, 653
Proton–proton cycle, 768
Protons, 750, 792

electric field, 376
grand unification theories (GUTs), 785, 792
properties of, 761, 732, 751

Pulsars, 201–202
Pump (lasers), 724
Pumped-storage facilities, 117
Pumping, 724
pV diagram

cyclic process, 337, 338, 341
isothermal processes, 333, 337

Q
Quadratic potential-energy function, 702
Quanta, 678
Quantization, 674–675, 686, 689

of angular momentum, 744
Bohr atom, 680–681, 689
of orbital angular momentum, 714–715
space quantization, 725

Quantized spin angular momentum, 716, 725, 752
Quantum chromodynamics (QCD), 783
Quantum effect, gases, 340
Quantum electrodynamics (QED), 778
Quantum harmonic oscillator, 734
Quantum mechanics, 689, 744, 791

Bose–Einstein condensate, 719, 724, 725
Dirac equation, 706
electromagnetism and, 778
exclusion principle, 718–719, 725, 783
finite potential wells, 704–705, 707
harmonic oscillator, 702–703, 707, 734
infinite square wells, 698–700, 707
molecular energy levels, 732–735
orbital angular momentum, 714–715
orbital quantum number, 714–715
probability, 695, 696–697, 701, 713
radial probability distribution, 713
relativistic, 705–706
Schrödinger equation, 696–698, 705, 707
space quantization, 715
in three dimensions, 705
tunneling, 703–704, 707, 769

Quantum number, 700
orbital magnetic quantum number, 715, 725
orbital quantum number, 714–715, 725
principal quantum number, 714, 725
spin quantum number, 752

Quantum physics, 2, 689, 695–696
blackbody radiation, 675–677, 689
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Quantum physics (continued )
complementarity, 688, 689
gravity and, 785–786
hydrogen spectrum, 680–681, 689
matter waves, 684–685
photoelectric effect, 677–680, 689, 695
quantization, 674–675, 686, 689
uncertainty principle, 686–688, 689
wave–particle duality, 679, 688, 689, 695–696

Quantum state, 700
Quantum tunneling, 703–704, 707, 769
Quark–antiquark pairs, 782–783
Quark–gluon plasma, 790
Quarks, 59, 369, 782–784, 785, 792
Quartz, dielectric constant of, 438
Quasi-static process, 331

R
R-factor, 305
Radial acceleration, 48, 177
Radial probability distribution, 713
Radian (rad), 4, 176, 233
Radiance, 675, 677, 689
Radiation (heat), 304, 309
Radiation pressure, electromagnetic waves, 581, 582
Radio transmitter, 577
Radio waves, 576–577
Radioactive decay, 754–755, 772

conservation of momentum in, 158–159
decay constant, 755
decay rate, 754–760
decay series, 758

Radioactive isotopes, 750
Radioactive tracers, 759
Radioactive waste, 763, 767–768
Radioactivity, 754–760

artificial, 758–759
biological effects of, 759–760
for cancer treatment, 759
Chernobyl disaster, 766
decay rate, 754–755
decay series, 758
decay types, 758, 772
Fukushima disaster, 756, 767
half-life, 755, 756, 772
human body, effects on, 759–760
radiocarbon dating, 756, 757
types of radiation, 757
units of, 772
uses of, 759

Radiocarbon dating, 756, 757
Radioisotopes, 750, 755–756
Radium-226, 755
Radius of curvature, 48
Radon-222, 755
Rainbows, 596, 598
Raindrops, charged, 372
Range of projectile, 43–44
Rankine temperature scale, 298, 309
Rate of change of velocity, 21
Ray diagram

for lens equation, 610
for lenses, 612
mirrors, 607

Ray tracings
with lenses, 609
with mirrors, 603, 609

Rayleigh criterion, 638, 639, 641
Rayleigh–Jeans law, 677
Rays, 589, 646
RBMK reactors, 766
RC circuits, 477–481, 550

Reactance, 547–548, 559
Reading light, wave intensity, 258
Real battery, 470
Real gases, 318–319
Real image, 603, 609, 612, 646
Rectangular coordinate system, 35
Red-antiblue, 783
Redshift, 787
Reference frames. See Frames of reference
Reflecting telescopes, 617
Reflection, 262–263

diffuse reflection, 590
of light, 590, 592, 646
partial, 591
partial reflection, 591
specular reflection, 590
total internal reflection, 593–595, 598

Reflection gratings, 630
Reflectors, 617
Refracting telescopes, 617, 619
Refraction, 263, 646

at aquarium surface, 612
at curved surfaces, 611–612
index of refraction, 591, 646
of light, 591–593, 646
prisms, 596

Refractors, 617
Refrigerators, 350, 353–354, 359, 361
Regenerative braking, 525
Relative motion, 38–39
Relative velocity, 38–39
Relativistic factor, 663
Relativistic Heavy Ion Collider (RHIC), 787, 790
Relativistic invariants, 662, 669
Relativistic momentum, 663, 669
Relativistic particles, 666
Relativistic quantum mechanics, 705–706
Relativistic velocity addition, 660–662
Relativity, 2, 648–669

electromagnetism and, 649, 652–653, 666
Galilean, 649
general, 652, 667–668, 791
invariants in, 662, 669
length contraction, 656–657, 669
Lorentz transformations, 659–662, 669
momentum and, 662–663

Reprocessing, of spent reactor fuel, 764
Resistance, electrical in LC circuits, 553

Ohm’s law and, 452–453, 456, 457, 459, 462, 
473, 587

of skin, 460
simultaneity, 657–658
special, 651–652, 669
time and, 652–657, 669
twin paradox, 655–656
velocity addition, 660–662
See also Quantum physics

Resistance, thermal, 302
Resistivity, 452
Resistors, 457, 468–473

in AC circuits, 546
parallel resistors, 468, 471–472, 482
series resistors, 468–469, 468–470, 482

Resolving power of grating, 631, 641
Resonance, 244, 245

standing waves, 265
Resonance curves, 244
Resonance, in RLC circuit, 553–556
Resonant frequency, 553, 559
Rest energy, 663
Restoring force, simple harmonic motion, 232
Reverse bias, 740

Reversible engine, 348
Reversible/irreversible processes, 331–332, 347, 357, 358
Rho particles, 781
Right-hand rule, rotational motion, 196
Rigid bodies, 150
Ring, rotational inertia by integration, 182
RL circuits, 531–532, 550
RLC circuits, 553–556, 559
Rock climbing, 256
Rocket propulsion, 20, 45, 65, 141, 160, 169
Rods, rotational inertia by integration, 181–182
Rohrer, Heinrich, 704
Roller coaster, 81–82, 125–126, 127, 128, 129
Rolling motion, 187–190
Root-mean-square (rms), 545
Roots, numbers, 6
Rotational dynamics, 184–185
Rotational energy, 185–187, 744
Rotational energy levels, 733
Rotational inertia, 180–183, 190, 200, 245
Rotational kinetic energy, 185
Rotational motion, 175–189, 227

angular acceleration of, 177–178, 197
angular momentum, 200–201, 206
angular velocity of, 176, 190, 196
conservation of angular momentum, 201–203, 206
direction of, 196
energy of, 185–187
inertia, 180–182, 190, 200, 245
Newton’s law, analogs of, 196, 197, 205
Newton’s second law for, 178, 180, 184, 227
right-hand rule, 196
of rolling body, 187–189, 190
torque, 178–179, 190, 197–198, 201, 205
See also Angular momentum; Circular motion; Torque

Rotational vectors, 196–205
Rough sliding, friction, 102
Rubber, electrical properties of, 452
Rubbia, Carlo, 785
Rutherford, Ernest, 680, 749
Rutile, optical properties of, 591
Rydberg atoms, 683
Rydberg constant for hydrogen, 681

S
S states, 714
Safety

electrical, 459–461
nuclear power plants, 767–768

Sakharov, Andrei, 782
Salam, Abdus, 795
Satellites

de-spinning, 184
orbital motion of, 137–139

Scalar product, 98–99
Scalar, vector arithmetic with, 36
Scales, force measurement with, 67
Scanning tunneling microscope (STM), 704
Schrieffer, John Robert, 743
Schrödinger equation, 696–698, 705, 707, 725

for crystals, 737
multielectron atoms, 719
spherical coordinates, 712

Schrödinger, Erwin, 696
Schwinger, Julian, 778
Scientific notation, 5–6
Scintillation detectors, 779
Scuba diving, 333
Second (sec), 3
Second derivative, 22
Second law of thermodynamics, 347–354, 361, 366

applications of, 339–342
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Clausius statement, 350
entropy and, 359–360
general statement, 359
heat engines, 347–349
Kelvin–Planck statement, 347

Secondary coil, transformer, 557
Selection rules, 723
Self-inductance, 528–530
Semiconductors, 739–740, 744

electric conduction in, 454, 462
Semiconductors, stability analysis of, 218
Series circuits, 587
Series resistors, 468–470, 482
Shell of multinuclear atoms, 719
SHM. See Simple harmonic motion (SHM)
Shock hazard, tools, 461
Shock waves, 270
Short circuit, 457, 461
SI (Système International) units, 3, 4, 11

of absorbed dose of radiation, 759
of activity (radioactivity), 754
of electric charge, 369
of energy, 105, 287, 298
prefixes, 4
of R, 302
of resistivity, 452
revision, 4
of specific heat, 299
of temperature, 298
of thermal resistance, 302

Sievert (Sv), 759, 772
Sigma particles, 781
Significant figures, 7–8
Silicon

crystalline structure, 454–455
phosphorus-doped, 455
work function of, 678

Silver
electrical properties of, 452
work function of, 678

Simple harmonic motion (SHM), 232–235, 245
applications of, 235–239
circular motion, 239–240
energy in, 240–242, 245
mass–spring system, 235, 240–241, 243
pendulum, 236–239
potential-energy curves and, 241–242
tuned mass damper, 235, 236

Simple harmonic wave, wave motion, 253, 270
Simple pendulum, 236–238
Simultaneity, 657
Single-slit diffraction, 636–637
Sinusoidal wave, wave motion, 253
Skiing, 75, 77, 84, 89, 95
Skyscrapers, 236
Slope, velocity and, 21
Snell, van Roijen, 592
Snell’s law, 592, 598

prisms, 596
Soap film, 633–634
Sodium atom

band structure of, 738
electronic structure of, 721
ionization energy of, 731

Sodium chloride
cohesive energy of crystal, 736
optical properties of, 591

Sodium, work function of, 678
Soft ferromagnetic materials, 502
Solar currents, 504
Solar energy, 580
Solar greenhouse, 318–319

Solenoids
electric field and, 507–508, 509
induced electric field in, 537
inductance, 529
magnetic flux, 500

Solids, 735–741
band theory, 737
crystal structure of, 735–737
phase changes, 319–321
semiconductors, 739–740, 744
superconductors, 456, 462, 538, 742–743

Sound
human ear and, 258
television, 259
units of, 259

Sound intensity level, 259
Sound waves, 1

music, 262
musical instruments, 265–266
wave motion, 258–259

Source charge, 370
Space quantization, 715
Spacecraft, 3, 54

escape speed of, 142, 145
International Space Station, 47, 61, 135, 138, 143, 

152–153
weightlessness, 61, 65

Spacetime, 662, 667, 669
Spatial frequency, wave motion, 254
Special theory of relativity, 651–652, 669
Specific heat, 298–300, 309, 341

of gas mixture, 340
of ideal gases, 339–340
molar specific heat at constant pressure, 335
molar specific heat at constant volume, 334

Spectra
atomic, 680–684, 689, 723–724
molecular, 734–735
optical, 723–724

Spectral lines, 680
Spectrometers, 630
Spectroscopy, 597, 646
Specular reflection, 590
Speed

angular speed, 190
average speed, 16–17
in circular orbit, 142
instantaneous speed, 18
of light, 3, 649, 676
limits, expressing, 5
linear speed versus angular speed, 176
terminal speed, 88
uniform circular motion and, 46–47
units of, 5
as vector, 48
of waves, 252–253, 261, 270
See also Acceleration; Velocity

Speed traps, 24
Spherical aberration, 604–605, 614
Spherical coordinates, Schrödinger equation, 712
Spherical symmetry, charge distributions, 397–400, 409
Spherical waves, 257
Spin, 706, 715–718, 780
Spin angular momentum, quantized, 716, 725, 752
Spin quantum number, 752
Spin-1/2 particles, 716, 725, 752
Spin-orbit coupling, 717–718, 725
Spin-orbit effect, 718
Split, electrons, 715–716
Spontaneous emission, 724, 725
Spring constant, 67, 68, 69
Spring scale, 67

Springs, 69
bungee jumping, 101–102
elastic potential energy, 117–118, 121, 129
forces exerted by, 67
Hooke’s law, 67, 69
ideal, 67, 69, 121, 232
mass–spring system, 235–236, 240–241, 243
simple harmonic motion, 232
stretching of, 100–102
work done on, 100–102, 108

Square wave, 260
Square-well ground state, 702
Stable equilibrium, 216–220

See also Static equilibrium
Standard model (particle physics), 784–785, 792
Standing waves, 264–266, 270, 294
Stanford Linear Accelerator Center (SLAC), 657, 677, 

783
Starlight, aberration of, 650
State variable, 357
Static equilibrium, 211–219, 227

center of gravity in, 213, 220
conditions for, 211–212
examples of, 214–216
stability of, 216–219
See also Stable equilibrium

Static friction, 84, 89
Statistical mechanics, 296, 366
Steady flow, fluid motion, 281
Steel, thermal properties of, 299, 301, 322
Stefan–Boltzmann constant, 304, 675
Stefan–Boltzmann law, 304
Step-down transformers, 459, 557
Step-up transformers, 557
Steradian (sr), 4
Stern–Gerlach experiment, 716–717
Stern, Otto, 716–717
Stimulated absorption, 724, 725
Stored energy. See Energy storage
Straight-line motion acceleration, 20–22

velocity, 18–20
Strange quarks, 782–783, 784
Strangeness, 780
Strassmann, Fritz, 762
Streamlines, 281, 289
String theory, 786
String, wave motion on, 255–256
Stringed instruments, standing waves in, 265–266
Strong force, 59, 783, 792

See also Nuclear force
Strontium-90, 755
Styrofoam, thermal properties of, 301
Subatomic particles. See Particles; Systems  

of particles
Sublimation, 321

heat of, 319
Subshells, 719–720
Subtraction

scientific notation and, 5–6
of vectors, 36

Sulfur dioxide, specific heat of, 339
Sulfur, thermal properties of, 319
Sun

beta decay in, 758
magnetic field of, 499, 504, 535
nuclear fusion, 768–769
solar currents, 504
solar energy, 580
Super Kamiokande experiment, 785
superconductivity, 741–743, 744
superconductors

electric conduction in, 456, 462, 538
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Quantum physics (continued )
high temperature, 743
theories of, 742

Sun, temperature of, 305
Supercritical mass, 764–765
Superfluidity, 752
Supernova explosions, 660
Superposition principle

electric charge, 372, 375, 384, 624
magnetic fields, 496, 502, 503, 624
wave motion, 259

Surface charge density, 378
Surfing, 254
Symmetries, particles, 782
Symmetry axis, 401
Symmetry breaking, 786
Synchrotrons, 493, 786
Systems, 95–96
Systems of particles, 150–168

center of mass, kinetic energy of, 160
collisions in, 161–162
continuous distribution of matter, 153–155, 181
equilibrium states of, 219
kinetic energy of, 160
momentum, 156–159
Newton’s second law and, 151, 155

T
Tangential acceleration, 48, 177
Tantalum oxide, dielectric constant of, 438
Taser, 460
Tau neutrinos, 781, 784
Tau particles, 780, 781, 784
Teflon, dielectric constant of, 438
Telescopes, 607, 617–618, 639

curved mirrors, 604
Television sound, 259
Temperature, 296–298, 309

absolute temperature, 298
absolute zero, 297, 738, 744
defined, 297
equilibrium temperature, 300, 309
transition temperature, 741
units of, 4, 296–298

Temperature scales, 297–298, 309
Tension forces, 59

massless rope, 87
spring, 67

Terminal speed, 88
Terminals, 468
Tesla (T), 489
Tesla, Nikola, 489
Test charge, 374
Theory of everything, 792
Theory of relativity. See Relativity
Thermal conductivity, 301, 302
Thermal contact, 297
Thermal expansion, 322–323, 324
Thermal noise, 454
Thermal pollution, 331
Thermal resistance, 302, 303
Thermal speed, 318
Thermal-energy balance, 306–308, 309
Thermally insulated, 297
Thermochemical calorie, 299
Thermodynamic efficiency, 350
Thermodynamic equilibrium, 296–297, 309, 341
Thermodynamic state variable, 330
Thermodynamics, 2, 296, 341

adiabatic processes, 335–337, 341, 366
constant-volume processes, 334, 341, 366
cyclic processes, 337–338

entropy, 355–356, 361
equipartition theorem, 339–340, 341
first law of, 329–331, 330, 341, 366
isobaric processes, 334, 337, 341
isothermal processes, 332–333, 337, 341, 366
quantum effect, 340
reversible/irreversible processes, 331–332, 347, 357, 

358, 366
second law of, 347–354, 359, 361, 366
state variable, 357
work and volume changes, 332
zeroth law of thermodynamics, 297, 366

Thermometers, 297
Thermonuclear weapons, 769
Thin films, interferometry, 633–634
Thin lenses, 608
Third-law pair, 65, 67
Thompson, Benjamin, 298
Thomson, George, 685
Thomson, J. J., 675, 685
Three dimensions

charged particle trajectories in, 492–493
quantum mechanics in, 705

Thunderstorms, 459
Tidal force, 144
Tides, 144
Time

atomic clock, 4, 27
energy–time uncertainty, 687
proper time, 653
relativity and, 652–657, 669
time dilation, 652–654, 669
units of, 3

Time constant, 481
Time dilation, 652–654, 669
Time-independent Schrödinger equation, 696–697, 707
Tokamak, 770
Tomonaga, Sin-Itiro, 778
Tools, shock hazard, 461
Top quarks, 783, 784
Toroid, 508
Torque, 178–179, 190, 197–198, 201, 205

angular momentum and, 201
external, 201, 204
on magnetic dipole, 500–501
torsional oscillator, 236

Torsional oscillator, 236, 245
Total angular momentum, 717–718, 725
Total energy, 663
Total internal reflection, 593–595, 598
Totally inelastic collisions, 162–164, 169
Trajectory, of a projectile, 43, 44–45, 139
Transformation, heat of, 319, 324, 366
Transformers, 557, 559

power supplies and, 557
step-down transformers, 459, 557
step-up transformers, 557

Transistors, 455–456
Transition elements, 722
Transition temperature, 741
Transmission gratings, 630–631
Transuranic isotopes, 767
Transverse waves, 252, 270
Trapping in potential well, 126
Triple point, 321, 324

of water, 297
Tritium, 755
Tsunamis, wave motion, 6
Tugboat, 99
Tuned mass damper, 235
Tunneling, 703–704, 707, 769
Turbulence, 288

Tweeter, 550
Twin paradox, 655–656
Two dimensions acceleration in, 37–38

circular motion in, 46–47
collisions in, 167–168, 169
constant acceleration, 38, 48
interference in, 262
projectile motion in, 39–40, 48
relative motion, 38–39
vectors, 34–38
velocity in, 38

Two-source interference, 261–262
Type I/II superconductors, 742, 744

U
U value, 303
Uhlenbeck, George, 716
Ultracapacitors, 436, 437, 441
Ultraviolet catastrophe, 677
Ultraviolet rays, 577
Unbound states, 705, 707
Uncertainty principle, 686–688, 689

energy–time uncertainty, 687
position–momentum uncertainty, 686–688, 689
quantum tunneling, 703–704, 707

Underdamped motion, 242
Unification, of forces, 59, 785–787
Unified electroweak force, 785
Unified mass units, 760
Uniform circular motion, 46–47, 48
Uniform motion, 56
Unit cell, 735
Unit vectors, 36
Units of measurement, 2–5
Universal gas constant, 315, 324
Universal gravitation, 135–137, 145, 227
Universe, 787–791, 792

Big Bang theory, 788, 790
cosmic microwave background (CMB), 788–789, 792
dark matter and dark energy, 790–791
electromagnetic spectrum, 577
expansion of, 787–788
Hubble’s law, 787
inflationary universe, 790

Unstable equilibrium, 216–217, 220
Unstable isotopes, 772
Unsteady flow, fluid motion, 281
Up quarks, 783, 784
Up/down quark pair, 783
Upright image, 603, 606, 609, 612

plane mirrors, 604
Uranium

versus coal, 764
enrichment, 764, 766
isotopes of, 750, 755
nuclear fission of, 764

Uranium dioxide, thermal properties of, 319
Uranium-233, 764
Uranium-235, 755, 764
Uranium-238, 755, 758, 764

V
Vacuum

electromagnetic waves in, 568, 582
Maxwell’s equations in, 568

Valence band, 739
van der Meer, Simon, 785
Van der Waals bonding, 732, 744
Van der Waals force, 319, 732
Vaporization, heat of, 319
Variable of integration, 183
Vector cross product, 198, 205
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Vectors, 34–38, 48
acceleration vectors, 37–38
addition of, 33, 36
components of, 35–36
cross product, 198
displacement vector, 35
dot product see scalar product
four-dimensional, 662, 669
multiplication, 198
multiplication of, 35
position as, 34–35, 48
rotational, 196–205
scalar product, 98–99
subtraction of, 36
unit vectors, 36
velocity vectors, 37–38, 48

Vehicle stability control, 217
Velocity, 16

angular (See also angular velocity)
average velocity, 17, 18, 20
average velocity vector, 37
bicycling and, 107
defined, 20, 48
instantaneous, 18–20
instantaneous velocity, 17–19, 37
power and, 107
rate of change, 21
relative velocity, 38–39
simple harmonic motion and, 234–235
slope and, 21
in two dimensions, 37–38
uniform circular motion and, 46–47
as vector, 37–38, 48

Velocity addition, 660–662
Velocity angular, relativistic addition of, 660–662
Velocity selectors, 491
Venturi flow, Bernoulli effect and, 285–286, 294
Venus, phases of, 135
Vibrational energy, 744
Vibrational energy levels, 734, 744
Virtual image, 603, 605–613, 616, 617, 619, 646
Virtual photon, 778
Viscosity, 284, 288
Visible light, 576–577
Vision

astigmatism, 614, 615
contact lenses, 603, 614, 615
corrective glasses, 615
the eye, 615–616
laser vision correction, 615
lenses, 614–618, 646

Volt (V), 416
Voltage, 416

household voltage, 546
measuring, 476
Ohm’s law, 452–453, 456, 457, 459, 462, 473, 587
working voltage of capacitor, 438–439

Voltage divider, 470
Voltmeters, 467, 476, 482
Volume charge density, 378
Volume flow rate, 282
Volume-expansion coefficient, 322, 324
Volume, units of, 4
von Fraunhofer, Josef, 680
Voyager spacecraft, 142

W
W particles, 785
Walking, pendulum and, 239
Water

dielectric constant of, 438
optical properties of, 591

phase diagram, 324
phases of, 320
thermal expansion of, 324
thermal properties of, 299, 301, 319
triple point of, 297
wave motion in, 265
See also Ice

Water heaters, 299, 306, 355
Watt (W), 105, 108
Watt balance, 4
Watt, James, 105
Wave amplitude, electromagnetic waves, 573
Wave equation, 255
Wave fields, 571–572
Wave function, 695–696, 707

constraints on, 698
Wave intensity, electromagnetic waves, 578–580
Wave motion, 1, 6, 251–268

angular frequency, 253, 270
dispersion, 260–261
mathematical description of, 253–255
period, 252, 253, 270
phase, 254
propagation, 252
simple harmonic wave, 252, 253, 270
sinusoidal wave, 253
sound waves, 258–259
spatial frequency, 254
speed of, 253
on stretched string, 255–256, 263–264, 270
superposition principle, 259
tsunamis, 6
wave equation, 255
wave number, 253, 270
waveforms, 252

Wave number, 253, 270
Wave speed, 253, 260–261, 270

rock climbing, 256
Wave speed, electromagnetic waves, 572–573
Wave–particle duality, 679, 688, 689, 695–696
Waveforms, 252
Wavefronts, 257
Wavelength, 252, 253
Wavelength, electromagnetic spectrum, 576–577
Waves, 270, 294

amplitude, 252
beats, 260–261
coherence, 625
diffraction, 636–638, 641, 646
diffraction limit, 638–640, 641, 646
Doppler effect, 266–270
double-slit interference, 626–629
frequency, 252
gravitational, 251, 668
Huygens’ principle, 636–638, 641, 646
intensity, 257–258, 270
interference, 259, 261–262, 625, 626, 641, 646
longitudinal, 252, 270
matter-wave interference, 685
multiple-slit interference, 629–632
period, 252, 253, 270
power of, 257
reflection, 262–263
refraction, 263
shock waves, 270
simple harmonic wave, 253, 270
sinusoidal, 253
square, 260
standing, 264–266, 270, 294
transverse, 252, 270
types, 252
wave speed, 253, 260–261, 270

wavelength, 252, 253
See also Electromagnetic waves; Light; 

Sound waves
Weak force, 59, 792

electroweak unification, 785
Weight, 69

apparent weight, 68, 69
mass versus, 60
units of, 60

Weightlessness, 61, 65
Weightlifting, 152
Weinberg, Steven, 785
Wheel, rolling motion, 187–189
White dwarf, 718
Wide-angle mirrors, 606
Wien’s law, 675
Wind energy, 287
Wind instruments, standing waves in, 266
Wind turbines, 175, 177, 178, 287
Windsurfing, 40–41
Wireless technologies, 2
Wollaston, William, 680
Wood, electrical properties of, 452
Wood, thermal properties of, 299, 301
Woofer, 550
Work, 94, 96–99, 105, 108, 227

by conservative forces, 114–115, 119
displacement and, 97–98
energy and, 443
by force varying with position, 99–102
against gravity, 103
heat engine efficiency, 348
kinetic energy and, 103–105
negative work, 115
by nonconservative forces, 114–115, 119
potential energy, 115–119
power and, 105–106
pulling luggage, 98
pushing car, 98
scalar product and, 98
thermodynamics, 330, 332, 341
units of, 97, 108
work functions of elements, 678
work–kinetic energy theorem, 104, 108, 119, 129,  

283
working voltage, 438

Work–kinetic energy theorem, 104, 108, 119,  
129, 283

Working fluid, 348
Wu, Chien-Shiung, 782

X
X-ray diffraction, 631–632, 641
X-rays, 577

potential difference in X-ray tube, 416–417
Xerography, 428

Y
Yang, Chen Ning, 782
Yankee Stadium, 106
Yerkes refractor, 618
Young, Thomas, 572, 625, 626
Yukawa, Hideki, 778

Z
Z particles, 781, 785
Zeeman effect, 718
Zeeman splitting, 718
Zero of electrical potential, 419–420
Zero of potential energy, 140–141
Zeroth law of thermodynamics, 297, 366
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GEOPHYSICAL AND ASTROPHYSICAL DATA
EARTH
Mass 5.97 * 1024 kg
Mean radius 6.37 * 106 m
Orbital period 3.16 * 107 s (365.3 days)
Mean distance from Sun 1.50 * 1011 m
Mean density 5.51 * 103 kg/m3

Surface gravity 9.81 m/s2

Escape speed 11.2 km/s
Surface temperature 288 K
Surface pressure 1.013 * 105 Pa
Magnetic moment 8.0 * 1022 A #m2

SUN
Mass 1.99 * 1030 kg
Mean radius 6.96 * 108 m
Orbital period (about galactic center) 6 * 1015 s (200 My)
Mean distance from galactic center 2.6 * 1020 m
Power output (luminosity) 3.83 * 1026 W
Mean density 1.41 * 103 kg/m3

Surface gravity 274 m/s2

Escape speed 618 km/s
Surface temperature 5.8 * 103 K 

MOON
Mass 7.35 * 1022 kg
Mean radius 1.74 * 106 m
Orbital period 2.36 * 106 s (27.3 days)
Mean distance from Earth 3.84 * 108 m
Mean density 3.34 * 103 kg/m3

Surface gravity 1.62 m/s2

Escape speed 2.38 km/s

P E R I O D I C  T A B L E  O F  T H E  E L E M E N T S

H
1

1.008

Li
3

6.941

Na
11

22.99

K
19

39.10

Rb
37

85.47

Cs
55

Fr
87

(223)

Ca
20

40.08

Sr
38

87.62

Ba
56

Ra
88

(226)

Sc
21

44.96

Y
39

88.91

57–71

89–103

Ti
22

47.88

Zr
40

91.22

Hf
72

Rf
104

(261)

V
23

50.94

Nb
41

92.91

Ta
73

Db
105

(268)

Cr
24

52.00

Mo
42

95.94

W
74

Sg
106

(266)

Mn
25

54.94

Tc
43

(98)

Re
75

Bh
107

(272)

Fe
26

55.85

Ru
44

101.07

Os
76

Hs
108

(277)

Co
27

58.93

Rh
45

102.91

Ir
77

Mt Ds Rg Cn Nh Ts OgMcFl Lv
109

(276)

110

(281)

111

(280)

112

(285)

Ni
28

58.69

Pd
46

106.42

Pt
78

Cu
29

63.55

Ag
47

107.87

Au
79

Zn
30

65.39

Cd
48

112.41

Hg
80

Ga
31

69.72

In
49

114.82

Tl
81

Ge
32

72.61

Sn
50

118.71

Pb
82

As
33

74.92

Sb
51

121.75

Bi
83

Se
34

78.96

Te
52

127.60

Po
84

Br
35

79.90

I
53

126.90

At
85

Kr
36

83.80

Xe
54

131.29

Rn
86

Lanthanide
series132.91 137.33 178.49 180.95 183.85 186.21 190.2 192.22 195.08 200.59 204.38 207.2 208.98 (209)

113 114 115 116

(284) (289) (288) (292)

117

(294)

118

(294)

(210) (222)196.97

Actinide
series 

Al
13

26.98
Si
14

28.09
P
15

30.97
S
16

32.07
Cl
17

35.45
Ar
18

39.95

B
5

10.81
C
6

12.01
N
7

14.01
O
8

16.00
F
9

19.00
Ne
10

20.18

He
2

4.003

Ce
58

140.12
Pr
59

140.91
Nd

60

144.24
Pm

61

(145)
Sm

62

150.36
Eu

63

151.97
La
57

138.91
Gd

64

157.25
Tb

65

158.93
Dy

66

162.50
Ho

67

164.93
Er
68

167.26
Tm

69

168.93
Yb

70

173.04
Lu

71

174.97

Th
90

232.04
Pa
91

(231)
U
92

238.03
Np

93

(237)
Pu
94

(244)
Am

95

(243)
Ac
89

(227)
Cm

96

(247)
Bk

97

(247)
Cf
98

(251)
Es
99

(252)
Fm
100

(257)
Md

101

(258)
No
102

(259)
Lr
103

(260)

Lanthanide
series

Actinide
series

He
2

4.003

Atomic number
Symbol
Atomic mass (u)*

Metals

Metalloids

Nonmetals

Mg
12

24.31

Be
4

9.012

*Atomic mass is average over abundances of stable isotopes. For radioactive elements other than uranium and thorium, mass is in parentheses and is 
that of the most stable important (in availability, etc.) isotope.

A list of the elements is given in Appendix D.
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